Overview of Operational Global and Regional Ocean Colour Essential Ocean Variables Within the Copernicus Marine Service
<p>Overview of the OCTAC catalogue evolutions of the single-sensor and multisensor global and regional OC products from 2015 to 2024. The blue lines mark the timelines of each product type; covered basins are marked in green and listed under each line; satellite sensors are marked in black; spatial resolution of products/datasets is marked in blue. The red dots mark the dates of the MY reprocessing.</p> "> Figure 2
<p>Spatial coverage of the Sentinel-3 OLCI 300 m and Sentinel-2 MSI 100 m datasets. (<b>A</b>) All European regional seas and a 200 km strip from the coastline in the global product for Sentinel-3 OLCI. (<b>B</b>) A 20 km strip from the coastline for the European coastal waters covered in 5 days with Sentinel-2 MSI.</p> "> Figure 3
<p>OC sensors and high-resolution imagers adopted upstream in OCTAC processing chains. Timelines of legacy, and current and forthcoming (approved and planned) sensors are displayed (source CEOS): red identifies science OC missions, blue identifies operational OC missions, and brown identifies high-resolution/land imagers.</p> "> Figure 4
<p>Mediterranean Sea satellite CHL trend over the period 1997-2023, based on the CMEMS product OCEANCOLOUR_MED_BGC_L4_MY_009_144. (<b>A</b>) Time series and linear trend of monthly regional average satellite CHL: the monthly regional average (weighted by pixel area) time series is shown in gray, with the de-seasonalized time series in green and the linear trend in blue. (<b>B</b>) Map of satellite CHL trend, expressed in % per year, with positive trends in red and negative trends in blue.</p> "> Figure 5
<p>Time series (1998–2023) of SDG 14.1.1a Level 2 sub-indicator for European countries. The potential eutrophication values for European waters are based on CMEMS OC regional products aggregated over the EEZ for each country. AL: Albania, BE: Belgium, BG: Bulgaria, CY: Cyprus, DE: Germany, DK: Denmark, EE: Estonia, EL: Greece, ES: Spain, FI: Finland, FO: Faroe Islands, FR: France, GE: Georgia, GL: Greenland, HR: Croatia, IE: Ireland, IS: Iceland, IT: Italy, LT: Lithuania, LV: Lat- via, MC: Monaco, ME: Montenegro, MT: Malta, NL: Netherlands, NO: Norway, PL: Poland, PT: Portugal, RO: Romania, SE: Sweden, SI: Slovenia, UK: United Kingdom.</p> ">
Abstract
:1. Introduction
2. Product Overview
- (i)
- Plankton—with the phytoplankton chlorophyll concentration (CHL), phytoplankton size classes (PSC) and phytoplankton functional types (PFT);
- (ii)
- Primary Production—integrated productivity within the euphotic zone (PP);
- (iii)
- Reflectance—with the spectral remote sensing reflectance (Rrs);
- (iv)
- Transparency—with the diffuse attenuation coefficient of light at 490 nm (Kd490), Secchi depth (ZSD—an indicator of water transparency), turbidity (TUR), and the suspended particulate matter (SPM);
- (v)
- Optics—including the inherent optical properties (IOPs), such as absorption and backscattering by particulate and dissolved matter.
2.1. Upstream OC Data Streams
2.2. Merging Strategies and Atmospheric Correction
2.3. Retrieval Algorithms in the Global and Regional Processing Chains
2.3.1. Chlorophyll Algorithms
2.3.2. Phytoplankton Type Variables
2.3.3. Inherent Optical Properties
2.3.4. Primary Production
3. Uncertainty of OCTAC Products
Uncertainty Associated to Chlorophyll Datasets
4. Contributions to Environmental Reporting
5. Future Evolutions
- New datasets for particulate and dissolved organic carbon will be added to the catalogue for open and coastal waters and managing the transitions between the two domains [64,65,96]. Basically, POC (particulate organic carbon) estimates result in a combination of different algorithms as a function of the optical water classes [64,96]. For the retrieval of DOC (dissolved organic carbon), the main contributor to organic carbon over open ocean water, the algorithm proposes an innovative approach considering a temporal window to account for the fate of the organic matter with a neural-net [65,96].
- The generation of gap-filled Rrs fields using the DINEOF technique from which all subsequent biogeochemical parameters will be retrieved [98]. The introduction of gap-filled Rrs and IOPs datasets in L4 products will be carried out in the regional multisensor datasets for BLK, MED and BAL.
- Update ATL products based on the Copernicus-GlobColour processor [7] for the coastal waters in the North Sea to support the OSPAR (OSlo PARis convention) requirements for eutrophication assessment. This will also entail updating the OC5 algorithms for CHL and SPM retrieval [33] to be in line with the latest version of the sensor reprocessing.
- Update of the strategies to merge data from sensors with different sets of central wavelengths and spectral response functions in the processing chains. In particular, the reference sensor will be changed to OLCI.
- Extend the applicability over water types of the blended approaches for CHL retrieval in the optically complex waters in ARC, BAL, BLK, and MED, also further incorporating machine learning approaches.
- Uptake of the new L2 operational reflectance product dedicated to water applications for the Sentinel-2 MSI to be released by ESA, and regionalization of the CHL algorithms at the basin level for the Sentinel-2 MSI products to be consistent with the OLCI and multi-resolution products for each European sea.
- Full reprocessing of the MY time series to incorporate major changes to the upstream satellite data carried out by the space agencies, and the improvements listed above.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- von Schuckmann, K.; Le Traon, P.-Y.; Smith, N.; Pascual, A.; Djavidnia, S.; Gattuso, J.-P.; Grégoire, M.; Nolan, G.; Aaboe, S.; Aguiar, E.; et al. Copernicus Marine Service Ocean State Report 3. J. Oper. Oceanogr. 2019, 12 (Suppl. S1), S1–S123. [Google Scholar] [CrossRef]
- Von Schuckmann, K.; Le Traon, P.Y.; Menna, M.; Martellucci, R.; Notarstefano, G.; Mauri, E.; Gerin, R.; Pacciaroni, M.; Bussani, A.; Pirro, A.; et al. Copernicus Ocean State Report, Issue 6. J. Oper. Oceanogr. 2022, 15 (Suppl. S1), s1–s220. [Google Scholar]
- Letraon, P.; Ali, A.; Fanjul, E.A.; Aouf, L.; Axell, L.; Aznar, R.; Ballarotta, M.; Behrens, A.; Benkiran, M.; Bentamy, A.; et al. The Copernicus marine environmental monitoring service: Main scientific achievements and future prospects. Mercat. Ocean. J. 2017, 56, 101. [Google Scholar]
- Le Traon, P.Y.; Reppucci, A.; Fanjul, E.A.; Aouf, L.; Behrens, A.; Belmonte, M.; Bentamy, A.; Bertino, L.; Brando, V.E.; Kreiner, M.B.; et al. From Observation to Information and Users: The Copernicus Marine Service Perspective. Front. Mar. Sci. 2019, 6, 234. [Google Scholar] [CrossRef]
- Le Traon, P.; Abadie, V.; Ali, A.; Behrens, A.; Staneva, J.; Hieronymi, M.; Krasemann, H. The Copernicus Marine Service from 2015 to 2021: Six years of achievements. Mercat. Ocean. J. 2021. [Google Scholar] [CrossRef]
- Volpe, G.; Colella, S.; Brando, V.E.; Forneris, V.; Padula, F.L.; Di Cicco, A.; Sammartino, M.; Bracaglia, M.; Artuso, F.; Santoleri, R. Mediterranean ocean colour Level 3 operational multi-sensor processing. Ocean Sci. 2019, 15, 127–146. [Google Scholar] [CrossRef]
- Garnesson, P.; Mangin, A.; Fanton d’Andon, O.; Demaria, J.; Bretagnon, M. The CMEMS GlobColour chlorophyll a product based on satellite observation: Multi-sensor merging and flagging strategies. Ocean Sci. 2019, 15, 819–830. [Google Scholar] [CrossRef]
- Sathyendranath, S.; Brewin, R.; Brockmann, C.; Brotas, V.; Calton, B.; Chuprin, A.; Cipollini, P.; Couto, A.; Dingle, J.; Doerffer, R.; et al. An Ocean-Colour Time Series for Use in Climate Studies: The Experience of the Ocean-Colour Climate Change Initiative (OC-CCI). Sensors 2019, 19, 4285. [Google Scholar] [CrossRef]
- Sathyendranath, S.; Brewin, R.J.W.; Jackson, T.; Mélin, F.; Platt, T. Ocean-colour products for climate-change studies: What are their ideal characteristics? Remote Sens. Environ. 2017, 203, 125–138. [Google Scholar] [CrossRef]
- Dekker, A.G.; Pinnel, N.; Gege, P.; Briottet, X.; Peters, S.; Turpie, K.R.; Sterckx, S.; Costa, M.; Giardino, C.; Brando, V.E.; et al. Feasibility Study for an Aquatic Ecosystem Earth Observing System Version 1.2; Committee on Earth Observation Satellites (CEOS) and Commonwealth Scientific and Industrial Research Organization: Canberra, Australia, 2018.
- GOOS. Global Ocean Observing System, Essential Ocean Variables Specification Sheet: Ocean Colour. 2018. Available online: https://www.goosocean.org/index.php?option=com_oe&task=viewDocumentRecord&docID=19959 (accessed on 22 October 2024).
- Qin, Y.; Brando, V.E.; Dekker, A.G.; Blondeau-Patissier, D. Validity of SeaDAS Water Constituents Retrieval Algorithms in Australian Tropical Coastal Waters. Geophys. Res. Lett. 2007, 34, L21603. [Google Scholar] [CrossRef]
- Volpe, G.; Santoleri, R.; Vellucci, V.; Ribera d’Alcalà, M.; Marullo, S.; D’Ortenzio, F. The colour of the Mediterranean Sea: Global versus regional bio-optical algorithms evaluation and implication for satellite chlorophyll estimates. Remote Sens. Environ. 2007, 107, 625–638. [Google Scholar] [CrossRef]
- Szeto, M.; Werdell, P.J.; Moore, T.S.; Campbell, J.W. Are the world’s oceans optically different? J. Geophys. Res. 2011, 116, C00H04. [Google Scholar] [CrossRef]
- D’Alimonte, D.; Zibordi, G.; Kajiyama, T.; Berthon, J.-F. Comparison between MERIS and regional high-level products in European seas. Remote Sens. Environ. 2014, 140, 378–395. [Google Scholar] [CrossRef]
- Beckers, J.; Rixen, M. EOF Calculations and Data Filling from Incomplete Oceanographic Datasets. J. Atmos. Ocean. 2003, 20, 1839–1856. [Google Scholar] [CrossRef]
- Volpe, G.; Nardelli, B.B.; Colella, S.; Pisano, A.; Santoleri, R. Operational Interpolated Ocean Colour Product in the Mediterranean Sea. In New Frontiers in Operational Oceanography; Chassignet, E., Pascual, A., Tintoré, J., Verron, J., Eds.; CreateSpace: Scotts Valley, CA, USA, 2018; pp. 227–244. [Google Scholar]
- Mélin, F.; Sclep, G. Band shifting for ocean color multi-spectral reflectance data. Opt. Express 2015, 23, 2262–2279. [Google Scholar] [CrossRef]
- Jackson, T.; Sathyendranath, S.; Groom, S.; Calton, B. ESA Ocean Colour Climate Change Initiative Product User Guide for v6.0 Dataset. 2002. Available online: https://docs.pml.space/share/s/fzNSPb4aQaSDvO7xBNOCIw (accessed on 22 October 2024).
- Steinmetz, F.; Deschamps, P.-Y.; Ramon, D. Atmospheric correction in presence of sun glint: Application to MERIS. Opt. Express 2011, 19, 9783–9800. [Google Scholar] [CrossRef]
- Steinmetz, F.; Ramon, D. Sentinel-2 MSI and Sentinel-3 OLCI consistent ocean colour products using POLYMER. In Proceedings of the Remote Sensing of the Open and Coastal Ocean and Inland Waters, Honolulu, HI, USA, 24–25 September 2018; Volume 10778, p. 107780E. [Google Scholar]
- EUMETSAT. Sentinel-3 OLCI L2 Report for Baseline Collection OL_L2M_003. 2021. Available online: https://user.eumetsat.int/s3/eup-strapi-media/Sentinel_3_OLCI_L2_report_for_baseline_collection_OL_L2_M_003_2_B_c8bbc6d986.pdf (accessed on 22 October 2024).
- Tilstone, G.H.; Pardo, S.; Simis, S.G.H.; Qin, P.; Selmes, N.; Dessailly, D.; Kwiatkowska, E. Consistency between satellite ocean colour products under high coloured dissolved organic matter absorption in the baltic sea. Remote Sens. 2022, 14, 89. [Google Scholar] [CrossRef]
- Zibordi, G.; Kwiatkowska, E.; Mélin, F.; Talone, M.; Cazzaniga, I.; Dessailly, D.; Gossn, J.I. Assessment of OLCI-A and OLCI-B radiometric data products across European seas. Remote Sens. Environ. 2022, 272, 112911. [Google Scholar] [CrossRef]
- Vilas, L.G.; Brando, V.E.; Di Cicco, A.; Colella, S.; D’alimonte, D.; Kajiyama, T.; Attila, J.; Schroeder, T. Assessment of ocean color atmospheric correction methods and development of a regional ocean color operational dataset for the Baltic Sea based on Sentinel-3 OLCI. Front. Mar. Sci. 2024, 10, 1256990. [Google Scholar] [CrossRef]
- Hieronymi, M.; Müller, D.; Doerffer, R. The OLCI Neural Network Swarm (ONNS): A Bio-Geo-Optical Algorithm for Open Ocean and Coastal Waters. Front. Mar. Sci. 2017, 4, 140. [Google Scholar] [CrossRef]
- Doxani, G.; Vermote, E.; Roger, J.-C.; Gascon, F.; Adriaensen, S.; Frantz, D.; Hagolle, O.; Hollstein, A.; Kirches, G.; Li, F.; et al. Atmospheric Correction Inter-Comparison Exercise. Remote Sens. 2018, 10, 352. [Google Scholar] [CrossRef] [PubMed]
- Doerffer, R.; Schiller, H. The MERIS Case 2 water algorithm. Int. J. Remote Sens. 2007, 28, 517–535. [Google Scholar] [CrossRef]
- Brockmann, C.; Doerffer, R.; Peters, M.; Stelzer, K.; Embacher, S.; Ruescas, A. Evolution of the C2RCC neural network for Sentinel 2 and 3 for the retrieval of Ocean Colour products in normal and extreme optically complex waters. In Proceedings of the Living Planet Symposium, Prague, Czech Republic, 9–13 May 2016; p. 740. [Google Scholar]
- Vanhellemont, Q. Adaptation of the dark spectrum fitting atmospheric correction for aquatic applications of the Landsat and Sentinel-2 archives. Remote Sens. Environ. 2019, 225, 175–192. [Google Scholar] [CrossRef]
- Van der Zande, D.; Vanhellemont, Q.; Stelzer, K.; Lebreton, C.; Dille, A.; dos Santos, J.C.; Böttcher, M.; Vansteenwegen, D.; Brockmann, C. Improving operational ocean color coverage using a merged atmospheric correction approach. Remote Sens. Ocean. Sea Ice Coast. Waters Large Water Reg. 2023, 12728, 12–29. [Google Scholar] [CrossRef]
- Hu, C.; Lee, Z.; Franz, B. Chlorophyll a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference. J. Geophys. Res. 2012, 117, C01011. [Google Scholar] [CrossRef]
- Gohin, F.; Druon, J.-N.; Lampert, L. A five channel chlorophyll concentration algorithm applied to SeaWiFS data processed by SeaDAS in coastal waters. Int. J. Remote Sens. 2002, 23, 1639–1661. [Google Scholar] [CrossRef]
- Pardo, S.; Jackson, T.; Netting, J.; Calton, B.; Howey, B. Quality information document for OC TAC Products Atlantic and Arctic Observation Products. Copernicus Marine Service. 2022. Available online: https://catalogue.marine.copernicus.eu/documents/QUID/CMEMS-OC-QUID-009-111to114-121to124.pdf (accessed on 22 October 2024).
- Zoffoli, M.L.; Volpe, G.; Brando, V.E.; Pitarch, J.; Gonzalez Vilas, L.; Colella, S. QUID (Quality Information Document) for Arctic Sea Observation Products. Copernicus Marine Service, release 2.0. 2023. Available online: https://documentation.marine.copernicus.eu/QUID/CMEMS-OC-QUID-009-121to124.pdf (accessed on 22 October 2024).
- Goncalves-Araujo, R.; Rabe, B.; Peeken, I.; Bracher, A. High colored dissolved organic matter (CDOM) absorption in surface waters of the central-eastern Arctic Ocean: Implications for biogeochemistry and ocean color algorithms. PLoS ONE 2018, 13, e0190838. [Google Scholar] [CrossRef]
- IOCCG. Ocean Colour Remote Sensing in Polar Seas; Babin, M., Arrigo, K., Bélanger, S., Forget, M.-H., Eds.; IOCCG Report Series, No. 16; International Ocean Colour Coordinating Group: Dartmouth, NS, Canada, 2015. [Google Scholar]
- D’Alimonte, D.; Zibordi, G. Phytoplankton determination in an optically complex coastal region using a multilayer perceptron neural network. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2861–2868. [Google Scholar] [CrossRef]
- Colella, S.; Brando, V.E.; Di Cicco, A.; D’Alimonte, D.; Forneris, V.; Bracaglia, M. Quality Information Document for Ocean Colour Mediterranean and Black Sea Observation Product Release 4.0; Mercator Ocean International: Toulouse, France, 2024. [Google Scholar] [CrossRef]
- Kajiyama, T.; D’Alimonte, D.; Zibordi, G. Algorithms merging for the determination of Chlorophyll-a concentration in the Black Sea. IEEE Geosci. Remote Sens. Lett. 2018, 16, 677–681. [Google Scholar] [CrossRef]
- Zibordi, G.; Mélin, F.; Berthon, J.-F.; Talone, M. In situ autonomous optical radiometry measurements for satellite ocean color validation in the Western Black Sea. Ocean Sci. 2015, 11, 275–286. [Google Scholar] [CrossRef]
- Kopelevich, O.; Burenkov, V.; Sheberstov, S.; Vazyulya, S.; Kravchishina, M.; Pautova, L.; Silkin, V.; Artemiev, V.; Grigoriev, A. Satellite monitoring of coccolithophore blooms in the Black Sea from ocean color data. Remote Sens. Environ. 2014, 146, 113–123. [Google Scholar] [CrossRef]
- Zibordi, G.; Berthon, J.-F.; Mélin, F.; D’Alimonte, D. Cross-site consistent in situ measurements for satellite ocean color applications: The BiOMaP radiometric dataset. Remote Sens. Environ. 2011, 115, 2104–2115. [Google Scholar] [CrossRef]
- D’Alimonte, D.; Zibordi, G.; Berthon, J.-F.; Canuti, E.; Kajiyama, T. Bio-Optical Algorithms for European Seas: Performance and Applicability of Neural-Net Inversion Schemes. Technical Report JRC66326, JRC-IES Scientific and Technical Reports. 2011. Available online: https://data.europa.eu/doi/10.2788/56321 (accessed on 22 October 2024).
- Brando, V.E.; Sammartino, M.; Colella, S.; Bracaglia, M.; Di Cicco, A.; D’Alimonte, D.; Kajiyama, T.; Kaitala, S.; Attila, J. Phytoplankton Bloom Dynamics in the Baltic Sea Using a Consistently Reprocessed Time Series of Multi-Sensor Reflectance and Novel Chlorophyll-a Retrievals. Remote Sens. 2021, 13, 3071. [Google Scholar] [CrossRef]
- Pitarch, J.; Volpe, G.; Colella, S.; Krasemann, H.; Santoleri, R. Remote sensing of chlorophyll in the Baltic Sea at basin scale from 1997 to 2012 using merged multi-sensor data. Ocean Sci. 2016, 12, 379–389. [Google Scholar] [CrossRef]
- Lavigne, H.; Van Der Zande, D.; Ruddick, K.; Cardoso dos Santos, J.; Gohin, F.; Brotas, V.; Kratzer, S. Quality-control tests for OC4, OC5 and NIR-red satellite chlorophyll-a algorithms applied to coastal waters. Remote Sens. Environ. 2021, 255, 112237. [Google Scholar] [CrossRef]
- O’Reilly, J.E.; Werdell, P.J. Chlorophyll algorithms for ocean color sensors-OC4, OC5 & OC6. Remote Sens. Environ. 2019, 229, 32–47. [Google Scholar] [CrossRef]
- Gons, H.J. Optical teledetection of chlorophyll a in turbid inland waters. Environ. Sci. Technol. 1999, 33, 1127–1132. [Google Scholar] [CrossRef]
- Gons, H.J.; Rijkeboer, M.; Ruddick, K.G. Effect of a waveband shift on chlorophyll retrieval from MERIS imagery of inland and coastal waters. J. Plankton Res. 2005, 27, 125–127. [Google Scholar] [CrossRef]
- Brewin, R.J.W.; Sathyendranath, S.; Jackson, T.; Barlow, R.; Brotas, V.; Airs, R.; Lamont, T. Influence of light in the mixed-layer on the parameters of a three-component model of phytoplankton size class. Remote Sens. Environ. 2015, 168, 437–450. [Google Scholar] [CrossRef]
- Brewin, R.J.W.; Ciavatta, S.; Sathyendranath, S.; Jackson, T.; Tilstone, G.; Curran, K.; Airs, R.L.; Cummings, D.; Brotas, V.; Organelli, E.; et al. Uncertainty in Ocean-Color Estimates of Chlorophyll for Phytoplankton Groups. Front. Mar. Sci. 2017, 4, 104. [Google Scholar] [CrossRef]
- Di Cicco, A.; Sammartino, M.; Marullo, S.; Santoleri, R. Regional Empirical Algorithms for an Improved Identification of Phytoplankton Functional Types and Size Classes in the Mediterranean Sea Using Satellite Data. Front. Mar. Sci. 2017, 4, 126. [Google Scholar] [CrossRef]
- Xi, H.; Losa, S.N.; Mangin, A.; Soppa, M.A.; Garnesson, P.; Demaria, J.; Liu, Y.; Hembise Fanton d’Andon, O.; Bracher, A. Global retrieval of phytoplankton functional types based on empirical orthogonal functions using CMEMS GlobColour merged products and further extension to OLCI data. Remote Sens. Environ. 2020, 240, 111704. [Google Scholar] [CrossRef]
- Xi, H.; Losa, S.N.; Mangin, A.; Garnesson, P.; Bretagnon, M.; Demaria, J.; Soppa, M.A.; Hembise Fanton d’Andon, O.; Bracher, A. Global chlorophyll a concentrations of phytoplankton functional types with detailed uncertainty assessment using multi-sensor ocean color and sea surface temperature satellite products. J. Geophys. Res. Ocean. 2021, 126, e2020JC017127. [Google Scholar] [CrossRef]
- Brando, V.E.; Gonzalez Vilas, L.; Di Cicco, A.; Sammartino, M.; Colella, S.; D’Alimonte, D.; Kajiyama, T.; Kaitala, S.; Attila, J. Ocean Colour Production Centre—Baltic Sea Observation Products (Quality Information Document, QUID). 2023. Available online: https://catalogue.marine.copernicus.eu/documents/QUID/CMEMS-OC-QUID-009-131to134.pdf (accessed on 22 October 2024).
- Sieburth, J.M.; Smetacek, V.; Lenz, J. Pelagic ecosystem structure: Heterotrophic compartments of the plankton and their relationship to plankton size fractions. Limnol. Oceanogr. 1978, 23, 1256–1263. [Google Scholar] [CrossRef]
- Vidussi, F.; Claustre, H.; Manca, B.B.; Luchetta, A.; Marty, J.C. Phytoplankton pigment distribution in relation to upper thermocline circulation in the eastern Mediterranean Sea during winter. J. Geophys. Res. 2001, 106, 19939–19956. [Google Scholar] [CrossRef]
- Uitz, J.; Claustre, H.; Morel, A.; Hooker, S.B. Vertical distribution of phytoplankton communities in open ocean: An assessment based on surface chlorophyll. J. Geophys. Res. 2006, 111, C08005. [Google Scholar] [CrossRef]
- Brewin, R.J.W.; Sathyendranath, S.; Hirata, T.; Lavender, S.J.; Barciela, R.M.; Hardman-Mountford, N.J. A three-component model of phytoplankton size class for the Atlantic Ocean. Ecol. Model. 2010, 221, 1472–1483. [Google Scholar] [CrossRef]
- Hirata, T.; Hardman-Mountford, N.J.; Brewin, R.J.W.; Aiken, J.; Barlow, R.; Suzuki, K.; Isada, T.; Howell, E.; Hashioka, T.; Noguchi-Aita, M.; et al. Synoptic relationships between surface Chlorophyll-a and diagnostic pigments specific to phytoplankton functional types. Biogeosciences 2011, 8, 311–327. [Google Scholar] [CrossRef]
- Lee, Z.P.; Carder, K.L.; Arnone, R.A. Deriving inherent optical properties from water color: A multiband quasi-analytical algorithm for optically deep waters. Appl. Opt. 2002, 41, 5755–5772. [Google Scholar] [CrossRef]
- Lee, Z.P.; Carder, K.L.; Arnone, R.A. Update of the Quasi-Analytical Algorithm (QAA_v6); IOCCG Software Report; International Ocean Colour Coordinating Group (IOCCG): Dartmouth, NS, Canada, 2014. [Google Scholar]
- Jorge, D.S.F.; Loisel, H.; Jamet, C.; Dessailly, D.; Demaria, J.; Bricaud, A.; Maritorena, S.; Zhang, X.; Antoine, D.; Kutser, T.; et al. A Three-Step Semi Analytical Algorithm (3SAA) for Estimating Inherent Optical Properties over Oceanic, Coastal, and Inland Waters from Remote Sensing Reflectance. Remote Sens. Environ. 2021, 263, 112537. [Google Scholar] [CrossRef]
- Bonelli, A.G.; Loisel, H.; Jorge, D.S.F.; Mangin, A.; d’Andon, O.F.; Vantrepotte, V. A new method to estimate the dissolved organic carbon concentration from remote sensing in the global open ocean. Remote Sens. Environ. 2022, 281, 113227. [Google Scholar] [CrossRef]
- Maritorena, S.; Siegel, D.A. Consistent merging of satellite ocean color data sets using a bio-optical model. Remote Sens. Environ. 2005, 94, 429–440. [Google Scholar] [CrossRef]
- Antoine, D.; Morel, A. Oceanic primary production: 1. Adaptation of a spectral light-photosynthesis model in view of application to satellite chlorophyll observations. Glob. Biogeochem. Cycles 1996, 10, 43–55. [Google Scholar] [CrossRef]
- Frouin, R.; Franz, B.A.; Werdell, P.J. The SeaWiFS PAR product. In Algorithm Updates for the Fourth SeaWiFS Data Reprocessing; Hooker, S.B., Firestone, E.R., Eds.; NASA/TM-2003-206892; NASA Goddard Space Flight Center: Greenbelt, MD, USA, 2003; Volume 22, pp. 46–50. [Google Scholar]
- CMEMS. Global Ocean Physics Reanalysis GLORYS12V1 Product; CMEMS: Ramonville-Saint-Agne, France, 2022. [Google Scholar] [CrossRef]
- Morel, A. Light and marine photosynthesis: A spectral model with geochemical and climatological implications. Prog. Oceanogr. 1991, 26, 263–306. [Google Scholar] [CrossRef]
- Tanré, D.; Herman, M.; Deschamps, P.Y.; De Leffe, A. Atmospheric modeling for space measurements of ground reflectances, including bidirectional properties. Appl. Opt. 1979, 18, 3587–3594. [Google Scholar] [CrossRef]
- Morel, A.; Berthon, J.F. Surface pigments, algal biomass profiles, and potential production of the euphotic layer: Relationships reinvestigated in view of remote-sensing applications. Limnol. Oceanogr. 1989, 34, 1545–1562. [Google Scholar] [CrossRef]
- Gregg, W.W.; Casey, N.W. Skill assessment of a spectral ocean-atmosphere radiative model. J. Mar. Syst. 2009, 76, 49–63. [Google Scholar] [CrossRef]
- Hernandez, F.; Smith, G.; Baetens, K.; Cossarini, G.; Garcia-Hermosa, I.; Drévillon, M.; Maksymczuk, J.; Melet, A.; Régnier, C.; Schuckmann, K.V. Measuring performances, skill and accuracy in operational oceanography: New challenges and approaches. In New Frontiers in Operational Oceanography; Chassignet, E., Pascual, A., Tintoré, J., Verron, J., Eds.; GODAE OceanView: Mallorca, Spain, 2018; pp. 759–796. [Google Scholar] [CrossRef]
- Concha, J.A.; Bracaglia, M.; Brando, V.E. Assessing the Influence of Different Validation Protocols on Ocean Colour Match-up Analyses. Remote Sens. Environ. 2021, 259, 112415. [Google Scholar] [CrossRef]
- Valente, A.; Sathyendranath, S.; Brotas, V.; Groom, S.; Grant, M.; Jackson, T.; Chuprin, A.; Taberner, M.; Airs, R.; Antoine, D.; et al. A compilation of global bio-optical in situ data for ocean colour satellite applications–version three. Earth Syst. Sci. Data 2022, 14, 5737–5770. [Google Scholar] [CrossRef]
- Pisano, A.; Marullo, S.; Artale, V.; Falcini, F.; Yang, C.; Leonelli, F.E.; Santoleri, R.; Buongiorno Nardelli, B. New Evidence of Mediterranean Climate Change and Variability from Sea Surface Temperature Observations. Remote Sens. 2020, 12, 132. [Google Scholar] [CrossRef]
- Marullo, S.; Serva, F.; Iacono, R.; Napolitano, E.; di Sarra, A.; Meloni, D.; Monteleone, F.; Sferlazzo, D.; De Silvestri, L.; de Toma, V.; et al. Record-breaking persistence of the 2022/23 marine heatwave in the Mediterranean Sea. Environ. Res. Lett. 2023, 18, 114041. [Google Scholar] [CrossRef]
- Volpe, G.; Nardelli, B.B.; Cipollini, P.; Santoleri, R.; Robinson, I.S. Seasonal to interannual phytoplankton response to physical processes in the Mediterranean Sea from satellite observations. Remote Sens. Environ. 2012, 117, 223–235. [Google Scholar] [CrossRef]
- Li, M.; Organelli, E.; Serva, F.; Bellacicco, M.; Landolfi, A.; Pisano, A.; Marullo, S.; Shen, F.; Mignot, A.; van Gennip, S.; et al. Phytoplankton spring bloom inhibited by marine heatwaves in the North-Western Mediterranean Sea. Geophys. Res. Lett. 2024, 51, e2024GL109141. [Google Scholar] [CrossRef]
- Brando, V.E.; Pardo, S.; Sathyendranath, S.; Howey, B.; Land, P.; Jackson, T.; Santoleri, R.; Sammartino, M.; Colella, S.; von Schuckmann, K.; et al. Potential eutrophication of European waters using satellite derived chlorophyll following the UN Sustainable Development Goal 14 framework. J. Oper. Oceanogr. 2022, 15 (Suppl. S1), s83–s91. [Google Scholar] [CrossRef]
- UNEP. Understanding the State of the Ocean: A global Manual on Measuring SDG 14.1.1, SDG 14.2.1 and SDG 14.5.1; UNEP: Nairobi, Kenya, 2021. [Google Scholar]
- Eurostat. Sustainable Development in the European Union. Monitoring Report on Progress Towards the SDGs in an EU Context (Cat. No: KS-03-21-096-EN-N); Eurostat: Luxembourg, 2021; ISBN 978-92-76-30698-6. [CrossRef]
- Eurostat. Sustainable Development in the European Union. Monitoring Report on Progress Towards the SDGs in an EU Context—2022 Edition (KS-09-22-019-EN-N); Eurostat: Luxembourg, 2022. [CrossRef]
- Eurostat. Sustainable Development in the European Union. Monitoring Report on Progress Towards the SDGs in an EU Context—2023 Edition (KS-04-23-184-EN-N); Eurostat: Luxembourg, 2023. [CrossRef]
- Eurostat. Sustainable Development in the European Union. Monitoring Report on Progress Towards the SDGs in an EU Context—2024 Edition (Cat: KS-05-24-071-EN-N); Eurostat: Luxembourg, 2024. [CrossRef]
- Eurostat. Marine Waters Affected by Eutrophication. Eurostat Data Browser—Online Data Code: Sdg_14_60 (Last Accessed on 22 October 2024); Eurostat: Luxembourg, 2024. [CrossRef]
- Friedland, R.; Macias, D.M.; Cossarini, G.; Daewel, U.; Estournel, C.; Garcia-Gorriz, E.; Grizzetti, B.; Grégoire, M.; Gustafson, B.; Kalaroni, S.; et al. Effects of nutrient management scenarios on marine eutrophication indicators: A Pan-European, multi-model assessment in support of the Marine Strategy Framework Directive. Front. Mar. Sci. 2021, 8, 596126. [Google Scholar] [CrossRef]
- Axe, P.; Clausen, U.; Leujak, W.; Malcolm, S.; Ruiter, H.; Prins, T.; Harvey, E.T.; OSPAR Coimmission. Eutrophication Status of the OSPAR Maritime Area. Third Integrated Report on the Eutrophication Status of the OSPAR Maritime Area; OSPAR Commission: London, UK, 2017; p. 165. ISBN 978-1-911458-34-0. [Google Scholar]
- Gohin, F.; Van der Zande, D.; Tilstone, G.; Eleveld, M.A.; Lefebvre, A.; Andrieux-Loyer, F.; Blauw, A.N.; Bryère, P.; Devreker, D.; Garnesson, P.; et al. Twenty years of satellite and in situ observations of surface chlorophyll-a from the northern Bay of Biscay to the eastern English Channel. Is the water quality improving? Remote Sens. Environ. 2019, 233, 111343. [Google Scholar] [CrossRef]
- Prins, T.; Enserink, L. Concentrations of Chlorophyll-a in the Greater North Sea, Celtic Seas and Bay of Biscay and Iberian Coast. In The 2023 Quality Status Report for the Northeast Atlantic; OSPAR Commission: London, UK, 2023; Available online: https://oap.ospar.org/en/ospar-assessments/quality-status-reports/qsr-2023/indicator-assessments/chl-a-concentrations (accessed on 22 October 2024).
- CMEMS. Copernicus Marine Service Evolution Projects; CMEMS: Ramonville-Saint-Agne, France, 2024; Available online: https://marine.copernicus.eu/about/research-development-projects (accessed on 24 October 2024).
- Alvera-Azcárate, A.; Van der Zande, D.; Barth, A.; Dille, A.; Massant, J.; Beckers, J.-M. Generation of super-resolution gap-free ocean colour satellite products using DINEOF. EGUsphere 2024. [Google Scholar] [CrossRef]
- Alvera-Azcárate, A.; van der Zande, D.V.; Barth, A.; dos Santos, J.F.C.; Troupin, C.; Beckers, J.-M. Detection of shadows in high spatial resolution ocean satellite data using DINEOF. Remote Sens. Environ. 2021, 253, 112229. [Google Scholar] [CrossRef]
- Alvera-Azcárate, A.; van der Zande, D.V.; Barth, A.; Troupin, C.; Martin, S.; Beckers, J.-M. Analysis of 23 Years of Daily Cloud-Free Chlorophyll and Suspended Particulate Matter in the Greater North Sea. Front. Mar. Sci. 2021, 8, 707632. [Google Scholar] [CrossRef]
- Loisel, H.; Duforêt-Gaurier, L.; Tran, T.K.; Schaffer Ferreira Jorge, D.; Steinmetz, F.; Mangin, A.; Bretagnon, M.; Hembise Fanton d’Andon, O. Characterization of the organic vs. inorganic fraction of suspended particulate matter in coastal waters based on ocean color radiometry remote sensing. In 7th Edition of the Copernicus Ocean State Report (OSR7); von Schuckmann, K., Moreira, L., Le Traon, P.-Y., Grégoire, M., Marcos, M., Staneva, J., Brasseur, P., Garric, G., Lionello, P., Karstensen, J., et al., Eds.; Copernicus Publications, State Planet: Göttingen, Germany, 2023; Volume 1-osr7, p. 11. [Google Scholar] [CrossRef]
- Xi, H.; Bretagnon, M.; Losa, S.N.; Brotas, V.; Gomes, M.; Peeken, I.; Alvarado, L.; Mangin, A.; Bracher, A. Satellite monitoring of surface phytoplankton functional types in the Atlantic Ocean over 20 years (2002–2021). State Planet 2023, 1, 5. [Google Scholar]
- Marchese, C.; Colella, S.; Brando, V.E.; Zoffoli, M.L.; Volpe, G. Towards accurate L4 Ocean Colour products: Interpolating Remote Sensing Reflectance via DINEOF. Int. J. Appl. Earth Obs. Geoinf. 2024, 135, 104270. [Google Scholar] [CrossRef]
CMEMS Region | Multi-Sensor 1 km (Regions), 4 km (ARC, GLO) | Sentinel-3 OLCI A + B 300 m (Regions and GLO)/4 km (GLO) | Sentinel-2 MSI A + B 100 m | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
NRT | MY | NRT | MY | NRT | MY | |||||||
L3 | L4 | L3 | L4 | L3 | L4 | L3 | L4 | L3 | L4 | L3 | L4 | |
Arctic Ocean | - | - | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | - | - |
NE Atlantic Ocean | ✓ | ✓ | ✓ | ✓ | ✓ | - | ✓ | - | ✓ * | ✓ * | - | - |
Baltic Sea | - | - | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | - | - |
Black Sea | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | - | - |
Mediterranean Sea | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | - | - |
Global | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | - | - | - | - |
Global (C3S/OC-CCI) | ✓ | ✓ |
Region | L3/L4 | NRT/MY | Product Name | DOI | Production Unit |
---|---|---|---|---|---|
GLO | L3 | NRT | OCEANCOLOUR_GLO_BGC_L3_NRT_009_101 | https://doi.org/10.48670/moi-00278 | ACRI-ST |
GLO | L4 | NRT | OCEANCOLOUR_GLO_BGC_L4_NRT_009_102 | https://doi.org/10.48670/moi-00279 | ACRI-ST |
GLO | L3 | MY | OCEANCOLOUR_GLO_BGC_L3_MY_009_103 | https://doi.org/10.48670/moi-00280 | ACRI-ST |
GLO | L4 | MY | OCEANCOLOUR_GLO_BGC_L4_MY_009_104 | https://doi.org/10.48670/moi-00281 | ACRI-ST |
GLO | L3 | MY | OCEANCOLOUR_GLO_BGC_L3_MY_009_107 | https://doi.org/10.48670/moi-00282 | BC/PML * |
GLO | L4 | MY | OCEANCOLOUR_GLO_BGC_L4_MY_009_108 | https://doi.org/10.48670/moi-00283 | BC/PML * |
ATL | L3 | NRT | OCEANCOLOUR_ATL_BGC_L3_NRT_009_111 | https://doi.org/10.48670/moi-00284 | ACRI-ST |
ATL | L3 | MY | OCEANCOLOUR_ATL_BGC_L3_MY_009_113 | https://doi.org/10.48670/moi-00286 | ACRI-ST |
ATL | L4 | NRT | OCEANCOLOUR_ATL_BGC_L4_NRT_009_116 | https://doi.org/10.48670/moi-00288 | ACRI-ST |
ATL | L4 | MY | OCEANCOLOUR_ATL_BGC_L4_MY_009_118 | https://doi.org/10.48670/moi-00289 | ACRI-ST |
ARC | L3 | NRT | OCEANCOLOUR_ARC_BGC_L3_NRT_009_121 | https://doi.org/10.48670/moi-00290 | CNR |
ARC | L4 | NRT | OCEANCOLOUR_ARC_BGC_L4_NRT_009_122 | https://doi.org/10.48670/moi-00291 | CNR |
ARC | L3 | MY | OCEANCOLOUR_ARC_BGC_L3_MY_009_123 | https://doi.org/10.48670/moi-00292 | CNR |
ARC | L4 | MY | OCEANCOLOUR_ARC_BGC_L4_MY_009_124 | https://doi.org/10.48670/moi-00293 | CNR |
BAL | L3 | NRT | OCEANCOLOUR_BAL_BGC_L3_NRT_009_131 | https://doi.org/10.48670/moi-00294 | CNR |
BAL | L4 | NRT | OCEANCOLOUR_BAL_BGC_L4_NRT_009_132 | https://doi.org/10.48670/moi-00295 | CNR |
BAL | L3 | MY | OCEANCOLOUR_BAL_BGC_L3_MY_009_133 | https://doi.org/10.48670/moi-00296 | CNR |
BAL | L4 | MY | OCEANCOLOUR_BAL_BGC_L4_MY_009_134 | https://doi.org/10.48670/moi-00308 | CNR |
MED | L3 | NRT | OCEANCOLOUR_MED_BGC_L3_NRT_009_141 | https://doi.org/10.48670/moi-00297 | CNR |
MED | L4 | NRT | OCEANCOLOUR_MED_BGC_L4_NRT_009_142 | https://doi.org/10.48670/moi-00298 | CNR |
MED | L3 | MY | OCEANCOLOUR_MED_BGC_L3_MY_009_143 | https://doi.org/10.48670/moi-00299 | CNR |
MED | L4 | MY | OCEANCOLOUR_MED_BGC_L4_MY_009_144 | https://doi.org/10.48670/moi-00300 | CNR |
BLK | L3 | NRT | OCEANCOLOUR_BLK_BGC_L3_NRT_009_151 | https://doi.org/10.48670/moi-00301 | CNR |
BLK | L4 | NRT | OCEANCOLOUR_BLK_BGC_L4_NRT_009_152 | https://doi.org/10.48670/moi-00302 | CNR |
BLK | L3 | MY | OCEANCOLOUR_BLK_BGC_L3_MY_009_153 | https://doi.org/10.48670/moi-00303 | CNR |
BLK | L4 | MY | OCEANCOLOUR_BLK_BGC_L4_MY_009_154 | https://doi.org/10.48670/moi-00304 | CNR |
ARC | L3 | NRT | OCEANCOLOUR_ARC_BGC_HR_L3_NRT_009_201 | https://doi.org/10.48670/moi-00061 | BC-RBINS |
BAL | L3 | NRT | OCEANCOLOUR_BAL_BGC_HR_L3_NRT_009_202 | https://doi.org/10.48670/moi-00079 | BC-RBINS |
NWS | L3 | NRT | OCEANCOLOUR_NWS_BGC_HR_L3_NRT_009_203 | https://doi.org/10.48670/moi-00118 | BC-RBINS |
IBI | L3 | NRT | OCEANCOLOUR_IBI_BGC_HR_L3_NRT_009_204 | https://doi.org/10.48670/moi-00107 | BC-RBINS |
MED | L3 | NRT | OCEANCOLOUR_MED_BGC_HR_L3_NRT_009_205 | https://doi.org/10.48670/moi-00109 | BC-RBINS |
BLK | L3 | NRT | OCEANCOLOUR_BLK_BGC_HR_L3_NRT_009_206 | https://doi.org/10.48670/moi-00086 | BC-RBINS |
ARC | L4 | NRT | OCEANCOLOUR_ARC_BGC_HR_L4_NRT_009_207 | https://doi.org/10.48670/moi-00062 | BC-RBINS |
BAL | L4 | NRT | OCEANCOLOUR_BAL_BGC_HR_L4_NRT_009_208 | https://doi.org/10.48670/moi-00080 | BC-RBINS |
NWS | L4 | NRT | OCEANCOLOUR_NWS_BGC_HR_L4_NRT_009_209 | https://doi.org/10.48670/moi-00119 | BC-RBINS |
IBI | L4 | NRT | OCEANCOLOUR_IBI_BGC_HR_L4_NRT_009_210 | https://doi.org/10.48670/moi-00108 | BC-RBINS |
MED | L4 | NRT | OCEANCOLOUR_MED_BGC_HR_L4_NRT_009_211 | https://doi.org/10.48670/moi-00110 | BC-RBINS |
BLK | L4 | NRT | OCEANCOLOUR_BLK_BGC_HR_L4_NRT_009_212 | https://doi.org/10.48670/moi-00087 | BC-RBINS |
Name | Definition |
---|---|
Estimated dataset mean () | |
Reference dataset mean () | |
Type-2 slope (S) | |
Type-2 intercept (I) | |
Determination coefficient (r2) | |
Root mean square difference (RMSD) | |
Center-pattern root mean square difference (cRMSD) |
Region | CHL Dataset | N | Slope | Intercept | r2 | RMSD | cRMSD | Bias |
---|---|---|---|---|---|---|---|---|
GLO (GC) | MULTI MY L3 daily 4 km | 17,019 | 1.00 | 0.05 | 0.75 | 0.340 | 0.340 | 0.050 |
MULTI MY L4 interpolated 4 km | 36,438 | 0.99 | 0.00 | 0.71 | 0.370 | 0.370 | 0.010 | |
OLCI MY L3 4 km | 669 | 1.32 | 0.21 | 0.68 | 0.395 | 0.388 | 0.078 | |
OLCI MY L3 300 m | 288 | 1.35 | 0.27 | 0.71 | 0.417 | 0.376 | 0.180 | |
GLO (OC-CCI) | MULTI MY L3 daily 4 km | 34,221 | 0.925 | −0.026 | 0.88 | 0.226 | 0.225 | −0.022 |
ATL | MULTI MY L3 daily 4 km | 4621 | 0.94 | 0.07 | 0.74 | 0.350 | 0.34 | 0.080 |
MULTI MY L4 interpolated 4 km | 10,397 | 0.94 | 0.04 | 0.72 | 0.360 | 0.36 | 0.050 | |
OLCI MY L3 1 km | 72 | 1.21 | 0.14 | 0.83 | 0.261 | 0.25 | 0.073 | |
OLCI MY L3 300 m | 35 | 1.54 | 0.24 | 0.78 | 0.324 | 0.281 | 0.161 | |
ARC | MULTI MY L3 4 km | 323 | 0.67 | −0.04 | 0.68 | 0.268 | 0.267 | 0.015 |
OLCI MY L3 300 m | 21 | 0.64 | 0.06 | 0.75 | 0.215 | 0.193 | 0.641 | |
BAL | MULTI MY L3 1 km | 2070 | 1.09 | −0.21 | 0.31 | 0.375 | 0.335 | −0.168 |
OLCI MY L3 300 m | 460 | 0.83 | 0.01 | 0.32 | 0.271 | 0.262 | −0.071 | |
BLK | MULTI MY L3 1 km | 1154 | 0.63 | 0.09 | 0.28 | 0.480 | 0.367 | 0.042 |
MED | MULTI MY daily L3 1 km | 742 | 0.97 | −0.02 | 0.79 | 0.250 | 0.250 | 0.002 |
MULTI MY L4 interpolated 1 km | 1819 | 0.91 | −0.11 | 0.78 | 0.258 | 0.256 | −0.029 | |
MULTI MY L4 interpolated-only 1 km | 1084 | 0.87 | −0.16 | 0.78 | 0.263 | 0.259 | −0.050 | |
All zones | MSI NRT daily 100 m | 700 | 0.90 | 0.26 | 0.48 | 0.549 | 0.492 | 0.257 |
BAL | MSI NRT daily100 m | 188 | 0.86 | 0.15 | 0.22 | 0.478 | 0.471 | 0.085 |
NWS | MSI NRT daily 100 m | 289 | 1.03 | 0.22 | 0.12 | 0.557 | 0.508 | 0.245 |
IBI | MSI NRT daily 100 m | 120 | 0.94 | 0.40 | 0.03 | 0.582 | 0.432 | 0.374 |
MED | MSI NRT daily 100 m | 103 | 1.15 | 0.54 | 0.64 | 0.608 | 0.446 | 0.341 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brando, V.E.; Santoleri, R.; Colella, S.; Volpe, G.; Di Cicco, A.; Sammartino, M.; González Vilas, L.; Lapucci, C.; Böhm, E.; Zoffoli, M.L.; et al. Overview of Operational Global and Regional Ocean Colour Essential Ocean Variables Within the Copernicus Marine Service. Remote Sens. 2024, 16, 4588. https://doi.org/10.3390/rs16234588
Brando VE, Santoleri R, Colella S, Volpe G, Di Cicco A, Sammartino M, González Vilas L, Lapucci C, Böhm E, Zoffoli ML, et al. Overview of Operational Global and Regional Ocean Colour Essential Ocean Variables Within the Copernicus Marine Service. Remote Sensing. 2024; 16(23):4588. https://doi.org/10.3390/rs16234588
Chicago/Turabian StyleBrando, Vittorio E., Rosalia Santoleri, Simone Colella, Gianluca Volpe, Annalisa Di Cicco, Michela Sammartino, Luis González Vilas, Chiara Lapucci, Emanuele Böhm, Maria Laura Zoffoli, and et al. 2024. "Overview of Operational Global and Regional Ocean Colour Essential Ocean Variables Within the Copernicus Marine Service" Remote Sensing 16, no. 23: 4588. https://doi.org/10.3390/rs16234588
APA StyleBrando, V. E., Santoleri, R., Colella, S., Volpe, G., Di Cicco, A., Sammartino, M., González Vilas, L., Lapucci, C., Böhm, E., Zoffoli, M. L., Cesarini, C., Forneris, V., La Padula, F., Mangin, A., Jutard, Q., Bretagnon, M., Bryère, P., Demaria, J., Calton, B., ... Lebreton, C. (2024). Overview of Operational Global and Regional Ocean Colour Essential Ocean Variables Within the Copernicus Marine Service. Remote Sensing, 16(23), 4588. https://doi.org/10.3390/rs16234588