Improving Forest Above-Ground Biomass Estimation Accuracy Using Multi-Source Remote Sensing and Optimized Least Absolute Shrinkage and Selection Operator Variable Selection Method
<p>Technology roadmap for this study.</p> "> Figure 2
<p>The study area and sample plot distribution: (<b>a</b>) The location of Zhenyuan in Yunnan Province; (<b>b</b>) Six Types of Remote Sensing Imagery; (<b>c</b>) Remote sensing image data of Wuyi Village.</p> "> Figure 3
<p>Data distribution for the original dataset (60 samples), training set (42 samples), and test set (18 samples).</p> "> Figure 4
<p>Results of variable selection: (<b>a</b>) Boruta’s variable selection results by comparing the shaded features with the original feature evaluation; (<b>b</b>) Lasso regularized compression of the eigenvectors obtained from the; (<b>c</b>) Lasso Variable Selection Results with GA variable selection Re-used in the Lasso variable selection case; (<b>d</b>) Results of variable selection with correlation coefficients greater than 0.5 between remote sensing factors and forest AGBs; (<b>e</b>) RFIS variable importance value selection results for each remote sensing factor; (<b>f</b>) Lasso variable selection results in the case of removing multicollinear remote sensing factors using VIF.</p> "> Figure 5
<p>Scatterplots of forest AGB model test set fit using 8 algorithms for 6 variable choices.</p> "> Figure 6
<p>The results of 6 variable selection results in 8 machine learning in the test set R<sup>2</sup> fitting results.</p> "> Figure 7
<p>AGB inversion plot using 8 algorithms with 6 types of variable selection.</p> ">
Abstract
:1. Introduction
2. Study Area and Materials
2.1. Study Area
2.2. Data Collection from Sample Plots and Forest AGB Calculation
2.3. Extraction and Variable Screening of Remote Sensing Data
2.3.1. Remote Sensing Data-Acquiring
2.3.2. Pre-Processing
2.3.3. Variable Selection Methods
- (1)
- Boruta
- (2)
- Least Absolute Shrinkage and Selection Operator
- (3)
- Random Forest Importance Selection
- (4)
- Pearson Correlation
- (5)
- VIF-Lasso
- (6)
- Lasso-GA
2.3.4. Model Construction
2.3.5. Model Evaluation
3. Analysis of Results
3.1. Forest AGB and Remote Sensing Factor Weights in Different Variable Selection Methods
3.2. Comparison of Model Fitting of 6 Variable Selection Methods in a Test Set of 8 Machine Learning Methods
3.3. Forest AGB Inversion Estimation
4. Discussion
4.1. Selection Variables of the AGB Model
4.2. Comparison of Variable Selection Methods
4.3. Limitation and Future Research
5. Conclusions
- Forest AGB estimates optical remote sensing as the most important, followed by LiDAR and then MR. The overall variable selection results show that optical remote sensing factors account for 66%, LiDAR for 20%, and MR for 14%.
- Variable selection based on Lasso optimization yielded a better R2. VIF-Lasso achieved the best model with an R2 of 0.75 and an RMSE of 16.48 Mg/ha, while Lasso-GA achieved the best model with an R2 of 0.73 and an RMSE of 16.78 Mg/ha. The best variable selection methods for machine learning are PFIS-BRNN, Boruta-SVM, (VIF-Lasso)-BRNN, Lasso-SGBoost, (Lasso-GA)-ERT, and PPC-BRNN.
- The ranking of machine learning models by fitting ability is as follows: BRNN > SGBoost > ERT > XGBoost > KNN > EN > RF > SVM, with optimal R2 values of 0.75, 0.74, 0.73, 0.69, 0.70, 0.72, 0.69, and 0.65, and RMSE values of 16.48 Mg/ha, 16.94 Mg/ha, 16.78 Mg/ha, 18.59 Mg/ha, 18.18 Mg/ha, 17.63 Mg/ha, 18.51 Mg/ha, and 19.64 Mg/ha, respectively.
- The accuracy of forest AGB inversions is greatly influenced by the choice of variables. The selected remote sensing elements have a greater impact on the inversion results than the machine learning model selection.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bonan, G.B. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 2008, 320, 1444–1449. [Google Scholar] [CrossRef] [PubMed]
- Ramoelo, A.; Cho, M.A.; Mathieu, R.; Madonsela, S.; Van De Kerchove, R.; Kaszta, Z.; Wolff, E. Monitoring grass nutrients and biomass as indicators of rangeland quality and quantity using random forest modelling and WorldView-2 data. Int. J. Appl. Earth Obs. Geoinf. 2015, 43, 43–54. [Google Scholar] [CrossRef]
- Návar, J. Measurement and assessment methods of forest aboveground biomass: A literature review and the challenges ahead. In Biomass; IntechOpen: London, UK, 2010; pp. 27–64. [Google Scholar]
- Lu, D.; Chen, Q.; Wang, G.; Liu, L.; Li, G.; Moran, E. A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems. Int. J. Digit. Earth 2016, 9, 63–105. [Google Scholar] [CrossRef]
- Koch, B. Status and future of laser scanning, synthetic aperture radar and hyperspectral remote sensing data for forest biomass assessment. ISPRS J. Photogramm. Remote Sens. 2010, 65, 581–590. [Google Scholar] [CrossRef]
- Lu, D. Aboveground biomass estimation using Landsat TM data in the Brazilian Amazon. Int. J. Remote Sens. 2005, 26, 2509–2525. [Google Scholar] [CrossRef]
- Sarker, M.L.R.; Nichol, J.; Ahmad, B.; Busu, I.; Rahman, A.A. Potential of texture measurements of two-date dual polarization PALSAR data for the improvement of forest biomass estimation. ISPRS J. Photogramm. Remote Sens. 2012, 69, 146–166. [Google Scholar] [CrossRef]
- Laurin, G.V.; Liesenberg, V.; Chen, Q.; Guerriero, L.; Del Frate, F.; Bartolini, A.; Coomes, D.; Wilebore, B.; Lindsell, J.; Valentini, R. Optical and SAR sensor synergies for forest and land cover mapping in a tropical site in West Africa. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 7–16. [Google Scholar] [CrossRef]
- Indirabai, I.; Nilsson, M. Estimation of above ground biomass in tropical heterogeneous forests in India using GEDI. Ecol. Inform. 2024, 82, 102712. [Google Scholar] [CrossRef]
- Padalia, H.; Prakash, A.; Watham, T. Modelling aboveground biomass of a multistage managed forest through synergistic use of Landsat-OLI, ALOS-2 L-band SAR and GEDI metrics. Ecol. Inform. 2023, 77, 102234. [Google Scholar] [CrossRef]
- Silva, C.A.; Duncanson, L.; Hancock, S.; Neuenschwander, A.; Thomas, N.; Hofton, M.; Fatoyinbo, L.; Simard, M.; Marshak, C.Z.; Armston, J. Fusing simulated GEDI, ICESat-2 and NISAR data for regional aboveground biomass mapping. Remote Sens. Environ. 2021, 253, 112234. [Google Scholar] [CrossRef]
- Xu, L.; Shu, Q.; Fu, H.; Zhou, W.; Luo, S.; Gao, Y.; Yu, J.; Guo, C.; Yang, Z.; Xiao, J. Estimation of Quercus biomass in Shangri-La based on GEDI spaceborne LiDAR data. Forests 2023, 14, 876. [Google Scholar] [CrossRef]
- Shendryk, Y. Fusing GEDI with earth observation data for large area aboveground biomass mapping. Int. J. Appl. Earth Obs. Geoinf. 2022, 115, 103108. [Google Scholar] [CrossRef]
- Tian, L.; Wu, X.; Tao, Y.; Li, M.; Qian, C.; Liao, L.; Fu, W. Review of remote sensing-based methods for forest aboveground biomass estimation: Progress, challenges, and prospects. Forests 2023, 14, 1086. [Google Scholar] [CrossRef]
- Li, H.; Kato, T.; Hayashi, M.; Wu, L. Estimation of forest aboveground biomass of two major conifers in Ibaraki Prefecture, Japan, from palsar-2 and sentinel-2 data. Remote Sens. 2022, 14, 468. [Google Scholar] [CrossRef]
- Englhart, S.; Keuck, V.; Siegert, F. Aboveground biomass retrieval in tropical forests—The potential of combined X-and L-band SAR data use. Remote Sens. Environ. 2011, 115, 1260–1271. [Google Scholar] [CrossRef]
- Li, X.; Zhang, M.; Long, J.; Lin, H. A novel method for estimating spatial distribution of forest above-ground biomass based on multispectral fusion data and ensemble learning algorithm. Remote Sens. 2021, 13, 3910. [Google Scholar] [CrossRef]
- Tao, Z.; Yi, L.; Bao, A.; Xu, W.; Wang, Z.; Xiong, S.; Bing, H. UAV or satellites? How to find the balance between efficiency and accuracy in above ground biomass estimation of artificial young coniferous forest? Int. J. Appl. Earth Obs. Geoinf. 2024, 134, 104173. [Google Scholar] [CrossRef]
- Vafaei, S.; Soosani, J.; Adeli, K.; Fadaei, H.; Naghavi, H.; Pham, T.D.; Tien Bui, D. Improving accuracy estimation of Forest Aboveground Biomass based on incorporation of ALOS-2 PALSAR-2 and Sentinel-2A imagery and machine learning: A case study of the Hyrcanian forest area (Iran). Remote Sens. 2018, 10, 172. [Google Scholar] [CrossRef]
- David, R.M.; Rosser, N.J.; Donoghue, D.N. Improving above ground biomass estimates of Southern Africa dryland forests by combining Sentinel-1 SAR and Sentinel-2 multispectral imagery. Remote Sens. Environ. 2022, 282, 113232. [Google Scholar] [CrossRef]
- Zhao, P.; Lu, D.; Wang, G.; Liu, L.; Li, D.; Zhu, J.; Yu, S. Forest aboveground biomass estimation in Zhejiang Province using the integration of Landsat TM and ALOS PALSAR data. Int. J. Appl. Earth Obs. Geoinf. 2016, 53, 1–15. [Google Scholar] [CrossRef]
- Chen, L.; Ren, C.; Bao, G.; Zhang, B.; Wang, Z.; Liu, M.; Man, W.; Liu, J. Improved object-based estimation of forest aboveground biomass by integrating LiDAR data from GEDI and ICESat-2 with multi-sensor images in a heterogeneous mountainous region. Remote Sens. 2022, 14, 2743. [Google Scholar] [CrossRef]
- Tamiminia, H.; Salehi, B.; Mahdianpari, M.; Goulden, T. State-wide forest canopy height and aboveground biomass map for New York with 10 m resolution, integrating GEDI, Sentinel-1, and Sentinel-2 data. Ecol. Inform. 2024, 79, 102404. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.; Guo, Z. Estimation of tree height and aboveground biomass of coniferous forests in North China using stereo ZY-3, multispectral Sentinel-2, and DEM data. Ecol. Indic. 2021, 126, 107645. [Google Scholar] [CrossRef]
- Cao, C.; Wang, T.; Gao, M.; Li, Y.; Li, D.; Zhang, H. Hyperspectral inversion of nitrogen content in maize leaves based on different dimensionality reduction algorithms. Comput. Electron. Agric. 2021, 190, 106461. [Google Scholar] [CrossRef]
- Bhadra, A.; Datta, J.; Polson, N.G.; Willard, B. Lasso meets horseshoe: A Survey. Stat. Sci. 2019, 34, 405–427. [Google Scholar] [CrossRef]
- Zandler, H.; Brenning, A.; Samimi, C. Quantifying dwarf shrub biomass in an arid environment: Comparing empirical methods in a high dimensional setting. Remote Sens. Environ. 2015, 158, 140–155. [Google Scholar] [CrossRef]
- Lazaridis, D.C.; Verbesselt, J.; Robinson, A.P. Penalized regression techniques for prediction: A case study for predicting tree mortality using remotely sensed vegetation indices. Can. J. For. Res. 2011, 41, 24–34. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, J.; Liang, S.; Li, X.; Liu, J. A stacking ensemble algorithm for improving the biases of forest aboveground biomass estimations from multiple remotely sensed datasets. GIScience Remote Sens. 2022, 59, 234–249. [Google Scholar] [CrossRef]
- Shafiee, S.; Lied, L.M.; Burud, I.; Dieseth, J.A.; Alsheikh, M.; Lillemo, M. Sequential forward selection and support vector regression in comparison to LASSO regression for spring wheat yield prediction based on UAV imagery. Comput. Electron. Agric. 2021, 183, 106036. [Google Scholar] [CrossRef]
- Signorino, C.S.; Kirchner, A. Using LASSO to model interactions and nonlinearities in survey data. Surv. Pract. 2018, 11, 1–10. [Google Scholar] [CrossRef]
- Jiang, F.; Kutia, M.; Ma, K.; Chen, S.; Long, J.; Sun, H. Estimating the aboveground biomass of coniferous forest in Northeast China using spectral variables, land surface temperature and soil moisture. Sci. Total Environ. 2021, 785, 147335. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, M.; Liu, Z.; Li, C. Combining kriging interpolation to improve the accuracy of forest aboveground biomass estimation using remote sensing data. IEEE Access 2020, 8, 128124–128139. [Google Scholar] [CrossRef]
- Llobet, E.; Brezmes, J.; Gualdrón, O.; Vilanova, X.; Correig, X. Building parsimonious fuzzy ARTMAP models by variable selection with a cascaded genetic algorithm: Application to multisensor systems for gas analysis. Sens. Actuators B Chem. 2004, 99, 267–272. [Google Scholar] [CrossRef]
- Liu, H.-H.; Ong, C.-S. Variable selection in clustering for marketing segmentation using genetic algorithms. Expert Syst. Appl. 2008, 34, 502–510. [Google Scholar] [CrossRef]
- Jin, H.; Zhao, Y.; Pak, U.; Zhen, Z.; So, K. Assessing the effect of ensemble learning algorithms and validation approach on estimating forest aboveground biomass: A case study of natural secondary forest in Northeast China. Geo-Spat. Inf. Sci. 2024, 561, 1–20. [Google Scholar] [CrossRef]
- Yan, X.; Li, J.; Smith, A.R.; Yang, D.; Ma, T.; Su, Y.; Shao, J. Evaluation of machine learning methods and multi-source remote sensing data combinations to construct forest above-ground biomass models. Int. J. Digit. Earth 2023, 16, 4471–4491. [Google Scholar] [CrossRef]
- Huang, T.; Ou, G.; Wu, Y.; Zhang, X.; Liu, Z.; Xu, H.; Xu, X.; Wang, Z.; Xu, C. Estimating the Aboveground Biomass of Various Forest Types with High Heterogeneity at the Provincial Scale Based on Multi-Source Data. Remote Sens. 2023, 15, 3550. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, J.; Liang, S.; Li, X.; Li, M. An evaluation of eight machine learning regression algorithms for forest aboveground biomass estimation from multiple satellite data products. Remote Sens. 2020, 12, 4015. [Google Scholar] [CrossRef]
- Hans, C. Elastic net regression modeling with the orthant normal prior. J. Am. Stat. Assoc. 2011, 106, 1383–1393. [Google Scholar] [CrossRef]
- Singh, C.; Karan, S.K.; Sardar, P.; Samadder, S.R. Remote sensing-based biomass estimation of dry deciduous tropical forest using machine learning and ensemble analysis. J. Environ. Manag. 2022, 308, 114639. [Google Scholar] [CrossRef]
- Jia, Z.; Zhang, Z.; Cheng, Y.; Borjigin, S.; Quan, Z. Grassland biomass spatiotemporal patterns and response to climate change in eastern Inner Mongolia based on XGBoost model estimates. Ecol. Indic. 2024, 158, 111554. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Verrelst, J.; Rivera, J.P.; Veroustraete, F.; Muñoz-Marí, J.; Clevers, J.G.; Camps-Valls, G.; Moreno, J. Experimental Sentinel-2 LAI estimation using parametric, non-parametric and physical retrieval methods–A comparison. ISPRS J. Photogramm. Remote Sens. 2015, 108, 260–272. [Google Scholar] [CrossRef]
- Tian, Y.; Huang, H.; Zhou, G.; Zhang, Q.; Tao, J.; Zhang, Y.; Lin, J. Aboveground mangrove biomass estimation in Beibu Gulf using machine learning and UAV remote sensing. Sci. Total Environ. 2021, 781, 146816. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, Y.; Yang, Y. Analysis of Spatial Accessibility for Rural School Redistricting in West China: A Case Study of the Primary Schools in Zhenyuan County, Yunnan Province. In Proceedings of the 2017 4th International Conference on Information Science and Control Engineering (ICISCE), Changsha, China, 21–23 July 2017; pp. 193–197. [Google Scholar]
- You, G.; Zhang, Y.; Liu, Y.; Schaefer, D.; Gong, H.; Gao, J.; Lu, Z.; Song, Q.; Zhao, J.; Wu, C. Investigation of temperature and aridity at different elevations of Mt. Ailao, SW China. Int. J. Biometeorol. 2013, 57, 487–492. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Wu, C.; Gong, H.; You, G.; Sha, L.; Lu, H. Decomposition of roots of different diameters in response to different drought periods in a subtropical evergreen broad-leaf forest in Ailao Mountain. Glob. Ecol. Conserv. 2020, 24, e01236. [Google Scholar] [CrossRef]
- Young, S.S.; Carpenter, C.; Zhi-Jun, W. A study of the structure and composition of an old growth and secondary broad-leaved forest in the Ailao Mountains of Yunnan, China. Mt. Res. Dev. 1992, 12, 269–284. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, Z.; Ou, G. (Eds.) A Study on Estimation and Distribution for Forest Biomass and Carbon Storage in Yunnan Province; Yunnan Science and Technology Press: Kunming, China, 2019. [Google Scholar]
- Huang, T.; Ou, G.; Xu, H.; Zhang, X.; Wu, Y.; Liu, Z.; Zou, F.; Zhang, C.; Xu, C. Comparing Algorithms for Estimation of Aboveground Biomass in Pinus yunnanensis. Forests 2023, 14, 1742. [Google Scholar] [CrossRef]
- Yan, Z. Estimation of Forest Biomass in Beijing Based on Landsat 8 OLI and ALOS-2 PALSAR-2 Data. Master’s Thesis, Beijing Forestry University, Beijing, China, 2020. [Google Scholar]
- Shen, W.; Li, M.; Huang, C.; Tao, X.; Wei, A. Annual forest aboveground biomass changes mapped using ICESat/GLAS measurements, historical inventory data, and time-series optical and radar imagery for Guangdong province, China. China. Agric. For. Meteorol. 2018, 259, 23–38. [Google Scholar] [CrossRef]
- Iranzad, R.; Liu, X. A review of random forest-based feature selection methods for data science education and applications. Int. J. Data Sci. Anal. 2024, 18, 1–15. [Google Scholar] [CrossRef]
- Corrales, D.C.; Schoving, C.; Raynal, H.; Debaeke, P.; Journet, E.-P.; Constantin, J. A surrogate model based on feature selection techniques and regression learners to improve soybean yield prediction in southern France. Comput. Electron. Agric. 2022, 192, 106578. [Google Scholar] [CrossRef]
- Torre-Tojal, L.; Bastarrika, A.; Boyano, A.; Lopez-Guede, J.M.; Grana, M. Above-ground biomass estimation from LiDAR data using random forest algorithms. J. Comput. Sci. 2022, 58, 101517. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Chen, L.; Wang, Y.; Ren, C.; Zhang, B.; Wang, Z. Optimal combination of predictors and algorithms for forest above-ground biomass mapping from Sentinel and SRTM data. Remote Sens. 2019, 11, 414. [Google Scholar] [CrossRef]
- Ploton, P.; Barbier, N.; Couteron, P.; Antin, C.; Ayyappan, N.; Balachandran, N.; Barathan, N.; Bastin, J.-F.; Chuyong, G.; Dauby, G. Toward a general tropical forest biomass prediction model from very high resolution optical satellite images. Remote Sens. Environ. 2017, 200, 140–153. [Google Scholar] [CrossRef]
- Yuan, Y.; Wang, X. Performance comparison of RGB and multispectral vegetation indices based on machine learning for estimating Hopea hainanensis SPAD values under different shade conditions. Front. Plant Sci. 2022, 13, 928953. [Google Scholar] [CrossRef] [PubMed]
- Du, C.; Sun, L.; Bai, H.; Liu, Y.; Yang, J.; Wang, X. Quantitative detection of azodicarbonamide in wheat flour by near-infrared spectroscopy based on two-step feature selection. Chemom. Intell. Lab. Syst. 2021, 219, 104445. [Google Scholar] [CrossRef]
- Chiarito, E.; Cigna, F.; Cuozzo, G.; Fontanelli, G.; Mejia Aguilar, A.; Paloscia, S.; Rossi, M.; Santi, E.; Tapete, D.; Notarnicola, C. Biomass retrieval based on genetic algorithm feature selection and support vector regression in Alpine grassland using ground-based hyperspectral and Sentinel-1 SAR data. Eur. J. Remote Sens. 2021, 54, 209–225. [Google Scholar] [CrossRef]
- Fernández-Manso, O.; Fernández-Manso, A.; Quintano, C. Estimation of aboveground biomass in Mediterranean forests by statistical modelling of ASTER fraction images. Int. J. Appl. Earth Obs. Geoinf. 2014, 31, 45–56. [Google Scholar] [CrossRef]
- Friedman, J.; Hastie, T.; Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 2010, 33, 1. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.-L.; Wang, C.-J. A GA-based feature selection and parameters optimization for support vector machines. Expert Syst. Appl. 2006, 31, 231–240. [Google Scholar] [CrossRef]
- Gong, H.; Li, Y.; Zhang, J.; Zhang, B.; Wang, X. A new filter feature selection algorithm for classification task by ensembling pearson correlation coefficient and mutual information. Eng. Appl. Artif. Intell. 2024, 131, 107865. [Google Scholar] [CrossRef]
- Degenhardt, F.; Seifert, S.; Szymczak, S. Evaluation of variable selection methods for random forests and omics data sets. Brief. Bioinform. 2019, 20, 492–503. [Google Scholar] [CrossRef] [PubMed]
- Speiser, J.L.; Miller, M.E.; Tooze, J.; Ip, E. A comparison of random forest variable selection methods for classification prediction modeling. Expert Syst. Appl. 2019, 134, 93–101. [Google Scholar] [CrossRef]
- Fassnacht, F.; Hartig, F.; Latifi, H.; Berger, C.; Hernández, J.; Corvalán, P.; Koch, B. Importance of sample size, data type and prediction method for remote sensing-based estimations of aboveground forest biomass. Remote Sens. Environ. 2014, 154, 102–114. [Google Scholar] [CrossRef]
- Gleason, C.J.; Im, J. Forest biomass estimation from airborne LiDAR data using machine learning approaches. Remote Sens. Environ. 2012, 125, 80–91. [Google Scholar] [CrossRef]
- Halme, E.; Pellikka, P.; Mottus, M. Utility of hyperspectral compared to multispectral remote sensing data in estimating forest biomass and structure variables in Finnish boreal forest. Int. J. Appl. Earth Obs. Geoinf. 2019, 83, 101942. [Google Scholar] [CrossRef]
- Mizumoto, A. Calculating the relative importance of multiple regression predictor variables using dominance analysis and random forests. Lang. Learn. 2023, 73, 161–196. [Google Scholar] [CrossRef]
- Dube, T.; Mutanga, O. Investigating the robustness of the new Landsat-8 Operational Land Imager derived texture metrics in estimating plantation forest aboveground biomass in resource constrained areas. ISPRS J. Photogramm. Remote Sens. 2015, 108, 12–32. [Google Scholar] [CrossRef]
- Iban, M.C.; Sekertekin, A. Machine learning based wildfire susceptibility mapping using remotely sensed fire data and GIS: A case study of Adana and Mersin provinces, Turkey. Ecol. Inform. 2022, 69, 101647. [Google Scholar] [CrossRef]
- Van der Meer, F.D.; Jia, X. Collinearity and orthogonality of endmembers in linear spectral unmixing. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 491–503. [Google Scholar] [CrossRef]
- Arjasakusuma, S.; Swahyu Kusuma, S.; Phinn, S. Evaluating variable selection and machine learning algorithms for estimating forest heights by combining lidar and hyperspectral data. ISPRS Int. J. Geo-Inf. 2020, 9, 507. [Google Scholar] [CrossRef]
- Örkcü, H.H. Subset selection in multiple linear regression models: A hybrid of genetic and simulated annealing algorithms. Appl. Math. Comput. 2013, 219, 11018–11028. [Google Scholar] [CrossRef]
- Ji, Y.; Xu, K.; Zeng, P.; Zhang, W. GA-SVR algorithm for improving forest above ground biomass estimation using SAR data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 6585–6595. [Google Scholar] [CrossRef]
- Dong, H.; Li, T.; Ding, R.; Sun, J. A novel hybrid genetic algorithm with granular information for feature selection and optimization. Appl. Soft Comput. 2018, 65, 33–46. [Google Scholar] [CrossRef]
- Heiskanen, J. Estimating aboveground tree biomass and leaf area index in a mountain birch forest using ASTER satellite data. Int. J. Remote Sens. 2006, 27, 1135–1158. [Google Scholar] [CrossRef]
- Silveira, E.M.; Radeloff, V.C.; Martinuzzi, S.; Pastur, G.J.M.; Bono, J.; Politi, N.; Lizarraga, L.; Rivera, L.O.; Ciuffoli, L.; Rosas, Y.M. Nationwide native forest structure maps for Argentina based on forest inventory data, SAR Sentinel-1 and vegetation metrics from Sentinel-2 imagery. Remote Sens. Environ. 2023, 285, 113391. [Google Scholar] [CrossRef]
- Li, X.; Liu, Z.; Lin, H.; Wang, G.; Sun, H.; Long, J.; Zhang, M. Estimating the growing stem volume of Chinese pine and larch plantations based on fused optical data using an improved variable screening method and stacking algorithm. Remote Sens. 2020, 12, 871. [Google Scholar] [CrossRef]
- Li, Y.; Li, M.; Li, C.; Liu, Z. Forest aboveground biomass estimation using Landsat 8 and Sentinel-1A data with machine learning algorithms. Sci. Rep. 2020, 10, 9952. [Google Scholar] [CrossRef]
- Tunca, E.; Köksal, E.S.; Öztürk, E.; Akay, H.; Taner, S.Ç. Accurate leaf area index estimation in sorghum using high-resolution UAV data and machine learning models. Phys. Chem. Earth Parts A/B/C 2024, 133, 103537. [Google Scholar] [CrossRef]
- Lujan-Moreno, G.A.; Howard, P.R.; Rojas, O.G.; Montgomery, D.C. Design of experiments and response surface methodology to tune machine learning hyperparameters, with a random forest case-study. Expert Syst. Appl. 2018, 109, 195–205. [Google Scholar] [CrossRef]
- Shrestha, A.; Mahmood, A. Review of deep learning algorithms and architectures. IEEE Access 2019, 7, 53040–53065. [Google Scholar] [CrossRef]
- Keshari, R.; Ghosh, S.; Chhabra, S.; Vatsa, M.; Singh, R. Unravelling small sample size problems in the deep learning world. In Proceedings of the 2020 IEEE Sixth International Conference on Multimedia Big Data (BigMM), New Delhi, India, 24–26 September 2020. [Google Scholar] [CrossRef]
- Liu, Q.; Wu, Z.; Cui, N.; Jin, X.; Zhu, S.; Jiang, S.; Zhao, L.; Gong, D. Estimation of Soil Moisture Using Multi-Source Remote Sensing and Machine Learning Algorithms in Farming Land of Northern China. Remote Sens. 2023, 15, 4214. [Google Scholar] [CrossRef]
- de Almeida, C.T.; Galvao, L.S.; Ometto, J.P.H.B.; Jacon, A.D.; de Souza Pereira, F.R.; Sato, L.Y.; Lopes, A.P.; de Alencastro Graça, P.M.L.; de Jesus Silva, C.V.; Ferreira-Ferreira, J. Combining LiDAR and hyperspectral data for aboveground biomass modeling in the Brazilian Amazon using different regression algorithms. Remote Sens. Environ. 2019, 232, 111323. [Google Scholar] [CrossRef]
- Zhao, Q.; Yu, S.; Zhao, F.; Tian, L.; Zhao, Z. Comparison of machine learning algorithms for forest parameter estimations and application for forest quality assessments. For. Ecol. Manag. 2019, 434, 224–234. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, J.; Li, W.; Liang, S. A proposed ensemble feature selection method for estimating forest aboveground biomass from multiple satellite data. Remote Sens. 2023, 15, 1096. [Google Scholar] [CrossRef]
- Wang, P.; Tan, S.; Zhang, G.; Wang, S.; Wu, X. Remote Sensing Estimation of Forest Aboveground Biomass Based on Lasso-SVR. Forests 2022, 13, 1597. [Google Scholar] [CrossRef]
- Peng, D.; Zhang, H.; Liu, L.; Huang, W.; Huete, A.R.; Zhang, X.; Wang, F.; Yu, L.; Xie, Q.; Wang, C. Estimating the aboveground biomass for planted forests based on stand age and environmental variables. Remote Sens. 2019, 11, 2270. [Google Scholar] [CrossRef]
- Montesano, P.; Cook, B.; Sun, G.; Simard, M.; Nelson, R.; Ranson, K.; Zhang, Z.; Luthcke, S. Achieving accuracy requirements for forest biomass mapping: A spaceborne data fusion method for estimating forest biomass and LiDAR sampling error. Remote Sens. Environ. 2013, 130, 153–170. [Google Scholar] [CrossRef]
- Zhang, F.; Yang, X. Improving land cover classification in an urbanized coastal area by random forests: The role of variable selection. Remote Sens. Environ. 2020, 251, 112105. [Google Scholar] [CrossRef]
- Tian, L.; Xue, B.; Wang, Z.; Li, D.; Yao, X.; Cao, Q.; Zhu, Y.; Cao, W.; Cheng, T. Spectroscopic detection of rice leaf blast infection from asymptomatic to mild stages with integrated machine learning and feature selection. Remote Sens. Environ. 2021, 257, 112350. [Google Scholar] [CrossRef]
- Anees, S.A.; Mehmood, K.; Khan, W.R.; Sajjad, M.; Alahmadi, T.A.; Alharbi, S.A.; Luo, M. Integration of machine learning and remote sensing for above ground biomass estimation through Landsat-9 and field data in temperate forests of the Himalayan region. Ecol. Inform. 2024, 82, 102732. [Google Scholar] [CrossRef]
- Zhang, J. Multi-source remote sensing data fusion: Status and trends. Int. J. Image Data Fusion 2010, 1, 5–24. [Google Scholar] [CrossRef]
- Yuan, Q.; Shen, H.; Li, T.; Li, Z.; Li, S.; Jiang, Y.; Xu, H.; Tan, W.; Yang, Q.; Wang, J. Deep learning in environmental remote sensing: Achievements and challenges. Remote Sens. Environ. 2020, 241, 111716. [Google Scholar] [CrossRef]
Variables | Minimum | Mean | Maximum | STD |
---|---|---|---|---|
H (m) | 3.20 | 10.90 | 16.90 | 2.70 |
Dg (cm) | 5.20 | 9.80 | 45.40 | 1.15 |
AGB (Mg/ha) | 63.78 | 122.10 | 207.40 | 30.89 |
Image | Image ID | Cloud Volume (%) | Source | Access Time |
---|---|---|---|---|
Landsat 8 OLI | LC08_L1TP_130044_20230407_20230420_02_T1 | 0.88 | https://scihub.copernicus.eu/ | 15 October 2023 |
Sentinel 2 | S2A_MSIL1C_20230330T034531_N0509_R104_T47QPG_20230330T060328.SAFE | 0.53 | https://scihub.copernicus.eu/ | 12 October 2023 |
GEDL | GEDI02_B_2021002014205_O11653_03_T10693_02_003_01_V002 GEDI02_B_2021033131410_O12141_03_T09270_02_003_01_V002 GEDI02_B_2021158031308_O14072_02_T06143_02_003_01_V002 GEDI02_B_2022011125142_O17457_02_T07566_02_003_01_V002 GEDI02_B_2022044083839_O17966_03_T10693_02_003_01_V002 | - | https://earthexplorer.usgs.gov/ | 8 October 2023 |
Sentinel 1 | S1A_IW_GRDH_1SDV_20230203T112327_20230203T112352_05A589_185D.SAFE | - | https://search.asf.alaska.edu | 15 September 2023 |
ALOS-2 PLASRA-2 | 0000519755_001001_ALOS2495483130-230727 | - | https://www.earthdata.nasa.gov/ | 25 October 2023 |
DEM | ASTGTMV003_N24E101 | 0.61 | http://www.gscloud.cn/ | 9 July 2023 |
Image | Index | Abbreviation |
---|---|---|
Landsat 8 OLI | band1—coastal aerosol, band2—blue(BLU),band3—green (GRN),band4—red (RED),band5—near-infrared (NIR),band6—shortwave infrared 1 (SWIR1),and band7—shortwave infrared 2 (SWIR2). | B1, B2, B3, B4, B5, B6, B7 |
normalized difference vegetation index | NDVI | |
NDVI with band3 and band4 | ND43 | |
NDVI with band6 and band7 | ND67 | |
NDVI with band3 and band5 with band6 | ND563 | |
difference vegetation index | DVI | |
soil-adjusted vegetation index | SAVI | |
ratio vegetation index | RVI | |
brightness Vegetation Index | B | |
greenness vegetation Index | G | |
temperature vegetation index | W | |
atmospherically resistant vegetation index | ARVI | |
mid-infrared temperature vegetation index | MV17 | |
modified soil-adjusted vegetation index | MSAVI | |
multiband Linear combination of band2 with band3 and band4 | VIS234 | |
multiband Linear combination | ALBEDO | |
Simple Ratio Index | SR | |
improved vegetation index | SAV12 | |
optimized Simple Ratio Vegetation Index | MSR | |
karst terrain factor 1 | KT1 | |
principal component 1—factor A | PC1-A | |
principal component 1—factor B | PC1-B | |
principal component 1—factor P | PC1-P | |
Sentinel 2 | B2-Blue, B3-Green, B4-Ged, B5-Gegetation red edge, B6-Vegetation, red edge, B7-Vegetation red edge, B8-NIR, B9-Water vapour, B10-SWIR-Cirrus, B11-SWIR, | B2, B3, B4, B5, B6, B7, B8, B9, B10 |
ratio vegetation index | RVI | |
difference vegetation index | DVI | |
weighted difference vegetation index | WDVI | |
infrared vegetation index | IPVI | |
perpendicular vegetation index | PVI | |
normalized difference vegetation index | NDVI | |
NDVI with band4 and band5 | NDVI45 | |
NDVI of green band | GNDVI | |
inverted red edge chlorophyll index | IRECI | |
soil adjusted vegetation index | SAVI | |
transformed soil-adjusted, vegetation index | TSAVI | |
modified soil-adjusted vegetation index | MSAVI | |
sentinel-2 red edge position index | S2REP | |
red edge infection point index | REIP | |
atmospherically resistant, vegetation index | ARVI | |
pigment-specific simple ratio, chlorophyll index | PSSRa | |
Meris terrestrial chlorophyll index | MTCI | |
modified chlorophyll absorption, ratio index | MCARI | |
GEDI | Total cover, defined as the percentage of the ground covered by the vertical projection of canopy material | cover |
Estimated Pgap(theta) for the selected, L2A algorithm | pgap_theta | |
Total Plant Area Index | pai | |
Leaf on day of year | leaf_on_doy | |
Total Pgap(theta) error | pgap_theta_error | |
Integral of the ground component in, the RX waveform | rg_aN | |
Received waveform energy between, toploc and botloc with noise removed | rx_energy_aN | |
Foliage height diversity index, calculated by vertical foliage profile, normalized by total plant area index. | fhd_normal | |
quality flag | quality_flag | |
Percentage non-vegetated from, MODIS data | modis_nonvegetated | |
Percentage of tree cover from, MODIS data | modis_treecover | |
DEM from GED | dem_ | |
Leaf off day of year | leaf_off_doy | |
integral of the vegetation, component in the RX waveform | rv_aN | |
Maximum canopy cover that can be penetrated considering the SNR of the waveform | sensitivity | |
Height above ground of the received waveform signal start | rh100 | |
latitude and longitude | Lat_lowestmode, Lon_lowestmode | |
Degrade flag | degrade_flag | |
ALOS-2 PLASRA-2 | Horizontal Transmit, Horizontal Receive | HH |
Vertical Transmit, Vertical Receive | VV | |
Horizontal Transmit, Vertical Receive | HV | |
Vertical Transmit, Horizontal Receive | VH | |
Dual polarization backscatter coefficient value | Factor | |
Sentinel 1 | vertical transmit-vertical channel | VV |
vertical transmit-horizontal channel | VH |
Data (AGB) | Mean | Median | STD | Minimum | Maximum |
---|---|---|---|---|---|
Training Set (Mg/ha) | 123.00 | 118.00 | 29.65 | 70.02 | 207.40 |
Testing Set (Mg/ha) | 120.00 | 122.00 | 34.56 | 63.78 | 182.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, E.; Huang, T.; Liu, Z.; Bao, L.; Guo, B.; Yu, Z.; Feng, Z.; Luo, H.; Ou, G. Improving Forest Above-Ground Biomass Estimation Accuracy Using Multi-Source Remote Sensing and Optimized Least Absolute Shrinkage and Selection Operator Variable Selection Method. Remote Sens. 2024, 16, 4497. https://doi.org/10.3390/rs16234497
Wang E, Huang T, Liu Z, Bao L, Guo B, Yu Z, Feng Z, Luo H, Ou G. Improving Forest Above-Ground Biomass Estimation Accuracy Using Multi-Source Remote Sensing and Optimized Least Absolute Shrinkage and Selection Operator Variable Selection Method. Remote Sensing. 2024; 16(23):4497. https://doi.org/10.3390/rs16234497
Chicago/Turabian StyleWang, Er, Tianbao Huang, Zhi Liu, Lei Bao, Binbing Guo, Zhibo Yu, Zihang Feng, Hongbin Luo, and Guanglong Ou. 2024. "Improving Forest Above-Ground Biomass Estimation Accuracy Using Multi-Source Remote Sensing and Optimized Least Absolute Shrinkage and Selection Operator Variable Selection Method" Remote Sensing 16, no. 23: 4497. https://doi.org/10.3390/rs16234497
APA StyleWang, E., Huang, T., Liu, Z., Bao, L., Guo, B., Yu, Z., Feng, Z., Luo, H., & Ou, G. (2024). Improving Forest Above-Ground Biomass Estimation Accuracy Using Multi-Source Remote Sensing and Optimized Least Absolute Shrinkage and Selection Operator Variable Selection Method. Remote Sensing, 16(23), 4497. https://doi.org/10.3390/rs16234497