Microphysical Characteristics of Precipitation for Four Types of Typical Weather Systems on Hainan Island
<p>Distribution of OTTs and AWSs on Hainan Island.</p> "> Figure 2
<p>Circulation conditions of the four types of typical weather systems on Hainan Island. Composite of the 500 hPa geopotential height (black contours), the 850 hPa wind vector (blue arrows), and the 700 hPa specific humidity (g kg<sup>−1</sup>, shading). (<b>a</b>) CFs—the blue curve approximates the position of the cold front. (<b>b</b>) SHs—the black bold contours represent the 5880 gpm lines. (<b>c</b>) TCs—the yellow typhoon marker indicates the location of the center of the tropical cyclone Lionrock. (<b>d</b>) TLPs—the brown curve represents the location of the trough of low pressure.</p> "> Figure 3
<p>Average raindrop size distributions of the four types of weather systems, where the blue, red, purple, and green solid lines represent CFs, SHs, TCs, and TLPs, respectively.</p> "> Figure 4
<p>Average raindrop size distributions of the four types of weather systems in different rainfall rates (<b>a</b>–<b>d</b>) represent <math display="inline"><semantics> <mi>R</mi> </semantics></math> ≤ 10 mm h<sup>−1</sup>, 10 < <math display="inline"><semantics> <mi>R</mi> </semantics></math> ≤ 20 mm h<sup>−1</sup>, 20 <<math display="inline"><semantics> <mi>R</mi> </semantics></math> ≤ 50 mm h<sup>−1</sup>, and <math display="inline"><semantics> <mi>R</mi> </semantics></math> > 50 mm h<sup>−1</sup>, where the blue, red, purple, and green solid lines represent CFs, SHs, TCs, and TLPs, respectively.</p> "> Figure 5
<p>Relative contributions of raindrops to (<b>a</b>) the rainfall rate <math display="inline"><semantics> <mi>R</mi> </semantics></math> (<b>b</b>) the total raindrop concentration <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi>t</mi> </msub> </mrow> </semantics></math>, and (<b>c</b>) the reflectivity factor <span class="html-italic">Z</span> in different diameter bins, where the blue, red, purple, and green regions represent CFs, SHs, TCs, and TLPs, respectively.</p> "> Figure 6
<p>Distribution of <math display="inline"><semantics> <mrow> <msub> <mi>D</mi> <mi>m</mi> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>l</mi> <mi>o</mi> <msub> <mi>g</mi> <mrow> <mn>10</mn> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>N</mi> <mi mathvariant="normal">w</mi> </msub> <mo stretchy="false">)</mo> </mrow> </semantics></math> for convective precipitation and stratiform precipitation for the four types of weather systems. The black box represents the region of maritime and continental convective precipitation, as defined by [<a href="#B15-remotesensing-16-04144" class="html-bibr">15</a>], and the thick black dashed line represents the stratiform precipitation fitting line. The thin black dashed lines represent the contours of the rainfall rate. The dark gray crosses and light gray dots represent convective and stratiform precipitation, respectively. The circle, square and rhombus symbols in (<b>a</b>) indicate the Meiyu front in Central China [<a href="#B43-remotesensing-16-04144" class="html-bibr">43</a>] and East China [<a href="#B44-remotesensing-16-04144" class="html-bibr">44</a>,<a href="#B45-remotesensing-16-04144" class="html-bibr">45</a>]. Red and blue shading represent convective precipitation and stratiform precipitation, respectively. (<b>b</b>) Western (WWP), southern (SWP), and northern (NWP) of the western Pacific subtropical high [<a href="#B21-remotesensing-16-04144" class="html-bibr">21</a>]. (<b>c</b>) The circle, square and rhombus denote the convective precipitation of tropical cyclones that made landfall in East China and South China [<a href="#B42-remotesensing-16-04144" class="html-bibr">42</a>], Taiwan [<a href="#B26-remotesensing-16-04144" class="html-bibr">26</a>], and Hainan [<a href="#B27-remotesensing-16-04144" class="html-bibr">27</a>], and (<b>d</b>) The circle, square and rhombus indicate the pre-, mid-, and post-monsoon periods in the South China Sea, respectively [<a href="#B22-remotesensing-16-04144" class="html-bibr">22</a>].</p> "> Figure 7
<p>Scatterplot density distributions of <math display="inline"><semantics> <mrow> <msub> <mi>D</mi> <mi>m</mi> </msub> </mrow> </semantics></math> (<b>a</b>–<b>d</b>) and <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi>t</mi> </msub> </mrow> </semantics></math> (<b>e</b>–<b>h</b>) with <span class="html-italic">R</span>. The red curves are the least-squares-fitted <math display="inline"><semantics> <mrow> <msub> <mi>D</mi> <mi>m</mi> </msub> </mrow> </semantics></math>-<span class="html-italic">R</span> and <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi>t</mi> </msub> </mrow> </semantics></math>-<span class="html-italic">R</span> relationships, and the gray dashed line represents the 10 mm h<sup>−1</sup> contour.</p> "> Figure 8
<p>Fitted relationships for <math display="inline"><semantics> <mrow> <msub> <mi>D</mi> <mi>m</mi> </msub> </mrow> </semantics></math> (<b>a</b>) and <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi>t</mi> </msub> </mrow> </semantics></math> (<b>b</b>) of the four types of weather systems with rainfall rate <span class="html-italic">R</span>, with the gray dashed line representing the 10 mm h<sup>−1</sup> contour.</p> "> Figure 9
<p>(<b>a</b>) Boxplot of CAPE. The red solid line represents the median, the blue dashed line represents the mean, and the red dots represent the anomalies; (<b>b</b>) Distribution of the mean probability density of the TBB derived from FY-4A, where the dashed lines represent the dividing lines of stratiform and shallow convection (−10 °C), moderate convection (−32 °C), deep convection (−60 °C), and extreme convection (−75 °C). The blue, red, purple, and green lines represent cold fronts, subtropical highs, tropical cyclones, and low-pressure troughs, respectively. (<b>c</b>) Boxplots of the LCL, 0 °C level height, and CTH.</p> "> Figure 10
<p>Vertical profiles of the (<b>a</b>) temperature, (<b>b</b>) wind speed, (<b>c</b>) relative humidity, and (<b>d</b>) specific humidity for the four types of weather systems on Hainan Island.</p> "> Figure 11
<p><span class="html-italic">μ-</span>Λ and <span class="html-italic">Z-R</span> relationships for the four types of weather systems. (<b>a</b>–<b>d</b>) show the probability density distributions of the <span class="html-italic">μ-</span>Λ relationship and the quadratic polynomial fitting curves. The color bars on the right side represent the densities of the points in the scatterplot, where the data with precipitation rates of <span class="html-italic">R</span> < 5 mm h<sup>−1</sup> are excluded, and the fitting curves are shown in (<b>e</b>). (<b>f</b>) shows the <span class="html-italic">Z-R</span> relationship for the corresponding system and the WSR-88D empirical relationship [<a href="#B48-remotesensing-16-04144" class="html-bibr">48</a>].</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instruments and Datasets
2.2. Weather System Classification
2.3. Calculation of DSD
3. Results
3.1. Overall DSD
3.2. Statistical Characteristics of DSD Parameters
3.3. Variations in DSD Parameters with R
3.4. Mechanisms of DSD Formation
3.5. μ-Λ and Z-R Relationships
4. Discussion
5. Conclusions
- (1)
- The average raindrop size distributions (DSDs) of the four types of weather systems over Hainan Island vary significantly. Overall, the SH has the widest DSD spectrum and the highest concentration of medium-to-large raindrops (diameters > 1 mm). The convective clusters of the SH are between maritime-like clusters and continental-like clusters, and those of the other three types of weather systems are closer to maritime-like clusters. The TCs have the lowest concentration of large raindrops, which corresponds to a smaller ; the spectral patterns of the TLPs and CFs are similar, and the distributions of large raindrops are between those of the TCs and those of the SHs. The contribution of small raindrops to the total number concentration is relatively high in all four types of weather systems, especially up to 89% in the CFs. The contribution of medium raindrops to the rainfall rate is much greater, including up to 75% in TCs.
- (2)
- The differences in the DSDs among the four types of weather systems are mainly in large raindrops under heavy precipitation (R > 50 mm h−1). The Dm values of the SH and CFs are significantly greater than those of the TLPs and TCs as the rainfall rate increases. The DSD for moderate precipitation events (10 < R < 50 mm h−1) is similar to the overall average DSD. Under weak precipitation (R < 10 mm h−1), the SHs have a relatively high concentration of large raindrops, whereas the CFs and TCs have relatively high concentrations of small raindrops.
- (3)
- DSD formation is related to the environmental conditions of the weather system. The SHs are dominated by localized heat convection, with higher temperatures and CAPE values that favor the formation of large raindrops. Furthermore, a weak wind speed at the lower level is unfavorable for the breakup of large raindrops. The combination of high specific humidity and low relative humidity makes it easy for small raindrops to evaporate. This leads to the highest concentration of large raindrops in the SH among the four weather systems. Compared with the SHs, CFs have higher relative humidity at low levels and slower temperatures, favoring the condensation of raindrops and leading to higher concentrations of small raindrops under weak precipitation. The relatively high probability of extreme TBB values in the CFs is likely to produce relatively high concentrations of large raindrops during heavy precipitation. The wind speed of the TC is significantly greater at low levels, which favors the breakup of large raindrops, leading to the lowest concentration of large raindrops. In addition, the TCs have a lower CAPE value, i.e., weaker convective activity, and the highest relative humidity and specific humidity, which is favorable for condensation, leading to higher small and medium raindrop concentrations. The TLPs have lower relative humidity and specific humidity, which may be accompanied by a stronger evaporation process, leading to a lower concentration of small raindrops. The probability of a TLP is the lowest at TBB < −60 °C, and deeper convection is less common, resulting in the lowest concentration of large raindrops in heavy precipitation.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, S.; Hazra, A.; Goswami, B.N. Role of Interaction between Dynamics, Thermodynamics and Cloud Microphysics on Summer Monsoon Precipitating Clouds over the Myanmar Coast and the Western Ghats. Clim. Dyn. 2014, 43, 911–924. [Google Scholar] [CrossRef]
- Luo, L.; Xiao, H.; Yang, H.; Chen, H.; Guo, J.; Sun, Y.; Feng, L. Raindrop Size Distribution and Microphysical Characteristics of a Great Rainstorm in 2016 in Beijing, China. Atmos. Res. 2020, 239, 104895. [Google Scholar] [CrossRef]
- Gupta, A.K.; Deshmukh, A.; Waman, D.; Patade, S.; Jadav, A.; Phillips, V.T.J.; Bansemer, A.; Martins, J.A.; Gonçalves, F.L.T. The Microphysics of the Warm-Rain and Ice Crystal Processes of Precipitation in Simulated Continental Convective Storms. Commun. Earth Environ. 2023, 4, 226. [Google Scholar] [CrossRef]
- Wen, L.; Zhao, K.; Zhang, G.; Liu, S.; Chen, G. Impacts of Instrument Limitations on Estimated Raindrop Size Distribution, Radar Parameters, and Model Microphysics during Mei-Yu Season in East China. J. Atmos. Ocean. Technol. 2017, 34, 1021–1037. [Google Scholar] [CrossRef]
- Beheng, K.D. The Evolution of Raindrop Spectra: A Review of Microphysical Essentials. In Rainfall: State of the Science; American Geophysical Union (AGU): Washington, DC, USA, 2010; pp. 29–48. ISBN 978-1-118-67023-1. [Google Scholar]
- Testud, J.; Oury, S.; Black, R.A.; Amayenc, P.; Dou, X. The Concept of “Normalized” Distribution to Describe Raindrop Spectra: A Tool for Cloud Physics and Cloud Remote Sensing. J. Appl. Meteorol. Climatol. 2001, 40, 1118–1140. [Google Scholar] [CrossRef]
- Zeng, Y.; Yang, L.; Zhou, Y.; Tong, Z.; Jiang, Y.; Chen, P. Characteristics of Orographic Raindrop Size Distribution in the Tianshan Mountains, China. Atmos. Res. 2022, 278, 106332. [Google Scholar] [CrossRef]
- Ryzhkov, A.; Zhang, P.; Bukovčić, P.; Zhang, J.; Cocks, S. Polarimetric Radar Quantitative Precipitation Estimation. Remote Sens. 2022, 14, 1695. [Google Scholar] [CrossRef]
- Huang, H.; Zhao, K.; Zhang, G.; Lin, Q.; Wen, L.; Chen, G.; Yang, Z.; Wang, M.; Hu, D. Quantitative Precipitation Estimation with Operational Polarimetric Radar Measurements in Southern China: A Differential Phase–Based Variational Approach. J. Atmos. Ocean. Technol. 2018, 35, 1253–1271. [Google Scholar] [CrossRef]
- Chen, G.; Lu, Y.; Hua, S.; Liu, Q.; Zhao, K.; Zheng, Y.; Wang, M.; Zhang, S.; Wang, X. Evaluating the Variability of Simulated Raindrop Size Distributions in the “21·7” Henan Extremely Heavy Rainfall Event. Geophys. Res. Lett. 2023, 50, e2023GL102849. [Google Scholar] [CrossRef]
- Morrison, H.; Van Lier-Walqui, M.; Fridlind, A.M.; Grabowski, W.W.; Harrington, J.Y.; Hoose, C.; Korolev, A.; Kumjian, M.R.; Milbrandt, J.A.; Pawlowska, H.; et al. Confronting the Challenge of Modeling Cloud and Precipitation Microphysics. J. Adv. Model. Earth Syst. 2020, 12, e2019MS001689. [Google Scholar] [CrossRef]
- Seela, B.K.; Janapati, J.; Lin, P.; Wang, P.K.; Lee, M. Raindrop Size Distribution Characteristics of Summer and Winter Season Rainfall Over North Taiwan. J. Geophys. Res. Atmos. 2018, 123, 11602–11624. [Google Scholar] [CrossRef]
- Li, X.; Chen, S.; Li, Z.; Huang, C.; Hu, J. Statistical Characteristics of Warm Season Raindrop Size Distribution in the Beibu Gulf, South China. Remote Sens. 2022, 14, 4752. [Google Scholar] [CrossRef]
- Zhang, A.; Hu, J.; Chen, S.; Hu, D.; Liang, Z.; Huang, C.; Xiao, L.; Min, C.; Li, H. Statistical Characteristics of Raindrop Size Distribution in the Monsoon Season Observed in Southern China. Remote Sens. 2019, 11, 432. [Google Scholar] [CrossRef]
- Bringi, V.N.; Chandrasekar, V.; Hubbert, J.; Gorgucci, E.; Randeu, W.L.; Schoenhuber, M. Raindrop Size Distribution in Different Climatic Regimes from Disdrometer and Dual-Polarized Radar Analysis. J. Atmos. Sci. 2003, 60, 354–365. [Google Scholar] [CrossRef]
- Kim, H.-J.; Jung, W.; Suh, S.-H.; Lee, D.-I.; You, C.-H. The Characteristics of Raindrop Size Distribution at Windward and Leeward Side over Mountain Area. Remote Sens. 2022, 14, 2419. [Google Scholar] [CrossRef]
- Liu, X.; Xue, L.; Chen, B.; Zhang, Y. Characteristics of Raindrop Size Distributions in Chongqing Observed by a Dense Network of Disdrometers. J. Geophys. Res. Atmos. 2021, 126, e2021JD035172. [Google Scholar] [CrossRef]
- Chen, B.; Yang, J.; Gao, R.; Zhu, K.; Zou, C.; Gong, Y.; Zhang, R. Vertical Variability of the Raindrop Size Distribution in Typhoons Observed at the Shenzhen 356-m Meteorological Tower. J. Atmos. Sci. 2020, 77, 4171–4187. [Google Scholar] [CrossRef]
- Houze, R.A.; Hobbs, P.V.; Herzegh, P.H.; Parsons, D.B. Size Distributions of Precipitation Particles in Frontal Clouds. J. Atmos. Sci. 1979, 36, 156–162. [Google Scholar] [CrossRef]
- Han, B.; Du, Y.; Wu, C.; Liu, X. Microphysical Characteristics of the Coexisting Frontal and Warm-Sector Heavy Rainfall in South China. J. Geophys. Res. Atmos. 2021, 126, e2021JD035446. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, Y.; Zhang, L.; Lei, H.; Xie, Y.; Wen, L.; Yang, J. Characteristics of Summer Season Raindrop Size Distribution in Three Typical Regions of Western Pacific. J. Geophys. Res. Atmos. 2019, 124, 4054–4073. [Google Scholar] [CrossRef]
- Zeng, Q.; Zhang, Y.; Lei, H.; Xie, Y.; Gao, T.; Zhang, L.; Wang, C.; Huang, Y. Microphysical Characteristics of Precipitation during Pre-Monsoon, Monsoon, and Post-Monsoon Periods over the South China Sea. Adv. Atmos. Sci. 2019, 36, 1103–1120. [Google Scholar] [CrossRef]
- Janapati, J.; Seela, B.K.; Lin, P.-L.; Lee, M.-T.; Joseph, E. Microphysical Features of Typhoon and Non-Typhoon Rainfall Observed in Taiwan, an Island in the Northwestern Pacific. Hydrol. Earth Syst. Sci. 2021, 25, 4025–4040. [Google Scholar] [CrossRef]
- Seela, B.K.; Tharun, D.; Tyagi, B.; Lin, P.-L. Raindrop Size Distributions of Summer Monsoon Rainfall Observed over Eastern India. Atmos. Res. 2024, 309, 107581. [Google Scholar] [CrossRef]
- Tokay, A.; Bashor, P.G.; Habib, E.; Kasparis, T. Raindrop Size Distribution Measurements in Tropical Cyclones. Mon. Weather Rev. 2008, 136, 1669–1685. [Google Scholar] [CrossRef]
- Chang, W.-Y.; Wang, T.-C.C.; Lin, P.-L. Characteristics of the Raindrop Size Distribution and Drop Shape Relation in Typhoon Systems in the Western Pacific from the 2D Video Disdrometer and NCU C-Band Polarimetric Radar. J. Atmos. Ocean. Technol. 2009, 26, 1973–1993. [Google Scholar] [CrossRef]
- Zheng, H.; Zhang, Y.; Zhang, L.; Lei, H.; Wu, Z. Precipitation Microphysical Processes in the Inner Rainband of Tropical Cyclone Kajiki (2019) over the South China Sea Revealed by Polarimetric Radar. Adv. Atmos. Sci. 2021, 38, 65–80. [Google Scholar] [CrossRef]
- Huang, X.; Wu, Z.; Xie, Y.; Zhang, Y.; Zhang, L.; Zheng, H.; Xiao, W. Precipitation Microphysics of Locally-Originated Typhoons in the South China Sea Based on GPM Satellite Observations. Remote Sens. 2023, 15, 2657. [Google Scholar] [CrossRef]
- Wang, L.; Bao, X.; Hu, Y.; Zhang, S.; Lin, W.; Zhuang, Y. Microphysics of Heavy Rain Associated With the Eyewall and Inner Rainbands of Typhoon Meranti (2016). J. Geophys. Res. Atmos. 2023, 128, e2022JD037288. [Google Scholar] [CrossRef]
- Bao, X.; Wu, L.; Zhang, S.; Li, Q.; Lin, L.; Zhao, B.; Wu, D.; Xia, W.; Xu, B. Distinct Raindrop Size Distributions of Convective Inner- and Outer-Rainband Rain in Typhoon Maria (2018). J. Geophys. Res. Atmos. 2020, 125, e2020JD032482. [Google Scholar] [CrossRef]
- Sui, Y.; Jiang, D.; Tian, Z. Latest Update of the Climatology and Changes in the Seasonal Distribution of Precipitation over China. Theor. Appl. Climatol. 2013, 113, 599–610. [Google Scholar] [CrossRef]
- Li, Y.; Lu, R.; He, J. Tropical Large-Scale Atmospheric Circulation and Sea Surface Temperature Corresponding to Autumn Precipitation in Hainan Island. Chin. J. Atmos. Sci. 2006, 30, 1034–1042. [Google Scholar]
- Wu, Y.; Wu, S.; Zhai, P. The Impact of Tropical Cyclones on Hainan Island’s Extreme and Total Precipitation. Int. J. Climatol. 2007, 27, 1059–1064. [Google Scholar] [CrossRef]
- Pan, J.; Li, C. Comparison of Climate Characteristics Between Two Summer Monsoon Troughs over the South China Sea and India. Chin. J. Atmos. Sci. 2006, 30, 377–390. [Google Scholar]
- Tokay, A.; Petersen, W.A.; Gatlin, P.; Wingo, M. Comparison of Raindrop Size Distribution Measurements by Collocated Disdrometers. J. Atmos. Ocean. Technol. 2013, 30, 1672–1690. [Google Scholar] [CrossRef]
- Löffler-Mang, M.; Joss, J. An Optical Disdrometer for Measuring Size and Velocity of Hydrometeors. J. Atmos. Ocean. Technol. 2000, 17, 130–139. [Google Scholar] [CrossRef]
- Tokay, A.; Wolff, D.B.; Petersen, W.A. Evaluation of the New Version of the Laser-Optical Disdrometer, OTT Parsivel2. J. Atmos. Ocean. Technol. 2014, 31, 1276–1288. [Google Scholar] [CrossRef]
- Atlas, D.; Srivastava, R.C.; Sekhon, R.S. Doppler Radar Characteristics of Precipitation at Vertical Incidence. Rev. Geophys. 1973, 11, 1–35. [Google Scholar] [CrossRef]
- Brandes, E.A.; Zhang, G.; Vivekanandan, J. Experiments in Rainfall Estimation with a Polarimetric Radar in a Subtropical Environment. J. Appl. Meteorol. Climatol. 2002, 41, 674–685. [Google Scholar] [CrossRef]
- Maddox, R.A. Meoscale Convective Complexes. Bull. Am. Meteorol. Soc. 1980, 61, 1374–1387. [Google Scholar] [CrossRef]
- Cai, Q.; Feng, W.; Li, X. Hainan Weather Forecast Technical Manual; China Meteorological Press: Beijing, China, 2013.
- Wen, L.; Zhao, K.; Chen, G.; Wang, M.; Zhou, B.; Huang, H.; Hu, D.; Lee, W.-C.; Hu, H. Drop Size Distribution Characteristics of Seven Typhoons in China. J. Geophys. Res. Atmos. 2018, 123, 6529–6548. [Google Scholar] [CrossRef]
- Fu, Z.; Dong, X.; Zhou, L.; Cui, W.; Wang, J.; Wan, R.; Leng, L.; Xi, B. Statistical Characteristics of Raindrop Size Distributions and Parameters in Central China During the Meiyu Seasons. J. Geophys. Res. Atmos. 2020, 125, e2019JD031954. [Google Scholar] [CrossRef]
- Wen, L.; Zhao, K.; Yang, Z.; Chen, H.; Huang, H.; Chen, G.; Yang, Z. Microphysics of Stratiform and Convective Precipitation During Meiyu Season in Eastern China. J. Geophys. Res. Atmos. 2020, 125, e2020JD032677. [Google Scholar] [CrossRef]
- Chen, B.; Yang, J.; Pu, J. Statistical Characteristics of Raindrop Size Distribution in the Meiyu Season Observed in Eastern China. J. Meteorol. Soc. Jpn. Ser. II 2013, 91, 215–227. [Google Scholar] [CrossRef]
- Fan, J.; Rosenfeld, D.; Zhang, Y.; Giangrande, S.E.; Li, Z.; Machado, L.A.T.; Martin, S.T.; Yang, Y.; Wang, J.; Artaxo, P.; et al. Substantial Convection and Precipitation Enhancements by Ultrafineaerosol Particles. Science 2018, 359, 411–418. [Google Scholar] [CrossRef]
- Yang, L.; Fei, J.; Huang, X.; Cheng, X.; Yang, X.; Ding, J.; Shi, W. Asymmetric Distribution of Convection in Tropical Cyclones over the Western North Pacific Ocean. Adv. Atmos. Sci. 2016, 33, 1306–1321. [Google Scholar] [CrossRef]
- Fulton, R.A.; Breidenbach, J.P.; Seo, D.-J.; Miller, D.A.; O’Bannon, T. The WSR-88D Rainfall Algorithm. Weather Forecast. 1998, 13, 377395. [Google Scholar] [CrossRef]
TC | Time | Impact Intensity | Maximum Intensity | Origin | Landfall Hainan | Minimum Pressure (hPa) | Maximum Wind Speed (m s−1) |
---|---|---|---|---|---|---|---|
Wipha | 1 August 2019 | TS | TS | SCS | Yes | 982 | 23 |
Sinlaku | 1 August 2020 | TD | TS | SCS | Yes | 992 | 18 |
Nangka | 13 October 2020 | STS | STS | WNP | Yes | 988 | 25 |
Lionrock | 8 October 2021 | TS | TS | SCS | Yes | 990 | 20 |
Kompasu | 13 October 2021 | STS | TY | WNP | Yes | 970 | 33 |
Chaba | 2 July 2022 | TY | TY | SCS | No | 960 | 38 |
Talim | 17 July 2023 | TY | TY | WNP | No | 960 | 40 |
Weather System | Series | Time | Sites | Samples | Total Precipitation | Mean Rainfall Rate | Maximum Rainfall Rate |
---|---|---|---|---|---|---|---|
CFs | 1 | 14 October 2019 | 479 | 4798 | 12,757.3 | 26.6 | 65.3 |
2 | 31 December 2019 | 370 | 2390 | 2113.5 | 5.7 | 48.4 | |
3 | 18 April 2021 | 373 | 1578 | 4060.3 | 10.9 | 71.1 | |
4 | 1 May 2022 | 557 | 11,235 | 30,150.1 | 54.1 | 48.6 | |
5 | 7 October 2022 | 529 | 4681 | 15,148.8 | 28.6 | 61.0 | |
6 | 27 March 2023 | 447 | 3476 | 9878.4 | 22.1 | 111.2 | |
7 | 8 May 2023 | 473 | 3317 | 9396.8 | 19.9 | 81.7 | |
SHs | 1 | 7 July 2020 | 130 | 253 | 783.4 | 6.0 | 43.6 |
2 | 3 October 2020 | 468 | 2779 | 6182.4 | 13.2 | 76.2 | |
3 | 15 July 2022 | 335 | 914 | 2127.6 | 6.4 | 45.6 | |
4 | 13 August 2022 | 300 | 1026 | 2824.2 | 9.4 | 81.6 | |
5 | 24 May 2023 | 181 | 491 | 1757.2 | 9.7 | 69.7 | |
6 | 26 May 2023 | 416 | 1601 | 4887.5 | 11.7 | 88.6 | |
7 | 28 June 2023 | 290 | 809 | 3481.9 | 12.0 | 63.2 | |
8 | 9 July 2023 | 256 | 659 | 1108.8 | 4.3 | 37.8 | |
TCs | 1 | 1 August 2019 | 491 | 8377 | 33,422.7 | 68.1 | 77.4 |
2 | 1 August 2020 | 507 | 5877 | 16,321.5 | 32.2 | 67.3 | |
3 | 13 October 2020 | 499 | 9286 | 26,747.5 | 53.6 | 65.0 | |
4 | 8 October 2021 | 560 | 11,306 | 61,987.8 | 110.7 | 106.2 | |
5 | 13 October 2021 | 565 | 9126 | 32,706.5 | 57.9 | 188.1 | |
6 | 2 July 2022 | 547 | 8394 | 36,796.2 | 67.3 | 113.8 | |
7 | 17 July 2023 | 607 | 12,339 | 29,826.9 | 49.1 | 85.0 | |
TLPs | 1 | 18 February 2019 | 362 | 1683 | 7088.3 | 19.6 | 74.4 |
2 | 22 July 2019 | 409 | 1542 | 5249.9 | 12.8 | 88.4 | |
3 | 15 June 2020 | 489 | 4841 | 24,976.4 | 51.1 | 94.7 | |
4 | 19 September 2020 | 488 | 8064 | 22,885.7 | 46.9 | 59.2 | |
5 | 7 September 2022 | 551 | 8610 | 30,082.5 | 54.6 | 57.5 | |
6 | 7 June 2023 | 540 | 1976 | 5779.5 | 10.7 | 101.0 | |
7 | 11 June 2023 | 497 | 3662 | 9022.8 | 18.2 | 64.8 | |
8 | 2 July 2023 | 454 | 1955 | 6578.7 | 14.5 | 103.0 |
Weather Types | Dm (mm) | log10(Nw) (mm−1 m−3) | log10(Nt) (m−3) | R (mm h−1) | LWC (g m−3) | |
---|---|---|---|---|---|---|
CFs | Whole | 1.01 | 4.45 | 2.87 | 3.47 | 0.22 |
Stratiform | 0.95 | 4.43 | 2.82 | 1.62 | 0.12 | |
Convective | 1.85 | 4.39 | 3.22 | 26.2 | 1.38 | |
SHs | Whole | 1.44 | 3.77 | 2.72 | 8.27 | 0.42 |
Stratiform | 1.28 | 3.71 | 2.38 | 1.78 | 0.11 | |
Convective | 2.16 | 3.96 | 3.25 | 37.8 | 1.82 | |
TCs | Whole | 1.18 | 4.17 | 2.80 | 4.79 | 0.30 |
Stratiform | 1.11 | 4.18 | 2.71 | 2.26 | 0.61 | |
Convective | 1.72 | 4.16 | 3.16 | 24.8 | 1.35 | |
TLPs | Whole | 1.35 | 3.72 | 2.58 | 5.01 | 0.27 |
Stratiform | 1.28 | 3.65 | 2.37 | 1.77 | 0.11 | |
Convective | 1.92 | 4.05 | 3.20 | 31.8 | 1.61 |
Parameter | CFs | SHs | TCs | TLPs |
---|---|---|---|---|
CAPE (kJ kg−1) | 977.2 | 1842.6 | 707.1 | 838.0 |
LCL (m) | 424.8 | 466.9 | 411.8 | 435.3 |
0 °C level (m) | 4549.1 | 4963.4 | 5215.3 | 4998.1 |
CTH (m) | 7955.0 | 8784.3 | 10,524.6 | 8446.2 |
Cold cloud depth (m) | 3405.9 | 3820.9 | 5309.3 | 3448.2 |
Warm cloud depth (m) | 4124.3 | 4496.5 | 4803.5 | 4562.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, W.; Zhang, Y.; Zheng, H.; Wu, Z.; Xie, Y.; Huang, Y. Microphysical Characteristics of Precipitation for Four Types of Typical Weather Systems on Hainan Island. Remote Sens. 2024, 16, 4144. https://doi.org/10.3390/rs16224144
Xiao W, Zhang Y, Zheng H, Wu Z, Xie Y, Huang Y. Microphysical Characteristics of Precipitation for Four Types of Typical Weather Systems on Hainan Island. Remote Sensing. 2024; 16(22):4144. https://doi.org/10.3390/rs16224144
Chicago/Turabian StyleXiao, Wupeng, Yun Zhang, Hepeng Zheng, Zuhang Wu, Yanqiong Xie, and Yanbin Huang. 2024. "Microphysical Characteristics of Precipitation for Four Types of Typical Weather Systems on Hainan Island" Remote Sensing 16, no. 22: 4144. https://doi.org/10.3390/rs16224144
APA StyleXiao, W., Zhang, Y., Zheng, H., Wu, Z., Xie, Y., & Huang, Y. (2024). Microphysical Characteristics of Precipitation for Four Types of Typical Weather Systems on Hainan Island. Remote Sensing, 16(22), 4144. https://doi.org/10.3390/rs16224144