A Base-Map-Guided Global Localization Solution for Heterogeneous Robots Using a Co-View Context Descriptor
<p>The workflow of the base-map-guided global LiDAR localization solution.</p> "> Figure 2
<p>Extracting ground points from the reference scan.</p> "> Figure 3
<p>The construction of the virtual reference scan.</p> "> Figure 4
<p>The construction of the virtual local scan.</p> "> Figure 5
<p>The schematic diagram of co-view context descriptor.</p> "> Figure 6
<p>A typical example of ground-based and aerial-based scans.</p> "> Figure 7
<p>Study areas for the three datasets.</p> "> Figure 8
<p>Laser scanners and platforms used in the experiments.</p> "> Figure 9
<p>Parameter tests for VRS block size and VLS keyframe distance threshold.</p> "> Figure 10
<p>The localization results of the construction dataset. The <b>bottom</b> figure shows an overview of the localization results, and the <b>top</b> figures show detailed views of each localized scan.</p> "> Figure 11
<p>The localization results of the gymnasium dataset. The <b>bottom</b> figure shows an overview of the localization results, and the <b>top</b> figures show detailed views of each localized scan.</p> "> Figure 12
<p>The localization results of the campus dataset. The <b>middle</b> figure shows an overview of the localization results, and the <b>top</b> and <b>bottom</b> figures show detailed views of each localized scan.</p> "> Figure 13
<p>The localization results of the SLR validation experiment. Green labels indicate successfully localized scans, while red labels indicate failed localized scans.</p> "> Figure 14
<p>Comparison between Campus Self-built 2 and Campus ALS point cloud. The <b>top</b> figure shows the Campus Self-built 2 scan and its details. The <b>bottom</b> figure shows the Campus point cloud scan and its details.</p> ">
Abstract
:1. Introduction
- A base-map-guided LiDAR localization solution for heterogeneous robots is proposed. In this case, a pre-set base map is utilized to localize local scans captured by mobile robots. This solution can be applied to both online and offline global LiDAR localization. It is particularly practical in environments where a rendezvous is difficult to form or where communication is not available.
- A novel co-view context descriptor that can detect co-visible regions of heterogeneous point clouds is developed. This discriminative descriptor takes into account the height and density information of the points and extracts co-visible regions for both horizontal and vertical cases. Descriptor matching enables the estimation of a coarse transformation between the local scan and the pre-set base map, facilitating the global localization of mobile robots.
- Three heterogeneous experimental datasets are elaborated to validate the effectiveness of the proposed solution. The base maps are captured from aerial and ground-based platforms, whereas the local scans are derived from LiDAR SLAM and single-station laser scanning. The results indicate that the proposed solution can be implemented either online or offline to localize both homogeneous and heterogeneous point clouds in various environments.
2. Related Works
2.1. LiDAR Place Recognition
2.2. Collaborative LiDAR SLAM
3. Materials and Methods
3.1. System Overview
3.2. Virtual Scan Construction
3.2.1. Virtual Reference Scan Construction
3.2.2. Virtual Local Scan Construction
3.3. Co-View Context Descriptor
3.3.1. Descriptor Encoding
3.3.2. Co-Visible Region Detection
3.3.3. Descriptor Matching
3.4. Two-Phase Localization Strategy
4. Experiments
4.1. Datasets Description
4.2. Evaluation Criteria
4.3. Parameter Settings
4.4. Experiment Results
4.5. Quantitative Analysis
4.5.1. Successful Localization Rate Validation
4.5.2. Accuracy Evaluation
4.5.3. Runtime Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, J.; Singh, S. LOAM: Lidar Odometry and Mapping in Real-time. In Proceedings of the Robotics: Science and Systems X Robotics: Science and Systems Foundation, Berkeley, CA, USA, 12–16 July 2014. [Google Scholar] [CrossRef]
- Shan, T.; Englot, B.; Meyers, D.; Wang, W.; Ratti, C.; Rus, D. LIO-SAM: Tightly-coupled Lidar Inertial Odometry via Smoothing and Mapping. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 25–29 October 2020; pp. 5135–5142. [Google Scholar] [CrossRef]
- Xu, W.; Zhang, F. FAST-LIO: A Fast, Robust LiDAR-Inertial Odometry Package by Tightly-Coupled Iterated Kalman Filter. IEEE Robot. Autom. Lett. 2021, 6, 3317–3324. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, Z.; Xu, C.-Z.; Sarma, S.E.; Yang, J.; Kong, H. LiDAR Iris for Loop-Closure Detection. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 25–29 October 2020; pp. 5769–5775. [Google Scholar] [CrossRef]
- Jiang, B.; Shen, S. Contour Context: Abstract Structural Distribution for 3D LiDAR Loop Detection and Metric Pose Estimation. In Proceedings of the 2023 IEEE International Conference on Robotics and Automation (ICRA), London, UK, 29 May–2 June 2023; pp. 8386–8392. [Google Scholar] [CrossRef]
- Kim, G.; Kim, A. Scan Context: Egocentric Spatial Descriptor for Place Recognition Within 3D Point Cloud Map. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 4802–4809. [Google Scholar] [CrossRef]
- Yuan, C.; Lin, J.; Zou, Z.; Hong, X.; Zhang, F. STD: Stable Triangle Descriptor for 3D place recognition 2023. In Proceedings of the 2023 IEEE International Conference on Robotics and Automation (ICRA), London, UK, 29 May–2 June 2023; pp. 1897–1903. [Google Scholar]
- Kummerle, R.; Grisetti, G.; Strasdat, H.; Konolige, K.; Burgard, W. G2o: A general framework for graph optimization. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 3607–3613. [Google Scholar] [CrossRef]
- Kaess, M.; Ranganathan, A.; Dellaert, F. iSAM: Incremental Smoothing and Mapping. IEEE Trans. Robot. 2008, 24, 1365–1378. [Google Scholar] [CrossRef]
- Saeedi, S.; Trentini, M.; Seto, M.; Li, H. Multiple-Robot Simultaneous Localization and Mapping: A Review: Multiple-Robot Simultaneous Localization and Mapping. J. Field Robot. 2016, 33, 3–46. [Google Scholar] [CrossRef]
- Zhou, X.; Roumeliotis, S. Multi-robot SLAM with Unknown Initial Correspondence: The Robot Rendezvous Case. In Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 9–13 October 2006; pp. 1785–1792. [Google Scholar] [CrossRef]
- Gans, N.R.; Rogers, J.G. Cooperative Multirobot Systems for Military Applications. Curr. Robot. Rep. 2021, 2, 105–111. [Google Scholar] [CrossRef]
- Wu, Z.; Pan, L.; Yu, M.; Liu, J.; Mei, D. A game-based approach for designing a collaborative evolution mechanism for unmanned swarms on community networks. Sci. Rep. 2022, 12, 18892. [Google Scholar] [CrossRef]
- Queralta, J.P.; Taipalmaa, J.; Can Pullinen, B.; Sarker, V.K.; Nguyen Gia, T.; Tenhunen, H.; Gabbouj, M.; Raitoharju, J.; Westerlund, T. Collaborative Multi-Robot Search and Rescue: Planning, Coordination, Perception, and Active Vision. IEEE Access 2020, 8, 191617–191643. [Google Scholar] [CrossRef]
- Drew, D.S. Multi-Agent Systems for Search and Rescue Applications. Curr. Robot. Rep. 2021, 2, 189–200. [Google Scholar] [CrossRef]
- Alenzi, Z.; Alenzi, E.; Alqasir, M.; Alruwaili, M.; Alhmiedat, T.; Alia, O.M. A Semantic Classification Approach for Indoor Robot Navigation. Electronics 2022, 11, 2063. [Google Scholar] [CrossRef]
- Alqobali, R.; Alshmrani, M.; Alnasser, R.; Rashidi, A.; Alhmiedat, T.; Alia, O.M. A Survey on Robot Semantic Navigation Systems for Indoor Environments. Appl. Sci. 2023, 14, 89. [Google Scholar] [CrossRef]
- Leung, K.Y.K.; Barfoot, T.D.; Liu, H. Decentralized Localization of Sparsely-Communicating Robot Networks: A Centralized-Equivalent Approach. IEEE Trans. Robot. 2010, 26, 62–77. [Google Scholar] [CrossRef]
- Besl, P.J.; McKay, N.D. A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 1992, 14, 239–256. [Google Scholar] [CrossRef]
- Chetverikov, D.; Stepanov, D.; Krsek, P. Robust Euclidean alignment of 3D point sets: The trimmed iterative closest point algorithm. Image Vis. Vision. Comput. 2005, 23, 299–309. [Google Scholar] [CrossRef]
- Segal, A.V.; Hähnel, D.; Thrun, S. Generalized-ICP. In Proceedings of the Robotics: Science and Systems, Seattle, WA, USA, 28 June–1 July 2009; pp. 21–31. [Google Scholar]
- Li, J.; Hu, Q.; Zhang, Y.; Ai, M. Robust symmetric iterative closest point. ISPRS J. Photogramm. Remote Sens. 2022, 185, 219–231. [Google Scholar] [CrossRef]
- Hardouin, G.; Moras, J.; Morbidi, F.; Marzat, J.; Mouaddib, E.M. A Multirobot System for 3-D Surface Reconstruction with Centralized and Distributed Architectures. IEEE Trans. Robot. 2023, 39, 2623–2638. [Google Scholar] [CrossRef]
- Takimoto, R.Y.; Tsuzuki, M.D.S.G.; Vogelaar, R.; Martins, T.D.C.; Sato, A.K.; Iwao, Y.; Gotoh, T.; Kagei, S. 3D reconstruction and multiple point cloud registration using a low precision RGB-D sensor. Mechatronics 2016, 35, 11–22. [Google Scholar] [CrossRef]
- Liu, R.; Wang, J.; Zhang, B. High Definition Map for Automated Driving: Overview and Analysis. J. Navig. 2020, 73, 324–341. [Google Scholar] [CrossRef]
- Li, Q.; Zhu, J.; Liu, J.; Cao, R.; Fu, H.; Garibaldi, J.M.; Li, Q.; Liu, B.; Qiu, G. 3D map-guided single indoor image localization refinement. ISPRS J. Photogramm. Remote Sens. 2020, 161, 13–26. [Google Scholar] [CrossRef]
- Wu, H.; Yan, L.; Xie, H.; Wei, P.; Dai, J. A hierarchical multiview registration framework of TLS point clouds based on loop constraint. ISPRS J. Photogramm. Remote Sens. 2023, 195, 65–76. [Google Scholar] [CrossRef]
- Wang, W.; Wang, B.; Zhao, P.; Chen, C.; Clark, R.; Yang, B.; Markham, A.; Trigoni, N. PointLoc: Deep Pose Regressor for LiDAR Point Cloud Localization. IEEE Sens. J. 2022, 22, 959–968. [Google Scholar] [CrossRef]
- Charles, R.Q.; Su, H.; Kaichun, M.; Guibas, L.J. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 77–85. [Google Scholar] [CrossRef]
- Luo, L.; Zheng, S.; Li, Y.; Fan, Y.; Yu, B.; Cao, S.; Shen, H. BEVPlace: Learning LiDAR-based Place Recognition using Bird’s Eye View Images 2023. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 2–3 October 2023; pp. 8700–8709. [Google Scholar]
- Wang, H.; Liu, Y.; Dong, Z.; Guo, Y.; Liu, Y.-S.; Wang, W.; Yang, B. Robust Multiview Point Cloud Registration with Reliable Pose Graph Initialization and History Reweighting. In Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 18–22 June 2023; pp. 9506–9515. [Google Scholar] [CrossRef]
- Yang, B.; Zang, Y.; Dong, Z.; Huang, R. An automated method to register airborne and terrestrial laser scanning point clouds. ISPRS J. Photogramm. Remote Sens. 2015, 109, 62–76. [Google Scholar] [CrossRef]
- Avidar, D.; Malah, D.; Barzohar, M. Local-to-Global Point Cloud Registration Using a Dictionary of Viewpoint Descriptors. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 891–899. [Google Scholar] [CrossRef]
- Liang, F.; Yang, B.; Dong, Z.; Huang, R.; Zang, Y.; Pan, Y. A novel skyline context descriptor for rapid localization of terrestrial laser scans to airborne laser scanning point clouds. ISPRS J. Photogramm. Remote Sens. 2020, 165, 120–132. [Google Scholar] [CrossRef]
- Xu, D.; Liu, J.; Hyyppä, J.; Liang, Y.; Tao, W. A heterogeneous 3D map-based place recognition solution using virtual LiDAR and a polar grid height coding image descriptor. ISPRS J. Photogramm. Remote Sens. 2022, 183, 1–18. [Google Scholar] [CrossRef]
- Ebadi, K.; Chang, Y.; Palieri, M.; Stephens, A.; Hatteland, A.; Heiden, E.; Thakur, A.; Funabiki, N.; Morrell, B.; Wood, S.; et al. LAMP: Large-Scale Autonomous Mapping and Positioning for Exploration of Perceptually-Degraded Subterranean Environments 2020. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020. pp. 80–86.
- Chang, Y.; Ebadi, K.; Denniston, C.E.; Ginting, M.F.; Rosinol, A.; Reinke, A.; Palieri, M.; Shi, J.; Chatterjee, A.; Morrell, B.; et al. LAMP 2.0: A Robust Multi-Robot SLAM System for Operation in Challenging Large-Scale Underground Environments. IEEE Robot. Autom. Lett. 2022, 7, 9175–9182. [Google Scholar] [CrossRef]
- Zhong, S.; Chen, H.; Qi, Y.; Feng, D.; Chen, Z.; Wu, J.; Wen, W.; Liu, M. CoLRIO: LiDAR-Ranging-Inertial Centralized State Estimation for Robotic Swarms 2024. arXiv 2024, arXiv:2402.11790. [Google Scholar]
- Kulkarni, M.; Dharmadhikari, M.; Tranzatto, M.; Zimmermann, S.; Reijgwart, V.; De Petris, P.; Nguyen, H.; Khedekar, N.; Papachristos, C.; Ott, L.; et al. Autonomous Teamed Exploration of Subterranean Environments using Legged and Aerial Robots. In Proceedings of the 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, 23–27 May 2022; pp. 3306–3313. [Google Scholar] [CrossRef]
- He, J.; Zhou, Y.; Huang, L.; Kong, Y.; Cheng, H. Ground and Aerial Collaborative Mapping in Urban Environments. IEEE Robot. Autom. Lett. 2021, 6, 95–102. [Google Scholar] [CrossRef]
- Lajoie, P.-Y.; Ramtoula, B.; Chang, Y.; Carlone, L.; Beltrame, G. DOOR-SLAM: Distributed, Online, and Outlier Resilient SLAM for Robotic Teams. IEEE Robot. Autom. Lett. 2020, 5, 1656–1663. [Google Scholar] [CrossRef]
- Arandjelovic, R.; Gronat, P.; Torii, A.; Pajdla, T.; Sivic, J. NetVLAD: CNN Architecture for Weakly Supervised Place Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 1437–1451. [Google Scholar] [CrossRef]
- Choudhary, S.; Carlone, L.; Nieto, C.; Rogers, J.; Christensen, H.I.; Dellaert, F. Distributed trajectory estimation with privacy and communication constraints: A two-stage distributed Gauss-Seidel approach. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 5261–5268. [Google Scholar] [CrossRef]
- Mangelson, J.G.; Dominic, D.; Eustice, R.M.; Vasudevan, R. Pairwise Consistent Measurement Set Maximization for Robust Multi-Robot Map Merging. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Queensland, 21–25 May 2018; pp. 2916–2923. [Google Scholar] [CrossRef]
- Huang, Y.; Shan, T.; Chen, F.; Englot, B. DiSCo-SLAM: Distributed Scan Context-Enabled Multi-Robot LiDAR SLAM With Two-Stage Global-Local Graph Optimization. IEEE Robot. Autom. Lett. 2022, 7, 1150–1157. [Google Scholar] [CrossRef]
- Zhong, S.; Qi, Y.; Chen, Z.; Wu, J.; Chen, H.; Liu, M. DCL-SLAM: A Distributed Collaborative LiDAR SLAM Framework for a Robotic Swarm. IEEE Sens. J. 2024, 24, 4786–4797. [Google Scholar] [CrossRef]
- Xu, Y.; Li, L.; Sun, S.; Wu, W.; Jin, A.; Yan, Z.; Yang, B.; Chen, C. Collaborative Exploration and Mapping with Multimodal LiDAR Sensors. In Proceedings of the 2023 IEEE International Conference on Unmanned Systems (ICUS), Hefei, China, 28–30 October 2023; pp. 1092–1097. [Google Scholar] [CrossRef]
- Rusu, R.B. Semantic 3D Object Maps for Everyday Manipulation in Human Living Environments. Künstl Intell. 2010, 24, 345–348. [Google Scholar] [CrossRef]
- Zhang, W.; Qi, J.; Wan, P.; Wang, H.; Xie, D.; Wang, X.; Yan, G. An Easy-to-Use Airborne LiDAR Data Filtering Method Based on Cloth Simulation. Remote Sens. 2016, 8, 501. [Google Scholar] [CrossRef]
- Leutenegger, S.; Furgale, P.; Rabaud, V.; Chli, M.; Konolige, K.; Siegwart, R. Keyframe-Based Visual-Inertial SLAM using Nonlinear Optimization. In Proceedings of the Robotics: Science and Systems IX, Robotics: Science and Systems Foundation, Berlin, Germany, 24–28 June 2013. [Google Scholar] [CrossRef]
- Mur-Artal, R.; Montiel, J.M.M.; Tardos, J.D. ORB-SLAM: A Versatile and Accurate Monocular SLAM System. IEEE Trans. Robot. 2015, 31, 1147–1163. [Google Scholar] [CrossRef]
- LiDAR. Available online: http://luojiayy.com/product_detail_en/id/4.html (accessed on 27 March 2024).
- Support for Matrice 300 RTK. Available online: https://www.dji.com/support/product/photo (accessed on 21 October 2024).
- Alpha Uni 20: High-End LiDAR Solution, CHCNAV. Available online: https://chcnav.com/product-detail/alphauni-20 (accessed on 27 March 2024).
- RIEGL—Produktdetail. Available online: http://www.riegl.com/nc/products/terrestrial-scanning/produktdetail/product/scanner/48/ (accessed on 27 March 2024).
- Dong, Z.; Liang, F.; Yang, B.; Xu, Y.; Zang, Y.; Li, J.; Wang, Y.; Dai, W.; Fan, H.; Hyyppä, J.; et al. Registration of large-scale terrestrial laser scanner point clouds: A review and benchmark. ISPRS J. Photogramm. Remote Sens. 2020, 163, 327–342. [Google Scholar] [CrossRef]
- Livox Mid-360. Available online: https://www.livoxtech.com/cn/mid-360 (accessed on 27 October 2024).
- Xu, W.; Cai, Y.; He, D.; Lin, J.; Zhang, F. FAST-LIO2: Fast Direct LiDAR-Inertial Odometry. IEEE Trans. Robot. 2022, 38, 2053–2073. [Google Scholar] [CrossRef]
- Duan, X.; Hu, Q.; Zhao, P.; Yu, F.; Ai, M. A low-drift and real-time localisation and mapping method for handheld hemispherical view LiDAR-IMU integration system. Photogramm. Rec. 2023, 38, 176–196. [Google Scholar] [CrossRef]
Dataset | Base Map | Local Scan | Average Overlap | |||||
---|---|---|---|---|---|---|---|---|
Scanner | Density (Points/m2) | Index | Data Source | Scanner | Density (Points/m2) | Ground Truth | ||
Construction | LJYY-FT1500 | 88.4 | 1 | WHU-TLS Heritage building 3 | VZ-400 | 3348.3 | Provided by WHU-TLS | 57.8% |
2 | WHU-TLS Heritage building 4 | VZ-400 | 5536.4 | Provided by WHU-TLS | 50.6% | |||
3 | WHU-TLS Heritage building 5 | VZ-400 | 3412.9 | Provided by WHU-TLS | 36.4% | |||
4 | WHU-TLS Heritage building 6 | VZ-400 | 5876.5 | Provided by WHU-TLS | 52.1% | |||
Gymnasium | CHCNAV-AU20 | 261.3 | 1 | Gymnasium Self-built 1 | Mid-360 | 429.8 | Handcraft + T-ICP | 49.9% |
2 | Gymnasium Self-built 2 | Mid-360 | 913.0 | Handcraft + T-ICP | 4.7% | |||
3 | Gymnasium Self-built 3 | Mid-360 | 252.4 | Handcraft + T-ICP | 22.6% | |||
Square | LJYY-FT1500 | 88.2 | 1 | WHU-TLS Campus 1 | VZ-400 | 3440.0 | Provided by WHU-TLS | 74.8% |
2 | WHU-TLS Campus 2 | VZ-400 | 1782.2 | Provided by WHU-TLS | 65.0% | |||
3 | WHU-TLS Campus 3 | VZ-400 | 2255.0 | Provided by WHU-TLS | 84.4% | |||
4 | WHU-TLS Campus 4 | VZ-400 | 2700.8 | Provided by WHU-TLS | 85.1% | |||
5 | Square Self-built 1 | Mid-360 | 90.8 | Handcraft + T-ICP | 54.1% | |||
6 | Square Self-built 2 | RS-Bpearl | 824.1 | Handcraft + T-ICP | 43.7% |
Parameters | Symbol | Description | Value |
---|---|---|---|
Block size | The block size of reference scan | 2.0 m | |
Search radius | The search radius of reference scan | 50 m for LiDAR SLAM and 100 m for TLS | |
Distance threshold | The distance threshold for keyframe selection | 2.0 m | |
Radial partition | The number of radial partitions | 20 | |
Azimuthal partition | The number of azimuthal partitions | 60 | |
Descriptor range | The max range of co-view context descriptor | 50 m for LiDAR SLAM and 100 m for TLS | |
Overlap rate | The overlap rate for trimmed ICP | 60% |
Reference Scan | #VRS | Local Scan | #VLS |
---|---|---|---|
Construction ALS point cloud | 1535 | WHU-TLS Heritage building 3 | 1 |
WHU-TLS Heritage building 4 | 1 | ||
WHU-TLS Heritage building 5 | 1 | ||
WHU-TLS Heritage building 6 | 1 | ||
Gymnasium MLS point cloud | 9527 | Gymnasium Self-built 1 | 223 |
Gymnasium Self-built 2 | 245 | ||
Gymnasium Self-built 3 | 176 | ||
Square ALS point cloud | 8360 | WHU-TLS Campus 1 | 1 |
WHU-TLS Campus 2 | 1 | ||
WHU-TLS Campus 3 | 1 | ||
WHU-TLS Campus 4 | 1 | ||
Square Self-built 1 | 154 | ||
Square Self-built 2 | 719 |
Dataset | To Be Aligned | Reference | Rotation Error (deg) | Translation Error (m) |
---|---|---|---|---|
Construction | WHU-TLS Heritage building 3 | WHU-TLS Heritage building 4 | 0.091 | 0.058 |
WHU-TLS Heritage building 4 | WHU-TLS Heritage building 5 | 1.391 | 0.185 | |
WHU-TLS Heritage building 5 | WHU-TLS Heritage building 6 | 0.103 | 0.071 | |
WHU-TLS Heritage building 6 | Construction ALS point cloud | 1.065 | 0.065 | |
Gymnasium | Gymnasium Self-built 1 | Gymnasium MLS point cloud | 0.013 | 0.080 |
Gymnasium Self-built 2 | Gymnasium MLS point cloud | 0.045 | 0.120 | |
Gymnasium Self-built 3 | Gymnasium MLS point cloud | 0.097 | 0.184 | |
Square | WHU-TLS Campus 1 | WHU-TLS Campus 2 | 0.018 | 0.256 |
WHU-TLS Campus 2 | WHU-TLS Campus 3 | 0.080 | 0.069 | |
WHU-TLS Campus 3 | WHU-TLS Campus 4 | 0.017 | 0.145 | |
WHU-TLS Campus 4 | Square ALS point cloud | 0.054 | 0.453 | |
Square Self-built 1 | Square ALS point cloud | 0.114 | 0.169 | |
Square Self-built 2 | Square ALS point cloud | 0.067 | 0.675 |
Dataset | Method | Rotation Error (deg) | Translation Error (m) | SLR (%) | ||
---|---|---|---|---|---|---|
Average | RMSE | Average | RMSE | |||
Construction | HL-MRF | 0.056 | 0.058 | 0.012 | 0.014 | 75% |
SGHR | 0.337 | 0.337 | 0.302 | 0.302 | 25% | |
Ours | 0.663 | 0.879 | 0.095 | 0.108 | 100% | |
Gymnasium | HL-MRF | 0.315 | 0.346 | 0.661 | 0.724 | 100% |
SGHR | 1.697 | 1.812 | 3.186 | 3.593 | 75% | |
Ours | 0.052 | 0.062 | 0.128 | 0.135 | 100% | |
Square | HL-MRF | 0.096 | 0.102 | 0.109 | 0.155 | 50% |
SGHR | 0.815 | 1.031 | 0.996 | 1.180 | 33% | |
Ours | 0.058 | 0.068 | 0.295 | 0.361 | 100% |
Sequence | Descriptor Generation | Co-Visible Region Detection | Descriptor Matching | Total |
---|---|---|---|---|
Self-built 1 | 1.522 | 1.973 | 47.715 | 51.210 |
Self-built 2 | 2.723 | 4.227 | 47.202 | 54.152 |
Self-built 3 | 1.490 | 1.979 | 47.198 | 50.667 |
Average | 1.912 | 2.726 | 47.372 | 52.010 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, X.; Wu, M.; Xiong, C.; Hu, Q.; Zhao, P. A Base-Map-Guided Global Localization Solution for Heterogeneous Robots Using a Co-View Context Descriptor. Remote Sens. 2024, 16, 4027. https://doi.org/10.3390/rs16214027
Duan X, Wu M, Xiong C, Hu Q, Zhao P. A Base-Map-Guided Global Localization Solution for Heterogeneous Robots Using a Co-View Context Descriptor. Remote Sensing. 2024; 16(21):4027. https://doi.org/10.3390/rs16214027
Chicago/Turabian StyleDuan, Xuzhe, Meng Wu, Chao Xiong, Qingwu Hu, and Pengcheng Zhao. 2024. "A Base-Map-Guided Global Localization Solution for Heterogeneous Robots Using a Co-View Context Descriptor" Remote Sensing 16, no. 21: 4027. https://doi.org/10.3390/rs16214027
APA StyleDuan, X., Wu, M., Xiong, C., Hu, Q., & Zhao, P. (2024). A Base-Map-Guided Global Localization Solution for Heterogeneous Robots Using a Co-View Context Descriptor. Remote Sensing, 16(21), 4027. https://doi.org/10.3390/rs16214027