Design of Exterior Orientation Parameters Variation Real-Time Monitoring System in Remote Sensing Cameras
<p>Exterior orientation parameters variation real-time monitoring system layout.</p> "> Figure 2
<p>Laser propagation path in the EOPV-RTMS.</p> "> Figure 3
<p>Laser relay system layout.</p> "> Figure 4
<p>Transmission and reflectivity curves of the narrow band-pass filter and dichroic mirror.</p> "> Figure 5
<p>EOPV-RTMS calibration process.</p> "> Figure 6
<p>Simplification of the exterior orientation parameters variation real-time monitoring system model.</p> "> Figure 7
<p>Impact of star tracker centroid extraction errors on the measurement accuracy of the EOPV-RTMS.</p> "> Figure 8
<p>Measurement accuracy of the EOPV-RTMS (centroid extraction error of star tracker ≤ 0.1 pixel).</p> "> Figure 9
<p>Verification platform for the EOPV-RTMS.</p> "> Figure 10
<p>Laser image points from four lasers in the star tracker.</p> "> Figure 11
<p>Measurement accuracy of the EOPV-RTMS.</p> "> Figure 12
<p>Measurement results of exterior orientation parameters changes during focal plane movement along the X/Y axis.</p> ">
Abstract
:1. Introduction
2. EOPV-RTMS Design Principles and Calibration Theoretical Model
2.1. EOPV-RTMS Design Principles
2.2. EOPV-RTMS Calibration Process and Theoretical Model
3. Simulation Analysis of EOPV-RTMS Measurement Accuracy
4. Experimental Testing of Measurement Accuracy for the EOPV-RTMS
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, L.; Li, Z.; Wang, Z.; Jiang, Y.; Shen, X.; Wu, J. On-Orbit Relative Radiometric Calibration of the Bayer Pattern Push-Broom Sensor for Zhuhai-1 Video Satellites. Remote Sens. 2023, 15, 377. [Google Scholar] [CrossRef]
- Aguilar, M.A.; del Mar Saldaña, M.; Aguilar, F.J. Assessing geometric accuracy of the orthorectification process from GeoEye-1 and WorldView-2 panchromatic images. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 427–435. [Google Scholar] [CrossRef]
- Zhang, X.; Fang, X.; Li, T.; Gu, G.; Li, H.; Shao, Y.; Jiang, X.; Li, B. Multi-Channel Hyperspectral Imaging Spectrometer Design for Ultraviolet Detection in the Atmosphere of Venus. Remote Sens. 2024, 16, 1099. [Google Scholar] [CrossRef]
- Akumu, C.E.; Amadi, E.O.; Dennis, S. Application of Drone and WorldView-4 Satellite Data in Mapping and Monitoring Grazing Land Cover and Pasture Quality: Pre- and Post-Flooding. Land 2021, 10, 321. [Google Scholar] [CrossRef]
- Sefercik, U.G.; Alkan, M.; Atalay, C.; Jacobsen, K.; Büyüksalih, G.; Karakış, S. Optimizing the Achievable Information Content Extraction from WorldView-4 Stereo Imagery. PFG J. Photogramm. Remote Sens. Geoinf. Sci. 2020, 88, 449–461. [Google Scholar] [CrossRef]
- Guan, Z.; Jiang, Y.; Wang, J.; Zhang, G. Star-Based Calibration of the Installation Between the Camera and Star Sensor of the Luojia 1-01 Satellite. Remote Sens. 2019, 11, 2081. [Google Scholar] [CrossRef]
- Opromolla, R.; Fasano, G.; Rufino, G.; Grassi, M.; Pernechele, C.; Dionisio, C. A new star tracker concept for satellite attitude determination based on a multi-purpose panoramic camera. Acta Astronaut. 2017, 140, 166–175. [Google Scholar] [CrossRef]
- Tang, X.; Xie, J. Overview of the key technologies for high-resolution satellite mapping. Int. J. Digit. Earth 2012, 5, 228–240. [Google Scholar] [CrossRef]
- Lee, S.; Shin, D. On-Orbit Camera Misalignment Estimation Framework and Its Application to Earth Observation Satellite. Remote Sens. 2015, 7, 3320–3346. [Google Scholar] [CrossRef]
- Liu, Q.; He, X.; Guan, F.; Zhao, Y.; Jiang, F.; Tian, F.; Wang, S. Method and Implementation of Improving the Pointing Accuracy of an Optical Remote Sensor Using a Star Sensor. Trait. Du Signal 2019, 36, 311. [Google Scholar] [CrossRef]
- Pi, Y.; Li, X.; Yang, B. Global iterative geometric calibration of a linear optical satellite based on sparse GCPs. IEEE Trans. Geosci. Remote Sens. 2019, 58, 436–446. [Google Scholar] [CrossRef]
- Wang, M.; Zhu, Y.; Pan, J.; Yang, B.; Zhu, Q. Satellite jitter detection and compensation using multispectral imagery. Remote Sens. Lett. 2016, 7, 513–522. [Google Scholar] [CrossRef]
- Wang, M.; Cheng, Y.; Chang, X.; Jin, S.; Zhu, Y. On-orbit geometric calibration and geometric quality assessment for the high-resolution geostationary optical satellite GaoFen4. ISPRS J. Photogramm. Remote Sens. 2017, 125, 63–77. [Google Scholar] [CrossRef]
- Liu, H.; Liu, C.; Liu, S.; Yong, Q.; Wang, X.; Zhao, Y.; Ding, Y.; Xie, P. Design of a focusing system for micro-nano satellite remote sensing camera based on thermal control technology. J. Therm. Stress. 2024, 47, 1–18. [Google Scholar] [CrossRef]
- Helder, D.; Coan, M.; Patrick, K.; Gaska, P. IKONOS geometric characterization. Remote Sens. Environ. 2003, 88, 69–79. [Google Scholar] [CrossRef]
- Ager, T.P. Evaluation of the Geometric Accuracy of Ikonos Imagery. In Proceedings of the Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery IX, Orlando, FL, USA, 21–25 April 2003; Volume 5093, pp. 613–620. [Google Scholar] [CrossRef]
- Kubik, P.; Lebègue, L.; Fourest, S.; Delvit, J.M.; de Lussy, F.; Greslou, D.; Blanchet, G. First in-Flight Results of Pleiades 1A Innovative Methods for Optical Calibration. In Proceedings of the International Conference on Space Optics—ICSO 2012, Ajaccio, Corsica, France, 20 November 2017; Volume 10564, pp. 54–63. [Google Scholar] [CrossRef]
- Mhangara, P.; Mapurisa, W.; Mudau, N. Comparison of image fusion techniques using satellite pour l’Observation de la Terre (SPOT) 6 satellite imagery. Appl. Sci. 2020, 10, 1881. [Google Scholar] [CrossRef]
- Aguilar, M.A.; Aguilar, F.J.; Saldaña, M.; Fernández, I. Geopositioning accuracy assessment of GeoEye-1 panchromatic and multispectral imagery. Photogramm. Eng. Remote Sens. 2012, 78, 247–257. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, Y.; Gao, S.; Liu, G.; Wan, Z.; Hu, D. Deep Learning-Based Digital Surface Model Reconstruction of ZY-3 Satellite Imagery. Remote Sens. 2024, 16, 2567. [Google Scholar] [CrossRef]
- Tang, X.; Xie, J.; Wang, X.; Jiang, W. High-precision attitude post-processing and initial verification for the ZY-3 satellite. Remote Sens. 2014, 7, 111–134. [Google Scholar] [CrossRef]
- Tadono, T.; Shimada, M.; Watanabe, M.; Mukaida, A.; Kawamoto, S.; Imoto, N.; Yamashita, J. Initial Results of Calibration and Validation for ALOS Optical Sensors. In Proceedings of the 2006 IEEE International Symposium on Geoscience and Remote Sensing, Denver, CO, USA, 31 July–4 August 2006; pp. 1643–1646. [Google Scholar] [CrossRef]
- Wang, J.; Wang, R.; Hu, X.; Su, Z. The on-orbit calibration of geometric parameters of the Tian-Hui 1 (TH-1) satellite. ISPRS J. Photogramm. Remote Sens. 2017, 124, 144–151. [Google Scholar] [CrossRef]
- Markus, T.; Neumann, T.; Martino, A.; Abdalati, W.; Brunt, K.; Csatho, B.; Farrell, S.; Fricker, H.; Gardner, A.; Harding, D.; et al. The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation. Remote Sens. Environ. 2017, 190, 260–273. [Google Scholar] [CrossRef]
- Cao, B.; Jianrong, W.; Yan, H.; Yuan, L.; Xiuce, Y.; Xueliang, L.; Gang, L.; Yongqiang, W.; Zhuang, L. On-orbit geometric calibration and preliminary accuracy verification of GaoFen-14 (GF-14) optical two linear-array stereo camera. Eur. J. Remote Sens. 2023, 56, 2289013. [Google Scholar] [CrossRef]
- Liu, H.; Liu, C.; Xie, P.; Liu, S.; Wang, X.; Zhang, Y.; Song, W.; Zhao, Y. Stray light analysis and suppression of high-resolution camera line-of-sight variation real-time monitoring system (LoS Var RTMS). Opt. Express 2024, 32, 24184–24199. [Google Scholar] [CrossRef]
- Li, J.; Xiong, K.; Wei, X.; Zhang, G. A star tracker on-orbit calibration method based on vector pattern match. Rev. Sci. Instrum. 2017, 88, 043101. [Google Scholar] [CrossRef]
- Bao, J.; Zhan, H.; Sun, T.; Fu, S.; Xing, F.; You, Z. A window-adaptive centroiding method based on energy iteration for spot target localization. IEEE Trans. Instrum. Meas. 2022, 71, 1–13. [Google Scholar] [CrossRef]
- Bao, J.; Zhan, H.; Sun, T.; Xing, F.; You, Z. Adaptive energy filtering method based on time-domain image sequences for high-accuracy spot target localization. Appl. Opt. 2022, 61, 3034–3047. [Google Scholar] [CrossRef]
- Guan, Z.; Zhang, G.; Jiang, Y.; Shen, X. Low-frequency attitude error compensation for the Jilin-1 satellite based on star observation. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–17. [Google Scholar] [CrossRef]
- Li, X.; Yang, L.; Su, X.; Hu, Z.; Chen, F. A correction method for thermal deformation positioning error of geostationary optical payloads. IEEE Trans. Geosci. Remote Sens. 2019, 57, 7986–7994. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, M.; Zhu, Y. On-orbit calibration of installation parameter of multiple star sensors system for optical remote sensing satellite with ground control points. Remote Sens. 2020, 12, 1055. [Google Scholar] [CrossRef]
- Pi, Y.; Yang, B.; Li, X.; Wang, M. Study of full-link on-orbit geometric calibration using multi-attitude imaging with linear agile optical satellite. Opt. Express 2019, 27, 980–998. [Google Scholar] [CrossRef]
- Liu, W.; Wang, H.; Jiang, W.; Qian, F.; Zhu, L. Real-Time On-Orbit Calibration of Angles Between Star Sensor and Earth Observation Camera for Optical Surveying and Mapping Satellites. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 4, 583–588. [Google Scholar] [CrossRef]
- Wei, X.; Xu, J.; Li, J.; Yan, J.; Zhang, G. S-curve centroiding error correction for star sensor. Acta Astronaut. 2014, 99, 231–241. [Google Scholar] [CrossRef]
- Karaparambil, V.C.; Manjarekar, N.S.; Singru, P.M. Sieve Search Centroiding Algorithm for Star Sensors. Sensors 2023, 23, 3222. [Google Scholar] [CrossRef]
- Delabie, T.; Schutter, J.D.; Vandenbussche, B. An accurate and efficient Gaussian fit centroiding algorithm for star trackers. J. Astronaut. Sci. 2014, 61, 60–84. [Google Scholar] [CrossRef]
- Cheng, Y.; Jin, S.; Wang, M.; Zhu, Y.; Dong, Z. A new image mosaicking approach for the multiple camera system of the optical remote sensing satellite GaoFen1. Remote Sens. Lett. 2017, 8, 1042–1051. [Google Scholar] [CrossRef]
- Wang, M.; Cheng, Y.; Tian, Y.; He, L.; Wang, Y. A new on-orbit geometric self-calibration approach for the high-resolution geostationary optical satellite GaoFen4. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 1670–1683. [Google Scholar] [CrossRef]
- Wang, H.; Xu, E.; Li, Z.; Li, J.; Qin, T. Gaussian analytic centroiding method of star image of star tracker. Adv. Space Res. 2015, 56, 2196–2205. [Google Scholar] [CrossRef]
Number | Measurement of Exterior Orientation Parameters Changes in the X Direction | Measurement of Exterior Orientation Parameters Changes in the Y Direction | ||||||
---|---|---|---|---|---|---|---|---|
Position Change (μm) | Reference Angle Change (″) | Measure Angle Change (″) | Error (″) | Position Change (μm) | Reference Angle Change (″) | Measure Angle Change (″) | Error (″) | |
1 | 0 | - | - | - | 0 | - | - | - |
2 | 20.26 | 2.09 | 2.13 | 0.04 | 20.36 | 2.1 | 2.09 | 0.01 |
3 | 40.43 | 4.17 | 4.2 | 0.03 | 40.72 | 4.2 | 4.15 | 0.05 |
4 | 60.11 | 6.2 | 6.19 | 0.01 | 60.31 | 6.22 | 6.19 | 0.03 |
5 | 79.99 | 8.25 | 8.24 | 0.01 | 79.8 | 8.23 | 8.25 | 0.02 |
6 | 99.87 | 10.3 | 10.34 | 0.04 | 99.96 | 10.31 | 10.28 | 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Liu, C.; Xie, P.; Liu, S. Design of Exterior Orientation Parameters Variation Real-Time Monitoring System in Remote Sensing Cameras. Remote Sens. 2024, 16, 3936. https://doi.org/10.3390/rs16213936
Liu H, Liu C, Xie P, Liu S. Design of Exterior Orientation Parameters Variation Real-Time Monitoring System in Remote Sensing Cameras. Remote Sensing. 2024; 16(21):3936. https://doi.org/10.3390/rs16213936
Chicago/Turabian StyleLiu, Hongxin, Chunyu Liu, Peng Xie, and Shuai Liu. 2024. "Design of Exterior Orientation Parameters Variation Real-Time Monitoring System in Remote Sensing Cameras" Remote Sensing 16, no. 21: 3936. https://doi.org/10.3390/rs16213936
APA StyleLiu, H., Liu, C., Xie, P., & Liu, S. (2024). Design of Exterior Orientation Parameters Variation Real-Time Monitoring System in Remote Sensing Cameras. Remote Sensing, 16(21), 3936. https://doi.org/10.3390/rs16213936