Research on 2-D Direction of Arrival (DOA) Estimation for an L-Shaped Array
<p>Array structure.</p> "> Figure 2
<p>DOA estimation results obtained by different algorithms. (<b>a</b>) DFT. (<b>b</b>) JSVD. (<b>c</b>) LCCM. (<b>d</b>) Proposed. (Red crosses indicate estimated results, while blue circles indicate actual values).</p> "> Figure 3
<p>Spatial spectrum of DOA estimation by different algorithms. (<b>a</b>) DFT. (<b>b</b>) JSVD. (<b>c</b>) LCCM. (<b>d</b>) Proposed.</p> "> Figure 4
<p>Comparison of the RMSE performance of DFT, JSVD, and LCCM and the proposed (<b>a</b>) number of snapshots. (<b>b</b>) SNR.</p> "> Figure 5
<p>Comparison of RMSE performance of the proposed algorithm under different physical sensors: (<b>a</b>) the number of snapshots. (<b>b</b>) SNR.</p> "> Figure 6
<p>RMSE performance comparison of array structures: (<b>a</b>) number of snapshots. (<b>b</b>) SNR.</p> "> Figure 7
<p>Comparison of RMSE performance at 1/Sqrt(T).</p> "> Figure 8
<p>Comparison of RMSE performance at 1/Sqrt(SNR).</p> ">
Abstract
:1. Introduction
2. Signal Model
3. Proposed Method
3.1. Virtual Array Completion
3.2. Two-Dimensional DOA Estimation
4. Numerical Simulations
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
, | Matrices, vectors |
Identity matrix | |
Set | |
and | transpose and Hermitian transpose |
∘ | Hadamard product |
complex conjugate transpose | |
Expectation operator | |
Vectorization operator | |
⊙ | Khatri-Rao product |
pseudoinverse |
References
- Gu, Y.; Goodman, N.A.; Ashok, A. Radar target profiling and recognition based on TSI-optimized compressive sensing kernel. IEEE Trans. Signal Process. 2014, 62, 3194–3207. [Google Scholar] [CrossRef]
- Ye, K.; Zhou, L.; Chen, Z.; Huang, Y.; Hong, S.; Zhang, X.; Sun, H. DOA estimation based on a novel shifted coprime array structure. AEU-Int. J. Electron. Commun. 2024, 179, 155308. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, P.; Wang, Y.; Shen, W.; Yang, J.; Ye, K.; Zhou, M.; Sun, H. LBF-based CS algorithm for multireceiver SAS. IEEE Geosci. Remote Sens. Lett. 2024, 21, 1502505. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, C.; Gu, Y.; Zhou, J.; Shi, Z. An IDFT approach for coprime array direction-of-arrival estimation. Digit. Signal Process. 2019, 94, 45–55. [Google Scholar] [CrossRef]
- Zhou, C.; Gu, Y.; Shi, Z.; Zhang, Y.D. Off-grid direction-of-arrival estimation using coprime array interpolation. IEEE Signal Process. Lett. 2018, 25, 1710–1714. [Google Scholar] [CrossRef]
- Ye, K.; Wu, S.; Cai, Y.; Zhou, L.; Xiao, L.; Zhang, X.; Zheng, Z.; Lin, J. Transfer-Learning-Based Human Activity Recognition Using Antenna Array. Remote Sens. 2024, 16, 845. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, P.; Wang, Y.; Shen, W.; Yang, J.; Wang, J.; Ye, K.; Zhou, M.; Sun, H. A novel multireceiver sas rd processor. IEEE Trans. Geosci. Remote Sens. 2024, 62, 4203611. [Google Scholar] [CrossRef]
- Zhou, L.; Ye, K.; Qi, J.; Sun, H. DOA estimation based on pseudo-noise subspace for relocating enhanced nested array. IEEE Signal Process. Lett. 2022, 29, 1858–1862. [Google Scholar] [CrossRef]
- Ye, K.; Cai, Y.; Hong, S.; Sun, H. Direction-of-arrival estimation based on difference-sum co-array of a special coprime array. Electron. Lett. 2023, 59, e12701. [Google Scholar] [CrossRef]
- Zheng, Z.; Mu, S. 2-D Direction FindingWith Pair-Matching Operation for L-Shaped Nested Array. IEEE Commun. Lett. 2020, 25, 975–979. [Google Scholar] [CrossRef]
- Tayem, N.; Kwon, H.M. L-shape 2-dimensional arrival angle estimation with propagator method. IEEE Trans. Antennas Propag. 2005, 53, 1622–1630. [Google Scholar] [CrossRef]
- Tayem, N.; Majeed, K.; Hussain, A.A. Two-dimensional DOA estimation using cross-correlation matrix with L-shaped array. IEEE Antennas Wirel. Propag. Lett. 2015, 15, 1077–1080. [Google Scholar] [CrossRef]
- Zoltowski, M.D.; Haardt, M.; Mathews, C.P. Closed-form 2-D angle estimation with rectangular arrays in element space or beamspace via unitary ESPRIT. IEEE Trans. Signal Process. 1996, 44, 316–328. [Google Scholar] [CrossRef]
- Zhang, Z.; Wen, F.; Shi, J.; He, J.; Truong, T.K. 2D-DOA Estimation for Coherent Signals via a Polarized Uniform Rectangular Array. IEEE Signal Process. Lett. 2023, 30, 893–897. [Google Scholar] [CrossRef]
- Heidenreich, P.; Zoubir, A.M.; Rubsamen, M. Joint 2-D DOA estimation and phase calibration for uniform rectangular arrays. IEEE Trans. Signal Process. 2012, 60, 4683–4693. [Google Scholar] [CrossRef]
- Zhang, T.; Lu, Y.; Hui, H. Compensation for the mutual coupling effect in uniform circular arrays for 2D DOA estimations employing the maximum likelihood technique. IEEE Trans. Aerosp. Electron. Syst. 2008, 44, 1215–1221. [Google Scholar] [CrossRef]
- Mathews, C.P.; Zoltowski, M.D. Eigenstructure techniques for 2-D angle estimation with uniform circular arrays. IEEE Trans. Signal Process. 1994, 42, 2395–2407. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, X.; Sheikh, Y.A.; Ye, Z. A rank-reduction based 2-D DOA estimation algorithm for three parallel uniform linear arrays. Signal Process. 2016, 120, 305–310. [Google Scholar] [CrossRef]
- Nie, X.; Li, L. A computationally efficient subspace algorithm for 2-D DOA estimation with L-shaped array. IEEE Signal Process. Lett. 2014, 21, 971–974. [Google Scholar]
- Liang, J.; Liu, D. Joint elevation and azimuth direction finding using L-shaped array. IEEE Trans. Antennas Propag. 2010, 58, 2136–2141. [Google Scholar] [CrossRef]
- Wang, G.; Xin, J.; Zheng, N.; Sano, A. Computationally efficient subspace-based method for two-dimensional direction estimation with L-shaped array. IEEE Trans. Signal Process. 2011, 59, 3197–3212. [Google Scholar] [CrossRef]
- Gu, J.F.; Wei, P. Joint SVD of Two Cross-Correlation Matrices to Achieve Automatic Pairing in 2-D Angle Estimation Problems. IEEE Antennas Wirel. Propag. Lett. 2007, 6, 553–556. [Google Scholar] [CrossRef]
- Wen, F.; Shi, J.; He, J.; Truong, T.K. 2D-DOD and 2D-DOA estimation using sparse L-shaped EMVS-MIMO radar. IEEE Trans. Aerosp. Electron. Syst. 2022, 59, 2077–2084. [Google Scholar] [CrossRef]
- Wen, F.; Zhang, Z.; Sun, H.; Gui, G.; Sari, H.; Adachi, F. 2D-DOA estimation auxiliary localization of anonymous UAV using EMVS-MIMO radar. IEEE Internet Things J. 2024, 11, 16255–16266. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, L.; Wang, H.; Shi, J. 2D-DOA Estimation in Multipath Using EMVS Rectangle Array. Remote Sens. 2023, 15, 3308. [Google Scholar] [CrossRef]
- Yang, Y.; Shan, M.; Jiang, G. 2D DOA and Polarization Estimation Using Parallel Synthetic Coprime Array of Non-Collocated EMVSs. Remote Sens. 2024, 16, 3004. [Google Scholar] [CrossRef]
- Dong, Y.Y.; Dong, C.X.; Xu, J.; Zhao, G.Q. Computationally efficient 2-D DOA estimation for L-shaped array with automatic pairing. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 1669–1672. [Google Scholar] [CrossRef]
- Tian, Y.; Liu, W.; Xu, H.; Liu, S.; Dong, Z. 2-D DOA estimation of incoherently distributed sources considering gain-phase perturbations in massive MIMO systems. IEEE Trans. Wirel. Commun. 2021, 21, 1143–1155. [Google Scholar] [CrossRef]
- Shixin, W.; Yuan, Z.; Ibrahim, L.; Ying, X.; Jun, W.; Bin, T. Joint 2D DOA and Doppler frequency estimation for L-shaped array using compressive sensing. J. Syst. Eng. Electron. 2020, 31, 28–36. [Google Scholar]
- Gu, J.F.; Zhu, W.P.; Swamy, M. Joint 2-D DOA estimation via sparse L-shaped array. IEEE Trans. Signal Process. 2015, 63, 1171–1182. [Google Scholar] [CrossRef]
- Wen, F.; Gui, G.; Gacanin, H.; Sari, H. Compressive sampling framework for 2D-DOA and polarization estimation in mmWave polarized massive MIMO systems. IEEE Trans. Wirel. Commun. 2022, 22, 3071–3083. [Google Scholar] [CrossRef]
- Xia, D.; Wang, X.; Han, J.; Xue, H.; Liu, G.; Shi, Y.; Li, L.; Cui, T.J. Accurate 2-D DOA estimation based on active metasurface with nonuniformly periodic time modulation. IEEE Trans. Microw. Theory Tech. 2022, 71, 3424–3435. [Google Scholar] [CrossRef]
- Wen, F.; Wang, H.; Gui, G.; Sari, H.; Adachi, F. Polarized intelligent reflecting surface aided 2d-doa estimation for nlos sources. IEEE Trans. Wirel. Commun. 2024, 23, 8085–8098. [Google Scholar] [CrossRef]
- Fadakar, A.; Jafari, A.; Tavana, P.; Jahani, R.; Akhavan, S. Deep learning based 2D-DOA estimation using L-shaped arrays. J. Frankl. Inst. 2024, 361, 106743. [Google Scholar] [CrossRef]
- Zheng, H.; Shi, Z.; Zhou, C.; Vorobyov, S.A.; Gu, Y. Deep Tensor 2-D DOA Estimation for URA. IEEE Trans. Signal Process. 2024, 72, 4065–4080. [Google Scholar] [CrossRef]
- Jiang, G.; Huang, J.; Yang, Y. High-accuracy 2D DOA estimation with three parallel sparse nested array. AEU-Int. J. Electron. Commun. 2024, 179, 155319. [Google Scholar] [CrossRef]
- Pan, Y.; Luo, G.Q. Efficient direction-of-arrival estimation via annihilating-based denoising with coprime array. Signal Process. 2021, 184, 108061. [Google Scholar] [CrossRef]
- Stoica, P.; Moses, R. Spectral Analysis of Signals; Prentice-Hall: Upper Saddle River, NJ, USA, 2005. [Google Scholar]
- Zhou, C.; Gu, Y.; Fan, X.; Shi, Z.; Mao, G.; Zhang, Y.D. Direction-of-arrival estimation for coprime array via virtual array interpolation. IEEE Trans. Signal Process. 2018, 66, 5956–5971. [Google Scholar] [CrossRef]
- Liu, C.L.; Vaidyanathan, P. Cramér–Rao bounds for coprime and other sparse arrays, which find more sources than sensors. Digit. Signal Process. 2017, 61, 43–61. [Google Scholar] [CrossRef]
Algorithm | Processing Time |
---|---|
DFT | 1.6308 s |
JSVD | 0.6292 s |
LCCM | 0.0339 s |
The proposed method | 0.0509 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, K.; Zhou, L.; Hong, S.; Zhang, X.; Sun, H. Research on 2-D Direction of Arrival (DOA) Estimation for an L-Shaped Array. Remote Sens. 2024, 16, 4787. https://doi.org/10.3390/rs16244787
Ye K, Zhou L, Hong S, Zhang X, Sun H. Research on 2-D Direction of Arrival (DOA) Estimation for an L-Shaped Array. Remote Sensing. 2024; 16(24):4787. https://doi.org/10.3390/rs16244787
Chicago/Turabian StyleYe, Kun, Lang Zhou, Shaohua Hong, Xuebo Zhang, and Haixin Sun. 2024. "Research on 2-D Direction of Arrival (DOA) Estimation for an L-Shaped Array" Remote Sensing 16, no. 24: 4787. https://doi.org/10.3390/rs16244787
APA StyleYe, K., Zhou, L., Hong, S., Zhang, X., & Sun, H. (2024). Research on 2-D Direction of Arrival (DOA) Estimation for an L-Shaped Array. Remote Sensing, 16(24), 4787. https://doi.org/10.3390/rs16244787