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Abstract: New challenges will be experienced by the agriculture sector in the near future, especially
due to the effects of climate change. For example, rising temperatures could result in increased
evapotranspiration demand, causing difficulties in the management of irrigation practices. Generally,
an important predictor of plant water status to be taken into account for irrigation monitoring and
management is the stem water potential. However, it requires a huge amount of time-consuming
fieldwork, particularly when an adequate data amount is necessary to fully investigate the spatial and
temporal variability of large areas under monitoring. In this study, the integration of machine learning
and satellite remote sensing (Sentinel-2) was investigated to obtain a model able to predict the stem
water potential in viticulture using multispectral imagery. Vine water status data were acquired within
a Montepulciano vineyard in the south of Italy (Puglia region), under semi-arid conditions; data were
acquired over two years during the irrigation seasons. Different machine learning algorithms (lasso,
ridge, elastic net, and random forest) were compared using vegetation indices and spectral bands
as predictors in two independent analyses. The results show that it is possible to remotely estimate
vine water status with random forest from vegetation indices (R2 = 0.72). Integrating machine
learning techniques and satellite remote sensing could help farmers and technicians manage and
plan irrigation, avoiding or reducing fieldwork.

Keywords: water scarcity; predictive modeling; Mediterranean environment; machine learning;
precision farming; remote sensing; vine

1. Introduction

In the near future, one of the most significant challenges for sustainable agriculture
will undoubtedly be climate change; according to the projections by IPCC [1], a global
temperature increase of 1.5 ◦C is expected by 2040. In this scenario, agriculture and
food production systems will be increasingly vulnerable, especially in the poor areas
of the world [2]. Irrigation management will assume a determining and central role
due to the expected increase in evapotranspiration demand and water scarcity, resulting
from higher temperatures and more frequent dry periods [3,4]. In Europe, vineyard
cultivations tend to be rainfed; however, the future trend will be to irrigate more often
trying to reduce the effects of climate change [5]; in fact, generally, good productivity
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can be achieved in circumstances where soil and climate conditions do not represent
limiting factors to photosynthetic activity. For instance, adequate temperatures, and no
water stress; furthermore, climate change could also expose vineyards to an increased
drought stress risk, with impacts on berry size and bud fertility [6–8]. Over the past few
years, significant progress has been made to develop efficient irrigation methods and deficit
irrigation strategies, improving the quality of grape berries and the efficiency of water use in
vineyards cultivated in semi-arid regions [9]; to date, irrigation management in viticulture
is generally based on the determination of vine water status, for example, through the
measurement of the stem water potential. However, the relative procedure requires the
use of field instruments (i.e., pressure chamber), time-consuming fieldwork campaigns, the
presence of technical personnel in the field, and several samples per area to have a robust
spatial estimation of vineyard water status. Therefore, the possibility of basing irrigation
management on non-destructive methods that can give information over a large area, such
as remote sensing technologies, could implement irrigation management in viticulture,
guaranteeing spatially and temporally efficient crop water demand assessments [10]. In
addition, increasing the geographic information system (GIS), e.g., QGIS applications in
agriculture, is helping to map the existing variability of several parameters at the field
and regional level [11,12]. Advances in agricultural remote sensing offer the possibility
of detecting and monitoring different crop parameters by assessing temporal and spatial
variability [8,13]. Spectral images from different platforms, such as drones and airborne,
have been largely used to estimate crop parameters; nonetheless, the use of satellite images
offers other advantages, such as the opportunity to more easily monitor crops, perform time-
series analyses and, in some cases, images are provided for free (e.g., Sentinel-2 and Landsat
8 imagery). In viticulture, the application of satellite imagery has been extensively studied
for monitoring water status using various data sources. Specifically, Helman et al. [14]
utilized high-resolution satellite imagery (e.g., Planet) to estimate stem water potential
(STEM) in vineyards. Their approach employed vegetation indices as predictors in a
multiple linear regression model, which achieved robust performance (R2 = 0.84). Similarly,
high-resolution multispectral UAV imagery combined with weather data has been used
to map leaf water potential in Californian vineyards. Tang et al. ([15]) demonstrated
significant correlations with ground measurements, employing a random forest (RF) model
that explained 77% of the variance in leaf water potential (ψleaf). Recent studies have also
explored lower-resolution satellite sensors for assessing vine water status. For instance,
Laroche-Pinel et al. ([16]) analyzed vine water status through field measurements of stem
water potential from the pea-size stage to ripening using Sentinel-2 imagery. They applied
various machine learning models to predict stem water potential, achieving a moderate
R2 of 0.40. Additionally, Sentinel-2 imagery has been used to predict irrigated zones in
the work of Esther López-Pérez et al. ([17]) Their study incorporated topographic and
multispectral data into a random forest model in Spain, yielding highly accurate predictions
(precision = 91.8%) of irrigated areas.

The scope of this study was to improve the detection and monitoring of vine water status
through machine learning techniques and satellite images from the EU Earth observation pro-
gram Copernicus, particularly from the Sentinel-2 satellite. Providing farmers and technicians
with tools able to monitor vineyard water status could help them to reduce time-consuming
and difficult fieldwork, providing the possibility to map field variability, with even greater
representativeness than the typical proximal methods adopted to assess spatial and temporal
crop variability. In this work, different machine learning algorithms (including lasso, ridge,
elastic net, and random forest) were evaluated to predict the stem water potential in a vine-
yard grown under semi-arid conditions in the South of Italy. This research diverges from
prior studies by utilizing solely Sentinel-2 imagery to estimate vine water status, addressing
the limitations associated with the cost and accessibility of high-resolution data from UAVs
or commercial satellites [18]. While thermal imaging has been effective for estimating vine
water status at various scales (e.g., Bellvert et al. [19]), it typically requires more complex and
expensive data acquisition systems. The high temporal resolution of Sentinel-2 facilitates
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consistent monitoring, which is crucial for effective irrigation management. Furthermore, the
application of machine learning techniques in this study enhances the predictive capability,
providing a robust framework for precision viticulture [20].

2. Material and Methods
2.1. Site and Vineyard Description, Soil, and Meteorological Data

Measurements were taken in 2019 and 2020 in a commercial vineyard (Vitis vinifera L.,
cv. Montepulciano, grafted on Paulsen 1103 rootstock), situated near Andria (Apulia, South
of Italy) (Latitude: 41◦14′11.05′′N; Longitude: 16◦11′33.01′′E; 142 m a.s.l.) (Figure 1). The
vines were planted at a spacing of 2.30 m × 1.0 m (4348 vines/ha) and trained to a vertical
trellis system (North–South oriented). The site area where measurements were acquired was
about 2.40 ha. The soil of the site was classified as Sandy Loam, based on USDA classification.
The vineyard was irrigated and fertilized according to the regional guidelines for sustainable
crop management. The amount of irrigation water applied was 2951 m3/ha in 2019 and
2972 m3/ha in 2020 (the irrigation season started in June and ended in October in both years).
Regional guidelines prescribed fertilization with 50 kg of N/ha, 40 kg of P2O5/ha, and 80 kg
of K2O/ha. The agronomic practices used were those typical of the area, including, cutting
back the tips of overly vigorous shoots after flowering, shoot trimming after the phenological
phase of fruit set, and defoliation in the later stage of the grape cycle to enhance air circulation.
The climate is Mediterranean with hot and dry summers and mildly cold winters; the average
annual temperature is 15.8 ◦C, and the annual precipitation is approximately 566 mm [21].
Meteorological data collected over the two years in the experimental site were acquired from
the Apulia region monitoring network [22].

2.2. Plant Water Status Determination

In 2019 and 2020, plant water status was determined by measuring the stem water
potential (ΨSTEM; MPa) using a pressure chamber (Plant Water Status Console 3000F01,
SOILMOISTURE CORP. Santa Barbara, CA, USA). Before ΨSTEM measurement, leaves
were placed in aluminum foil for 60 min [9]; in both years, ΨSTEM data were acquired at
midday (11.00 to 13.00 h solar). The experimental design consists of six plots, and, for each
plot, 7 individual measurements were averaged to produce a single stem water potential
value. Additionally, the measurements were taken across the following phenological phases:
pea size, the beginning of bunch closure, berries still hard and green, berries beginning
to color and enlarge, veraison, ripening, and harvest. Figure 1 shows the plots where the
vines were located and on which ΨSTEM values were acquired; plots had different sizes
due to inhomogeneity within the field.

2.3. Sentinel-2 Image Processing

All Sentinel-2 images covering the study area were downloaded for the years 2019
and 2020. Sentinel-2 consists of a constellation of two polar-orbiting satellites (Sentinel-2 A
and B), in the same sun-synchronous orbit with overpass time at 10:30 a.m. local time, that
carry a multispectral instrument (MSI) with 12 multispectral bands. Although Sentinel-2 is
offered at multiple spatial resolutions of 10, 20, and 60 m, here, we used a spatial resolution
of 20 m. Sentinel-2 images were downloaded as Level-2A, which provides atmospherically
corrected Surface Reflectance (SR). Where Level-2A was not available, we downloaded
Level-1C (i.e., top-of-atmosphere; TOA) images that were then atmospherically corrected to
obtain SR by using the default settings of the Sen2Cor (v. 2.5.5) algorithm. We considered
the spectral bands in the blue (“B02”), green (“B03”), red (“B04”), red-edge (“B05”, “B06”,
and “B07”), near-infrared (“B8A”), and short-wave infrared (“B11” and “B12”). Only
the images without clouds in the perimeter of the study area based on the cloud/snow
detection algorithm developed by the European Space Agency [23] were selected for the
study (27 images). In addition to the spectral bands, we also calculated 27 vegetation indices
(VIs). The calculated VIs are reported in Table 1. Both VIs and biophysical parameters were
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calculated using the Sentinel Application Platform (SNAP), a free tool provided by the ESA
and developed for Earth observation, processing, and analysis of the Sentinel-2 images [24].
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Figure 1. Location of the experimental vineyard in Italy (a), Sentinel-2 image of the plots where
stem water potential values were acquired in 2019 and 2020 within the vineyard. Per each plot the
reflectance value of the pixels was averaged (b), and Google Earth image of the vineyard (c). Google
Earth Pro© and Sentinel-2 images©.

For each plot, within the same spectral band, we extracted the mean value of the
reflectance of all the pixels, as well as VIs and biophysical parameters. If there was no direct
temporal match between the dates of image acquisition and field data collection, we em-
ployed linear interpolation to bridge the gap, utilizing the nearest images chronologically.
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Table 1. Vegetation indices (VIs) used in this study to predict vineyard SWP.

VIs Equation Reference

Leaf Area Index LAI SNAP—biophysical processor
[24]

Fraction Vegetation Cover FVC SNAP—biophysical processor

Normalized Difference Vegetation Index NDVI (B8 − B4)/(B8 + B4) [25]

Enhanced Vegetation Index EVI 2.5 ∗ (B8 − B4)/(B8 + (6 ∗ B4) −
(7.5 ∗ B2) + 1)

[14]
Green Normalized Difference Vegetation Index GNDVI (B8 − B3)/(B8 + B3)

Soil Adjusted Vegetation Index SAVI (1 + 0.5) ∗ (B8 − B4)/(B8 + B4 + 0.5)

Normalized Moisture Stress Index NMSI1 (B8 − B11)/(B8 + B11)

Normalized Moisture Stress Index NMSI2 (B8 − B12)/(B8 + B12)

CRI700 CRI2 (1/B2) − (1/B5) [26]

Chlorophyll Green CHLgreen (B7/B3)−1

[27]

Chlorophyll Red-Edge CHLrededge (B7/B5)−1

Linear Red-Edge Index LREI 700 + 40 ∗ (((B4 + B7)/2) − B5)/(B6 − B5)

Modified Chlorophyll absorption in reflectance MCARI ((B5 − B4) − 0.2 ∗ (B5 − B3)) ∗ (B5/B4)

Modified Simple Ratio MSR (B8/B4 − 1)/((B8/B4)1/2 + 1)

Ratio Difference Vegetation Index RDVI (B8 − B4)/((B8 + B4)0.5)

Atmospherically Resistant Vegetation Index ARVI (B8A − B04 − 0.106 ∗ (B04 − B02))/(B8A +
B04 − 0.106 ∗ (B04 − B02))

[28]

Modified Soil Adjusted Vegetation Index MSAVI MSAVI = (2 ∗ B08 + 1 – sqrt((2 ∗ B08 + 1)2 – 8
∗ (B08 – B04))) / 2

Infrared Percentage Vegetation Index IPVI B8/(B8 + B4)

Weighted Difference Vegetation Index WDVI B8 − 0.5 ∗ B4

Transformed NDVI TNDVI ((B8 − B4)/(B8 + B4)) + 0.5)0.5

Simple Ratio 1 SR1 B8/B11

Simple Ratio 2 SR2 B8/B12

Normalized Difference Red-Edge NDRE 1 (B8 − B5)/(B8 + B5)

[29]

Normalized Difference Red-Edge NDRE 2 (B8 − B6)/(B8 + B6)

Inverted Red-Edge Chlorophyll Index IRECI (B8 − B4)/(B5/B6)

Red-Edge Chlorophyll Absorption Index RECAI (B8 − B6)/B3 ∗ (B6/B3)

Red-Edge Position REP ((B4 + B8)/2) − B5)/(B6 − B5)

2.4. Statistical and Machine Learning Analysis

To predict ΨSTEM as a function of Sentinel-2 derived variables, we tested two groups
of predictors: (1) a dataset containing the median values of all Sentinel-2 bands extracted
over the field plots, 10 predictors; (2) a dataset containing the median values of all Sentinel-2
VIs extracted over the field plots, 27 predictors. The two datasets were tested separately,
and we did not attempt to calibrate a model using both (1) and (2) datasets together to
reduce the risk of overfitting. The dataset (n = 162) was randomly divided into a training
(80%) and a validation (20%) dataset [30] containing 132 and 30 observations, respectively.
The training dataset was used to fit all the models developed in this study while the testing
dataset was used to test the goodness of fit of each predictive model.

In this work, the compared models were lasso, ridge, elastic net, and random forest.
Lasso regression is a regularization technique that improves linear regression by performing
variable selection and coefficient shrinkage through the application of an L1 penalty, which
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drives some coefficients exactly to zero, thus selecting a subset of relevant features [31].
Ridge regression addresses multicollinearity in linear regression models by introducing
a penalty term proportional to the square of the magnitude of the coefficients (L2). This
approach reduces the coefficients towards zero without exactly zeroing them, thus reducing
variance and improving model stability [32]. Both lasso and ridge are widely adopted in
agricultural prediction tasks [33–36]. Elastic net is a regularized regression technique that
combines L1 (lasso) and L2 (ridge) penalties to improve model performance and reduce
overfitting [37]. Random forest (RF) is an ensemble learning technique that improves
regression trees by combining a large number of decision trees. Such technique is widely
used in remote sensing and agriculture studies due to its high accuracy and ability to find
non-parametric relationships [38]. In addition, unlike other machine learning techniques,
RF has the advantage of relying on various methods to estimate the variable importance
of each predictor variable. In our study, we used RF models implemented in the “ranger”
package [39] within the R environment software (v. 4.4.2) [40]. To facilitate the fine-tuning
of the models we additionally used the “caret” package [41]. In the ranger implementation
of RF, we needed to fine-tune the number of trees, the number of variables to possibly split
each node (“mtry”), the splitting rule, and the minimum node size. We ran our model
calibration multiple times using various combinations of the above-mentioned parameters,
with the exception of the number of trees, as it was not influential in the overall performance
of the models; hence, we set the number of trees to 500. The variable importance was
assessed through permutation [42,43]. For each run, one variable was excluded from the
predictors set and the increase in model prediction error was calculated. The resulting
values were then scaled from 0 to 100. Additionally, a linear model was calibrated for each
one of the groups of predictors to compare the results to the lasso, ridge, elastic net, and RF
models. To compare the results of the modeling procedures and their robustness, coefficient
of determination (R2 (1)), root mean square error (RMSE (2)), normalized root mean square
error (nRMSE (3)), and mean absolute error (MAE (4)) were calculated as follows:

R2 = 1 − ∑n
i=1(Ei − Pi)

2

∑n
i=1

(
Ei − Ei

)2 (1)

RMSE =

√
1
n∑n

i=1(Pi − Ei)
2 (2)

nRMSE = 100

√
1
n ∑n

i=1(Pi − Ei)
2

(max (E)− min (E))
(3)

MAE =
∑n

i=1|Pi − Ei|
n

(4)

where “P” are the predicted values, “E” the expected values and “n” the number of
the observations.

Moreover, the robustness of the models has been evaluated through a 10-time repeated
5-fold cross validation.

Lastly, the RF model was applied to Sentinel-2 spectral images in order to model the
temporal trend of the vineyard ΨSTEM.

RStudio software (v. 2024.12.0+467; RStudio Team, 2020, PBC, Boston, MA, USA) and
SigmaPlot (SigmaPlot, Systat Software Inc., Palo Alto, CA, USA; Version 14) were used to
carry out analyses, modeling, and graph plotting. Figure 2 summarizes the workflow of
the study, including data collection, image processing, modelling approaches, evaluation
metrics, and the generation of predictive outputs.



Remote Sens. 2024, 16, 4784 7 of 18

Remote Sens. 2025, 17, x FOR PEER REVIEW 7 of 19 
 

 

𝑅ଶ ൌ 1 െ ∑ ሺ𝐸௜ െ 𝑃௜ሻଶ௡௜ୀଵ𝛴୧ୀଵ௡ ൫𝐸௜ െ 𝐸௜൯ଶ (1)

𝑅𝑀𝑆𝐸 ൌ ටଵ௡ ∑ ሺ𝑃௜ െ 𝐸௜ሻଶ௡௜ୀଵ   (2)

𝑛𝑅𝑀𝑆𝐸 ൌ 100 ට1𝑛 ∑ ሺ𝑃௜ െ 𝐸௜ሻଶ௡௜ୀଵሺ𝑚𝑎𝑥 ሺ𝐸ሻ െ 𝑚𝑖𝑛  ሺ𝐸ሻሻ (3)

𝑀𝐴𝐸 ൌ ∑ |𝑃௜ െ 𝐸௜|௡௜ୀଵ 𝑛  (4)

where “P” are the predicted values, “E” the expected values and “n” the number of the 
observations. 

Moreover, the robustness of the models has been evaluated through a 10-time re-
peated 5-fold cross validation. 

Lastly, the RF model was applied to Sentinel-2 spectral images in order to model the 
temporal trend of the vineyard ΨSTEM. 

RStudio software (v. 2024.12.0+467; RStudio Team, 2020, PBC, Boston, MA, USA) and 
SigmaPlot (SigmaPlot, Systat Software Inc., Palo Alto, CA, USA; Version 14) were used to 
carry out analyses, modeling, and graph plotting. Figure 2 summarizes the workflow of 
the study, including data collection, image processing, modelling approaches, evaluation 
metrics, and the generation of predictive outputs. 

 

Figure 2. Workflow of the methodology used for predicting vine stem water potential (SWP) using 
Sentinel-2 data. 

3. Results 
3.1. Agrometeorological Data and Vine Water Status 

During the vegetative seasons of both 2019 and 2020, August was the hottest month, 
with an average temperature of 26.2 °C in 2019 and 26.5 °C in 2020. The total amount of 
rainfall in 2019 was 374.5 mm and 321.2 mm in 2020, while the rainfall amount in the 
irrigation seasons (from June to September) was 123 mm in 2019 and 103.2 mm in 2020. In 
the 2019 irrigation season, the driest month was August (0.2 mm), while, in 2020, it was 
June (13.6 mm); in May, July, and September of 2019, rainfall peaks occurred with 93, 57, 
and 56 mm, respectively (Figure 3). The highest values of ETo during 2019 were found in 

Figure 2. Workflow of the methodology used for predicting vine stem water potential (SWP) using
Sentinel-2 data.

3. Results
3.1. Agrometeorological Data and Vine Water Status

During the vegetative seasons of both 2019 and 2020, August was the hottest month,
with an average temperature of 26.2 ◦C in 2019 and 26.5 ◦C in 2020. The total amount
of rainfall in 2019 was 374.5 mm and 321.2 mm in 2020, while the rainfall amount in the
irrigation seasons (from June to September) was 123 mm in 2019 and 103.2 mm in 2020. In
the 2019 irrigation season, the driest month was August (0.2 mm), while, in 2020, it was
June (13.6 mm); in May, July, and September of 2019, rainfall peaks occurred with 93, 57,
and 56 mm, respectively (Figure 3). The highest values of ETo during 2019 were found in
June and July (170 and 166 mm, respectively), whereas, during 2020, there were in July and
August (191 and 170 mm, respectively) (Figure 3).
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The average ΨSTEM had a different trend in the two years of the experiment. In
2019, average ΨSTEM remained stable over values of −1.00 MPa until the phenological
phase “berries begin to color and enlarge”, then reached average values of −1.41 Mpa
and −1.33 Mpa during the phases of “veraison” and “ripening”, respectively; during the
“pre-harvest” phase, it dropped to −0.99 MPa. The highest average ΨSTEM was recorded
at the phenological phase “beginning of bunch closure” (−0.61 MPa). In 2020, average
ΨSTEM (n = 66) was over −1.00 MPa only during the phenological phase “pea size”, then
average ΨSTEM was lower than −1.00 MPa from “beginning of bunch closure” to the
end of the irrigation season; the highest average ΨSTEM was recorded during the phase
“pea size” (−0.59 MPa), the lowest average ΨSTEM values occurred at the “veraison” and
“ripening” phases (−1.23 MPa and −1.27 MPa, respectively), as in the 2019 irrigation season.
Figure 4 reports the boxplot showing the distribution of the ΨSTEM during the different
phenological phases in the two years considered; particularly, pronounced differences in
the distribution of the ΨSTEM data between the two years were observed in the early
phenological stages (pea size, beginning of bunch closure, and berries still hard and green).
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3.2. Models Evaluation

Among the compared models, RF had the higher performance in predicting ΨSTEM
(Table 2) and showed good fit in training when considering both VIs and spectral bands as
predictors (VIs, R2 = 0.95; spectral bands, R2 = 0.91), with little errors (VIs, nRMSE = 4.3%;
spectral bands, nRMSE = 5.5%). RF had better performance in testing when VIs were
used as predictors, considering the R2 (VIs, R2 = 0.72; spectral bands R2 = 0.58) and the
nRMSE (VIs, nRMSE = 12.4%; spectral bands, nRMSE = 15.1%) (Figure 5). These results are
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further confirmed by the cross-validation (RF: VIs R2 = 0.66; spectral bands R2 = 0.59); in
Supplementary Material, the complete results of the cross validation for all the evaluated
models are reported (Table S1, Figure S1). Figure 6 shows the results of the optimization
of the RF parameters: based on the lowest RMSE, 1 as minimum node size, extratrees
as splitting rule, and four variables as mtry were used in the final modeling procedure
involving spectral bands as predictors; meanwhile, 1 as minimum node size, extratrees
as splitting rule, and five variables as mtry were used in the final modeling procedure
involving Vis as predictors. Figure 7 shows the results of the permutation procedure to
assess the importance of the variables; using the spectral bands as predictors, the most
important were Vegetation Red Edge and SWIR (B7 and B12); using the Vis as predictors,
the most important were IRECI and NMSI1 and NMSI2. Red band and GNDVI had no
importance in modeling (0%).
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Table 2. Performance parameters of lasso, ridge, elastic net (EN), random forest (RF), and linear
model (LM) predicting vineyard stem water potential with vegetation indices (VIs) and spectral
bands as predictors.

Model Predictors
Calibration Testing

R2 RMSE nRMSE MAE R2 RMSE nRMSE MAE

Lasso
VIs 0.52 0.19 12.7% 0.15 0.46 0.21 17.2% 0.16

Spectral Bands 0.45 0.21 13.7% 0.16 0.38 0.23 18.4% 0.17
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Table 2. Cont.

Model Predictors
Calibration Testing

R2 RMSE nRMSE MAE R2 RMSE nRMSE MAE

Ridge VIs 0.50 0.20 13% 0.15 0.45 0.21 17.3% 0.16
Spectral Bands 0.41 0.22 14.2% 0.17 0.39 0.23 18.2% 0.18

EN
VIs 0.57 0.18 12.1% 0.14 0.49 0.20 16.7% 0.16

Spectral Bands 0.45 0.21 13.7% 0.16 0.37 0.23 18.5% 0.17

RF
VIs 0.95 0.07 4.3% 0.50 0.72 0.15 12.4% 0.12

Spectral Bands 0.91 0.08 5.5% 0.60 0.58 0.19 15.1% 0.14

LM
VIs 0.63 0.18 11.3% 0.14 0.49 0.21 16.8% 0.16

Spectral Bands 0.47 0.21 13.5% 0.15 0.35 0.24 18.9% 0.16
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In the prediction of ΨSTEM, the other modeling approaches had lower performance
compared to RF. Lasso, ridge, elastic net, and LM showed a low fit in training and testing,
both considering VIs and spectral bands as predictors. The LM model trained with the
spectral bands was the model that showed the lowest performance in testing (spectral
bands, R2 = 0.35, nRMSE = 18.9%) (Table 2).
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3.3. Remote Sensing Vine Water Status Modeling and Predictive Maps

Figure 8 contains the graphs showing the predicted ΨSTEM trend in both years of
the experiment, made by using the RF-based model with VIs as predictors. The predicted
ΨSTEM had frequent fluctuations in the first part of the 2019 irrigation season until the end
of July; the lowest value reached was at the beginning of June (~−1.15 MPa), the highest
was in mid-July (~−0.65 MPa), which was the highest of the whole season. Predicted
ΨSTEM sharply dropped to lower values (−1.25 MPa) in the first decade of August, then
fluctuated in a range between −1.10 MPa and −1.25 MPa. There were two abrupt increases
in the first decade of September and mid-October (Figure 8a).

At the beginning of the 2020 irrigation season, the predicted ΨSTEM had high values
reaching values of ~−0.70 in the second half of July; the predicted ΨSTEM markedly
decreased in the last days of June to ~−1.20. The lowest value of predicted ΨSTEM was
recorded in mid-July (~−1.27 MPa). Until October, predicted ΨSTEM values remained
stable in a range between −1.10 MPa and −1.20 MPa; in mid-October, it sharply increased,
and, thereafter, it slightly decreased to ~−0.95 (Figure 8b). Figure 9 shows the spatial
variability of vineyard ΨSTEM; the predictive maps were made by applying the RF-based
model to the Sentinel-2 images for two dates, 18 August 2019 and 20 August 2019.
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Figure 9. Predictive maps of the vineyard stem water potential (ΨSTEM) produced by applying the
RF-based model trained with vegetation indices as predictors to Sentinel-2 images. Maps are referred
to 18 August 2019 (a) and 20 August 2019 (b). The 95% confidence intervals for ΨSTEM predictions
ranged from −1.77 to −0.19 MPa; the plot of the 95% confidence interval for the RF model predictions
(test set) is reported in Supplementary Material (Figure S2).
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4. Discussion

Crop monitoring is a key factor in understanding the response of plants to the envi-
ronment and agronomic practices; nonetheless, it requires time-consuming fieldwork and
efforts in order to obtain sufficiently representative data. Remote sensing could offer the
possibility to investigate important environmental key-factors and plant response reducing
fieldwork [46–49]; for instance, Bellvert et al. [19] used remote sensing to monitor crop
water stress index in a Pinot-noir vineyard. In the presented study, an integration of remote
sensing and machine learning was proposed to understand the temporal variability of the
vineyard ΨSTEM.

The RF-based modeling approach, considering VIs as predictors, had the best results
in terms of predictive performance, compared with the RF model with spectral bands as
predictors and the lasso, ridge, elastic net and LM models. Machine learning approaches
are widely used in agriculture for solving several problems, improving water management
and water use efficiency too [50,51]. Unlike linear models, RF does not rely on strict assump-
tions about input–output relationships and can effectively handle the complex interplay
of reflectance at different wavelengths and vegetation indices (e.g., Ceccato et al., [52];
Clevers and Kooistra, [53]). This flexibility allows RF to identify subtle spectral signatures
linked to plant water stress without explicitly requiring prior knowledge of the underly-
ing biophysical processes, a well-known advantage in machine learning applications in
remote sensing [54]. As a machine learning algorithm, RF has been used to solve clas-
sification problems; however, few studies have focused on its application in regression
problems [54,55]; for example, RF was used by Mpakairi et al. [56] to characterize irrigated
and rainfed croplands, obtaining good results in terms of classification accuracy (0.77). For
the prediction of continuous data in agricultural remote sensing applications, RF has been
used by Lee et al. [57]) to predict nitrogen content in corn using UAV images with notable
results (R2 = 0.85). Moreover, in a work from Campi et al. [13], RF outperformed other
machine learning algorithms in predicting peach tree ΨSTEM from satellite data (R2 = 0.62).
In our study, the validity of RF as a predictive model was confirmed; furthermore, we
compared RF with lasso, ridge, elastic net, and LM performances, and our results confirmed
those found in literature, when RF was compared with linear models in remote sensing
application [58,59]. The results of the permutation process suggest that, in the ΨSTEM
prediction, IRECI was the most important VI, B07 (vegetation red edge band) was the
most important band; IRECI is a VI, and was calculated by considering the reflectance in
the red edge spectral region. Although our best model was the one that included only
the indices rather than the individual bands, it remains crucial to interpret the spectral
signals in terms of well-established absorption features and their underlying relation-
ships to vegetation physiology. The red-edge spectral region, which includes Sentinel-2
bands B05, B06, and B07, is recognized for its sensitivity to changes in leaf chlorophyll,
internal structure, and water content [60,61]. The vegetation indices identified as most
important in our model—specifically, the Inverted Red-Edge Chlorophyll Index (IRECI),
and the Normalized Moisture Stress Indices (NMSI1 and NMSI2)—draw heavily on the
same spectral regions (red-edge and SWIR) that showed strong importance at the band
level. IRECI exploits the red-edge region to capture chlorophyll and structural variations
sensitive to drought stress, while NMSI1 and NMSI2 incorporate NIR and SWIR bands,
providing direct sensitivity to leaf moisture conditions. The SWIR region is known to be
sensitive to leaf water absorption features, providing an integrated response to changes
in plant moisture status [52]. By combining red-edge and SWIR reflectance properties,
both at the band level and within the most predictive indices (IRECI, NMSI1, NMSI2), we
capture a comprehensive spectral signature of vine water status. The synergy between
these spectral domains and the derived indices underlines how the spectral sensitivities
to water content and structural changes are integrally reflected within the key VIs iden-
tified using the RF model. Satellite data have been used to assess water productivity in
agriculture, e.g., Teixeira et al. [62] used Landsat 8 images to quantify water productivity
in coconut; however, the advantage of using Sentinel-2 images rather than Landsat 8 is
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undoubtedly the spatial resolution of the images, which is higher for Sentinel-2 images
than Landsat 8. Van Beek et al. [63] used WorldView 2 satellite data to predict ΨSTEM in
pear orchards with promising results; Helman et al. [14] used Planet satellite imagery and
linear model to predict vineyard ΨSTEM with one-year data from 82 vineyard and Vis time
series, obtaining interesting results (R2 = 0.60). WorldView 2 and Planet images certainly
offer a considerable advantage in terms of spatial resolution; however, it should be taken
into consideration that spectral images from these satellite platforms are not available for
free, as, for Sentinel-2 and Landsat 8, this could greatly reduce the applicability of these
technologies at a farm level [64]. Sentinel-2 images have already been used to predict
vineyard ΨSTEM by Laroche-Pinel et al. [16]. In their research, they obtained good results
with a Bayesian model (R2 = 0.40 and RMSE = 0.26 MPa) but lower than those obtained in
our study.

Considering the satisfying results in the prediction of ΨSTEM, we applied the RF-
based model to predict the trend of ΨSTEM during the two irrigation seasons. In the
2019 irrigation season, predicted ΨSTEM sharply dropped in mid-June, and this could be
linked to high ETo and low amount of rainfall in June [65,66]; therefore, in July, there was
a considerable increase in the predicted ΨSTEM. In fact, in July, there was a significant
amount of rainfall. In August, with almost no precipitation, predicted ΨSTEM sharply
decreased. In the 2020 irrigation season, the predicted ΨSTEM showed a sudden lowering
at the end of June, then remained around −1.2 MPa almost until the end of the irrigation
season, even if the amount of rainfall was better distributed during the irrigation season
in 2020 than 2019, with precipitation in August too. This could be explained by higher
ETo, especially in July. ΨSTEM of −1.2 MPa is generally considered a threshold between
moderate to severe water stress in viticulture [67]; therefore, by considering the built
predictive model, it could be stated that the vineyard under study has experienced more
pronounced drought stress in 2020 than 2019, as well as for a longer period during the
irrigation season. Doubtlessly, to discuss ΨSTEM trends in more detail, it is necessary to
know all the field conditions, particularly the amount of water in the rhizosphere and the
dynamics of water movement in the soil, as well as solar radiation in that area [68–70];
however, such arguments are outside the scope of this study.

This work demonstrated that, in combination with machine learning, it is possible
to use Sentinel-2 imagery to extend the information of ΨSTEM data measured in random
locations within the vineyard to unseen locations. In other words, it uses contemporary
satellite spectral data as ancillary variables to produce maps from a finite number of
measurements. The developed model could be used to assist farmers in monitoring the
water status variability within the field and then check whether the irrigation practice may
need adjustment; nonetheless, some limitations, must be taken into account, such as the
spatial resolution of the Sentinel-2 images and frequency of image acquisition. While our
model demonstrated robust performance in predicting vine water status, it is important to
recognize the limitations posed by the relatively small dataset (162 data points) collected
from a single vineyard. This limitation restricts the diversity of environmental conditions
and vineyard management practices represented in the model, which could impact its
generalizability. Additional work could confirm these results, for example, by considering
other vine cultivars and growing systems, increasing the sample size, using data from
vineyards with different locations to enhance the variability in the dataset for the modeling
process, and exploring the integration of higher spatial resolution remote sensing platforms
(e.g., WorldView or PlanetScope) alongside Sentinel-2 imagery to evaluate their potential
advantages and complementarity. Furthermore, although random forest demonstrated
good performance, its nonlinear nature introduces a potential risk of overfitting, particularly
with small datasets. To address this, we implemented extensive cross-validation and
hyperparameter tuning.
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5. Conclusions

In this study, an innovative approach based on the combination of satellite remote
sensing and machine learning has been proposed for the estimation of vine water status. It
has been shown that the accuracy of the random forest algorithm increases when vegetation
indices are used as predictors of the stem water potential instead of the reflectance of
the spectral bands. Furthermore, both random forest-based modeling approaches had
better performance than the lasso, ridge, elastic net, and LM models. The permutation
process confirmed the importance of the reflectance in the red edge spectral region in
plant water status monitoring and drought stress response. The results show that the
integration of remote sensing and machine learning could provide a useful tool for vine
water status management, especially as an alternative or addition to typical proximal
field measurements.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs16244784/s1, Figure S1: Boxplots showing the distribution
of the performance parameters of random forest in predicting vine stem water potential across
10 repetitions of the 5-fold cross validation, using the vegetation indices (a)) and Sentinel-2 spectral
bands (b)) as predictors; Figure S2: Prediction intervals for soil water potential (SWP, MPa) using the
random forest (RF) model trained with the vegetation indices, with 95% confidence intervals (CIs).
The blue points represent the predicted values, while the red error bars denote the upper and lower
bounds of the out of bag-derived 95% CIs; Table S1: Results of the 10-times repeated 5-fold cross-
validation used to assess the robustness of Lasso, Ridge, elastic net (EN), random forest (RF), and
linear model (LM) in vine stem water potential prediction. VIs = vegetation indices; S2Bs = Sentinel-2
spectral bands.
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