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Abstract: This study aimed to evaluate the impact of a wildfire on vegetation recovery and hydrologi-
cal processes in a Mediterranean peri-urban system, using remote sensing and hydrological modeling.
NDVI and MSAVI2 time series extracted from burned areas, control plots, and VAR-modeled plots
were used to analyze vegetation regeneration. The SWAT model, calibrated for pre-fire conditions due
to data limitations, was used to evaluate subbasin-scale hydrological impacts. Results showed limited
recovery in the first post-fire year, with vegetation indices remaining lower in burned areas compared
to control plots. High- and moderate-burn-severity areas presented the most significant NDVI and
MSAVI2 increases. The SWAT model showed increased water yield, percolation, and surface runoff
with reduced evapotranspiration in post-fire conditions. Peak discharges were notably higher during
wet periods. Modified land use and soil properties affected the catchment’s hydrological balance,
emphasizing the complexities of post-fire catchment dynamics.

Keywords: hydrological processes; hydrological modeling; SWAT; wildfire; experimental catchment;
remote sensing

1. Introduction

Wildfires are a significant environmental issue, particularly in Mediterranean climate
catchments, where they are widespread and often lead to severe land use and soil changes,
affecting hydrological processes [1,2]. These alterations can reduce vegetation and ground
cover and alter soil properties, and increase soil susceptibility to runoff, leading to important
economic and environmental consequences [3–7]. Furthermore, soil water repellency due
to the loss of the topsoil organic matter leads to reduced infiltration and storage capacity,
alongside increased overland flow [8–10]. Wildfire recurrence can also contribute to soil
degradation and desertification [11,12].

Vegetation regeneration following wildfires is crucial for mitigating these impacts,
and remote sensing techniques can provide valuable insights into post-fire vegetation
dynamics [13]. Information on burn severity and vegetation recovery offers insight into
how several vegetation categories respond to fire and can identify areas requiring inten-
sive restoration to minimize the consequences of soil erosion and increased runoff [14,15].
Spectral vegetation indices enable the assessment of vegetation dynamics across multiple
scales and have been extensively used to monitor changes in vegetation cover [16]. The
vegetation indices are estimated from remote sensing reflectance measurements in the
visible and infrared regions of the electromagnetic spectrum. The Normalized Difference
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Vegetation Index (NDVI) [17] has been extensively used to detect vegetation regenera-
tion and has been applied to several diverse environments [2,14,18]. Huete et al. [19]
proposed the Soil-Adjusted Vegetation Index (SAVI) to overcome problems of the NDVI
with soil background variations. Qi et al. [20] suggested the MSAVI2, which reduces
soil background noise and enhances vegetation signal in satellite images more effectively
than the SAVI [21–23]. The Normalized Burn Ratio (NBR) [24] has also been used to as-
sess burn severity, monitor vegetation recovery, and describe physical changes caused
by fires [15,25–29]. Additionally, forecasting models [30–33] and vegetation indices from
unburned control plots [11,34–37] provide useful tools for estimating fire impacts and
quantifying vegetation recovery, especially in the absence of field data. Combining multiple
remote sensing techniques, forecasting models, and control plots is a more efficient alterna-
tive for detecting the spatial and temporal variations in fire effects than relying exclusively
on traditional field inventories [26,38,39].

The hydrological response to fire impact is determined by various factors, including
burn severity, meteorological conditions, land use, soil properties, topography, and land
management practices [6,12]. Hydrological modeling is a valuable tool for quantifying the
impact of fires in catchment hydrological processes. It enables the evaluation of the impacts
of post-fire conditions on the hydrological cycle and supports management decisions to
mitigate surface runoff and soil erosion [40,41]. Post-fire conditions have usually been
simulated using empirical models (i.e., the universal soil loss equation, USLE) [42], semi-
empirical models (i.e., the revised Morgan–Morgan–Finney model) [43], the Pan-European
Soil Erosion Risk Assessment [44], and the Soil and Water Assessment Tool (SWAT) [45].
There is limited research on the relationship between fires and hydrological processes in
burnt Mediterranean areas due to the absence of catchment-scale data [8]. In particular,
for the Mediterranean area, hydrological models have mostly been applied at the field
scale [12,40,46–48] and rarely at the catchment scale [3,4,49,50]. The catchment scale pro-
vides valuable information about the different mechanisms controlling surface runoff,
which is essential for planning post-fire soil rehabilitation [4,5,40]. However, model calibra-
tion and validation under post-fire conditions at this scale is challenging due to the absence
of observed hydro-meteorological data [10,13,49].

During July and August 2021, one of the most intense wildfires in Greece occurred,
which was unprecedented in extent, intensity, and impact, with a total burned area of
3600 km2 [51–54]. This study employed remote sensing techniques and hydrological
modeling to estimate the post-fire vegetation regeneration and hydrological impacts of
the 2021 wildfire in the Kifisos experimental subbasin, Attica, Greece. The study area
constituted a peri-urban system, i.e., a hybrid landscape in which different land uses
such as forests, crops, and urban zones interact. The interaction between different land
uses makes this area a constantly changing environment exposed to more significant
risks from forest fires and floods and characterized by diverse management practices and
hydrological processes. Satellite data from NASA’s Landsat 8 (Operational Land Imager,
OLI, Ball Aerospace & Technologies Corp., Boulder, CO, USA) were used before and after
the fire in July 2021 and August 2021, respectively, and one year later in August 2022 to
construct a burn severity map and investigate post-fire vegetation recovery. Landsat-5
imagery (covering the period 1990–2011) and Landsat-8 imagery (covering the period
2013–2022) were also used to assess vegetation regrowth in the study area. In addition, the
SWAT model was used to investigate the impact of fire on the catchment’s hydrological
components. Observed discharge data were available only for the pre-fire conditions. The
SWAT model was calibrated and validated for the pre-fire conditions, and post-fire land
use and soil changes were applied to incorporate burn severity. Although there have been
several prior studies on the hydrological impacts of fires, the innovative aspect of this
study lies in its collaborative use of remote sensing techniques, a forecasting model, and
a hydrological model (daily and hourly time step) to assess alterations in hydrological
parameters before and after the fire event and to evaluate the sub-daily option of the SWAT
model for discharge simulation. The objectives of this study were the (i) quantification of
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the vegetation recovery dynamics within the burned area using remote sensing techniques,
(ii) investigation of the use of control plots and forecasting models, and (iii) assessment
of the accuracy of a modeling tool to simulate post-fire conditions and impacts at the
catchment scale and evaluate its usefulness as a post-fire management tool.

2. Materials and Methods
2.1. Study Area and Data Description

The study area (Figure 1) was the experimental northwest subbasin of the Kifisos river
basin. It occupies an area of 140 km2 [55] and has an elevation range of 94 to 1399 m. The
climate is Mediterranean, with mild, wet winters and hot, dry summers [56]. The mean
annual precipitation is 577.2 mm, and the mean annual temperature is 16.4 ◦C [57]. The
area is geologically covered mainly by the Cambisols, Regosols, Leptosols, and Luvisols for-
mations [58]. It is an urban and peri-urban region with residential areas (34.1%), shrubland
(15.9%), and agriculture (12.4%) [59].
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Figure 1. Elevation of the study area (a), spatial distribution of land use (b), burn severity (c), and 
soil types (d). Zoomed-out display of Greece and Athens location in red box (upper left) and Ath-
ens metropolitan area (lower left). The study area includes 25 subbasins, of which the subbasin 
numbers 1, 2, 3, 4, 6, 11, 17, 18, 19, and 20 indicate the subbasins inside the burn scar. 
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performed using the Google Earth Engine (GEE) platform. GEE is a free cloud-based 
platform for planetary-scale geospatial analysis [63]. Registered users can access GEE 
through two web-based platforms: the GEE Explorer and Code Editor. The GEE Explorer 
allows users to view satellite imagery, while the GEE Code Editor enables analysis and 
customization through coding. 

The Landsat datasets (i.e., Landsat-5 and Landsat-8) were obtained from the U.S. 
Geological Survey (USGS), covering two time periods, (a) 1990–2011 (from January 1990 
to September 2011) and (b) 2013–2022 (from May 2013 to September 2022). These prod-
ucts are available in GEE as LANDSAT/LT05/C02/T1_TOA and LAND-
SAT/LC08/C02/T1_TOA. All satellite images were projected on the reference coordinate 
system of the study area (WGS 84/UTM zone 36N). A cloud-masking process [64] was 
conducted using the pixel quality assessment band to identify cloud-affected pixels. 
Composites for pre- and post-fire periods using median values over a specific time range 
were finally created, resulting in 125 images from Landsat-5 and 69 images from Land-
sat-8. 

The identification of burned areas and the estimation of burn severity [15] were 
performed using the Normalized Burn Ratio (𝑁𝐵𝑅) [24] for both pre-fire and post-fire 
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vegetation and low values in burned regions or those with sparse vegetation [66]. The 
index is estimated by (Equation (1)): 

Figure 1. Elevation of the study area (a), spatial distribution of land use (b), burn severity (c), and
soil types (d). Zoomed-out display of Greece and Athens location in red box (upper left) and Athens
metropolitan area (lower left). The study area includes 25 subbasins, of which the subbasin numbers
1, 2, 3, 4, 6, 11, 17, 18, 19, and 20 indicate the subbasins inside the burn scar.

On 3 August 2021, a forest fire took place in the study area, which lasted for the next
few days and impacted 12 subbasins (Figure 1c). The fire primarily impacted the northern
part of the study area, which included forest vegetation and a significant portion of the
nearby urban areas [54,60]. This wildfire event was used to assess vegetation recovery
and its impact on the water balance over one year. Landsat-5 (1990–2011) and Landsat-8
(2013–2022) imagery was used to investigate vegetation regrowth before and after the fire.
The Landsat images were processed to calculate the mean monthly NDVI and MSAVI2
values for each subbasin and land use category at a 30 m spatial resolution. In addition,
images before and after the fire in July 2021 and August 2021, respectively, and one year
later in August 2022 were used to map burn severity. The unburned subbasins (ID: 5, 8, 10)
and minimally affected subbasins (ID: 2, 3, 4, 11, 19) were used as control subbasins. The
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control subbasins shared the same geomorphological and vegetation characteristics with
the burned subbasins to ensure their comparability [11,34–37].

Furthermore, a hydrological model was developed to analyze the influence of post-fire
conditions on the hydrological cycle. The input data for the model included a digital eleva-
tion model (DEM) with 30 m resolution from the website of the U.S. Geological Survey [61],
a land use map with 100 m resolution from the Corine Land Cover map [59], a soil map
from the Food and Agriculture Organization (FAO)’s Digital Soil Map of the World [58],
meteorological data covering the period from 2017 to 2022 (i.e., rainfall, temperature, wind
speed, relative humidity, and solar radiation) [57], and observed discharge data available
from 1 January 2018 to 31 March 2020 [62].

2.2. Burn Severity Mapping and Post-Fire Vegetation Recovery

The analysis of the burn severity and vegetation recovery of the study area was
performed using the Google Earth Engine (GEE) platform. GEE is a free cloud-based
platform for planetary-scale geospatial analysis [63]. Registered users can access GEE
through two web-based platforms: the GEE Explorer and Code Editor. The GEE Explorer
allows users to view satellite imagery, while the GEE Code Editor enables analysis and
customization through coding.

The Landsat datasets (i.e., Landsat-5 and Landsat-8) were obtained from the U.S.
Geological Survey (USGS), covering two time periods, (a) 1990–2011 (from January 1990 to
September 2011) and (b) 2013–2022 (from May 2013 to September 2022). These products are
available in GEE as LANDSAT/LT05/C02/T1_TOA and LANDSAT/LC08/C02/T1_TOA.
All satellite images were projected on the reference coordinate system of the study area
(WGS 84/UTM zone 36N). A cloud-masking process [64] was conducted using the pixel
quality assessment band to identify cloud-affected pixels. Composites for pre- and post-fire
periods using median values over a specific time range were finally created, resulting in
125 images from Landsat-5 and 69 images from Landsat-8.

The identification of burned areas and the estimation of burn severity [15] were
performed using the Normalized Burn Ratio (NBR) [24] for both pre-fire and post-fire
conditions. The NBR is a ratio between the near-infrared (NIR) (i.e., burned areas showing
low reflectance) and the short-wave infrared (SWIR) (i.e., burned areas showing high
reflectance) spectral bands [65]. The index presents high values in areas with healthy
vegetation and low values in burned regions or those with sparse vegetation [66]. The
index is estimated by (Equation (1)):

NBR =
NIR − SWIR
NIR + SWIR

(1)

where NIR is the near-infrared band (Landsat 4–7 band 4; Landsat 8–9 band 5) and SWIR
is the short-wave infrared band (Landsat 4–7 band 7; Landsat 8–9 band 7), respectively.

The NBR index calculated for post-fire conditions was subtracted from the NBR index
calculated for pre-fire conditions to provide a scaled index of burn severity, known as the
Differenced Normalized Burn Ratio, delta NBR, or dNBR [24]. Generally, unburned areas
show dNBR values near zero, and burned areas show high positive dNBR values. The
dNBR is calculated by (Equation (2)):

dNBR = NBRpre f ire − NBRpost f ire (2)

where NBRpre f ire is the NBR index for pre-fire conditions and NBRpost f ire is the NBR index
for post-fire conditions.

Furthermore, the assessment of the vegetation recovery was achieved using the Nor-
malized Difference Vegetation Index (NDVI) [17] and the Modified Soil-Adjusted Vegetation
Index (MSAVI2) [20]. NDVI values range between −1 and 1, where zero to negative values
indicate areas with a lack of vegetation [67]. A study by [19] proposed the Soil-Adjusted
Vegetation Index (SAVI) to overcome problems of the NDVI with soil background varia-
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tions. The MSAVI2 offers a stronger reduction in the soil noise influences than the SAVI [20].
Both the NDVI (Equation (3)) and MSAVI2 (Equation (4)) are calculated using the red
(RED) and near-infrared (NIR) spectral bands, as follows:

NDVI =
NIR − RED
NIR + RED

(3)

MSAVI2 =
2 × NIR + 1 −

√
(2 × NIR + 1)2 − 8 × (NIR − RED)

2
(4)

where NIR is the near-infrared band (Landsat 4–7 band 4; Landsat 8–9 band 5) and RED is
the red band (Landsat 4–7 band 3; Landsat 8–9 band 4), respectively.

For each NDVI and MSAVI2 image, the mean value of the pixels was calculated for
each subbasin using a zonal statistics function. Then, the post-fire vegetation indices were
compared to the pre-fire indices to analyze the rate of the regeneration process. Finally,
descriptive statistics of the NDVI and MSAVI2 were calculated for each satellite image for
each land use and burn severity category within the study area to analyze the relationship
between vegetation regeneration and burn severity.

2.3. Pre- and Post-Fire Vegetation Indices

Further analysis was performed to compare the differences between the vegetation
indices before and after the fire event. The Vector Autoregression (VAR) model [68] was
applied to predict NDVI and MSAVI2 time series from 1 August 2021 to 31 January 2023
without the influence of fire. The choice of variables included in the VAR model, specifically
the NDVI and MSAVI2, was driven by their relevance to monitoring vegetation dynamics.
These indices are sensitive to changes in vegetation cover and health, making them ideal
for assessing post-fire recovery and the impact of fire on vegetation.

The Vector Autoregressive (VAR) model is a multivariate linear time series model used
to capture the interdependencies between multiple time series influencing variables [68].
It is particularly well suited for analyzing multiple interdependent time series data, such
as the NDVI and MSAVI2, simultaneously. This is crucial for understanding the complex
interdependencies between these indices and other environmental variables affecting post-
fire vegetation recovery. Also, the VAR model provides a systematic approach to capturing
the dynamic interactions between multiple time series by incorporating the lagged values
of all the variables into each equation. This allows for a comprehensive assessment of how
past values of each variable influence future outcomes, which is essential for accurately
modeling and forecasting the ecological impacts of wildfires [69].

The VAR model is the generalized form of the univariate autoregressive model for
forecasting a time series vector [70]. Each variable in the VAR model is defined by an
equation that includes the variable’s lagged values and the lagged values of all the other
variables in the model [71]. The general VAR (P) model is mathematically expressed using
the following equation (Equation (5)):

yt = c + A1yt−1+A2yt−2 + · · ·+ Apyt−p + et (5)

where yt, t = 1, . . . , T, is a k × 1 vector of the time series, c is a k-vector of constants, Ai is a
k × k parametric matrix, and et represents a k-vector of error terms.

The R programming language was used to develop a forecasting model and conduct
time series analysis on the monthly Landsat dataset covering the period from 1990 to 2022.
First, the Kalman smoothing filter [72] was used to address missing values in the dataset.
The VAR model requires that all the time series data be stationary. To assess stationarity,
the Augmented Dickey–Fuller (ADF) test [73] was used. Then, the optimal lag length
for the model was selected by looking at the minimum values of the following criteria:
the Final Prediction Error Correction (FPE), the Akaike Information Criterion (AIC), the
Schwarz Information Criterion (SIC), and the Hannan–Quinn Information Criterion (HQ).
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Finally, this was followed by residual analysis testing for normality, heteroscedasticity,
and autocorrelation.

The time series derived from the forecasting model were further compared with
unburned control plot values. Unburned subbasins (ID: 5, 8, 10) and minimally affected
subbasins (ID: 2, 3, 4, 11, 19) close to the study area with similar environmental and land
use conditions were selected as control subbasins (Figure 1). Mean NDVI and MSAVI2
values for each land use were extracted from the control subbasins and compared to the
pre-fire and post-fire patterns. The NDVI and MSAVI2 values derived from unburned
control subbasins, along with values from the VAR model, provide an essential tool for
assessing the impact of fire and the subsequent regrowth of vegetation. The application of
a VAR model in this study provides a robust analytical framework that not only predicts
future states of vegetation indices, but also aids understanding of the temporal interactions
and dependencies between the variables studied. This approach has value in ecological
studies where multiple factors interact in complex ways over time.

2.4. Hydrological Model
2.4.1. Model Conceptual Framework

The SWAT (Soil and Water Assessment Tool) model [74] was used to assess the impact
of fire on the hydrological cycle of the study area. The SWAT model is an open-source,
physically based, continuous-time river basin model designed to analyze the effects of
management practices on discharge, sediment transport, and agricultural activities in large
and complex watersheds [75]. The main elements of the SWAT model include hydrology,
weather, soil, land use, sediments, nutrients, bacteria, and pathogens [76,77].

The water balance equation is estimated using the following equation (Equation (6)):

SWt = SWo + ∑t
i=1

(
Rday − Qsur f − Ea − Wseep − Qgw

)
(6)

where SWt is the soil water content (mm), SWo is the soil water content on day i in the
previous period (mm), t is the time step (days), Rday indicates the amount of precipitation
on day i (mm), Qsur f represents the surface streamflow on day i (mm), Ea indicates the AET
on day i (mm), Wseep is the percolation and bypass flow on day i (mm), and Qgw represents
the return flow on day i (mm).

First, the SWAT model was set up with two different scenarios covering the pre-fire
(1 January 2018 to 31 July 2021) and the post-fire (1 August 2021 to 31 December 2022)
conditions. The QSWAT plugin in the QGIS platform was used for model setup and param-
eterization [78]. The two scenarios (i.e., pre-fire and post-fire) were applied throughout the
study period (1 January 2018 to 31 December 2022) to evaluate the influence of changes
in land use and soil properties on the catchment’s hydrological behavior. In this way,
the hydrological balances of the two scenarios could be compared independently of the
influence of meteorological conditions (wet and dry years). In both scenarios, the first year
was used for model warm-up. Both scenarios followed the same catchment delineation
process, using a drainage area of 3.6 km2, leading to 25 subbasins. The land use and soil
maps were overlaid with the burn severity map. Subsequently, the post-fire maps were
reclassified to include low-, moderate-, and high-burn-severity classes. The pre-fire scenario
database consisted of the original pre-fire land use and soil attributes, while the post-fire
scenario database included new land use and soil lookup tables, which were adjusted to
reflect the post-fire conditions. The meteorological information was incorporated in the
two scenarios. Potential evapotranspiration was estimated using the Penman–Monteith
method, and surface runoff was computed using the curve number (CN) method [79] for
the daily model and the Green and Ampt Mein Larson infiltration (GAML) method [80] for
the hourly model.

Model calibration and validation were implemented using the Sequential Uncertainty
Fitting (SUFI-2) algorithm within the SWAT-CUP software, version 5.2.1.1 [81]. The pre-fire
scenario was calibrated from January 2018 to December 2018 and validated from January
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2019 to March 2020 using available discharge data. Then, the post-fire scenario (1 August
2021 to 31 December 2022) was calibrated using the values from the pre-fire scenario
for areas that were unaffected by the fire. For the regions impacted by the fire, specific
parameters were adjusted to reflect post-fire changes in land use and soil conditions. The
parameters modified in the post-fire model were the saturated soil hydraulic conductivity
(SOL_K), the available water capacity of the soil layer (SOL_AWC), the maximum canopy
storage (CHTMX), the crop vegetation factor (USLE_C), the soil erodibility factor (USLE_K),
the curve number (CN2), the organic carbon content (SOL_CBN), and the moist bulk density
(SOL_BD). The two scenarios were evaluated using statistical (i.e., NSE, R2, PBIAS) and
graphical (i.e., time series charts, maps, percent exceedance probability curves) techniques
at daily and hourly spatial scales [82].

2.4.2. Post-Fire Scenario

The parameters for infiltration and surface runoff were modified to reflect post-fire
conditions, taking into account the effects of burn severity. In particular, the soil erodibility
factor (USLE_K) was increased by 0.014, 0.015, and 0.016 Mg ha−1 MJ−1 mm−1 ha hr for
low, moderate, and high burn severity [4,40,83]. The crop vegetation factor (USLE_C) was
adjusted to 0.01, 0.05, and 0.2 (−) for low, moderate, and high burn severity [4,40,83]. The
curve number (CN2) was increased by 5, 10, and 15 (−) for low, moderate, and high burn
severity, respectively [4,29,41]. In addition, the saturated hydraulic conductivity (SOL_K),
the soil available water capacity (SOL_AWC), the maximum canopy storage (CHTMX),
and the organic matter (SOL_CBN) were slightly reduced, and the bulk density (SOL_BD)
was slightly increased [6,7].

The new parameter values were imported into the soil and land use SWAT database,
and new lookup tables and maps were created to incorporate the effects of burn severity.
These modifications resulted in low-, moderate-, and high-burn-severity areas. In these
areas, new HRUs were formed to represent the attribute changes.

3. Results
3.1. Post-Fire Assessment of Vegetation Recovery
3.1.1. Burn Severity

A burn severity map was created using the NBR and dNBR (The Differenced Nor-
malized Burn Ratio (dNBR) was used to quantify the extent and severity of burned areas
by comparing pre- and post-fire satellite images. Developed by Key and Benson [24],
the dNBR combines the Normalized Burn Ratio (NBR) index from two different dates to
assess the changes in vegetation and surface conditions caused by wildfires. The dNBR is
widely used for burned area mapping, post-fire severity assessment, and monitoring of
vegetation recovery, minimizing the influence of atmospheric conditions and variations in
solar angle on the index values [84].) indices (Figure 1c). The burned area (42.67 km2) was
discretized into four burn severity classes using the dNBR categories proposed by USGS:
(i) unburned (dNBR values ranging from −0.1 to 0.1), low severity (0.1 to 0.27), moderate
severity (0.27 to 0.66), and high severity (0.66 to 1). Most of the burn scar areas included
highly and moderately burned areas. The high-burn-severity class comprised 13.1% of
the total study area (140 km2), followed by the moderate-burn-severity class (14.2%), the
low-burn-severity class (3.1%), and the unburned class (69.5%). The land use categories
with the most significant percentage of highly burned areas were the mixed forest (FRST)
(65.4%), the deciduous forest (FRSD) (50.8%), the evergreen forest (FRSE) (19.6%), and the
shrubland (RNGB) (25.7%). The agricultural areas (AGRL) included mainly moderately
burned areas (23.6%). The artificial areas (i.e., transportation, green areas, residential low
density, and commercial) included low-burn-severity areas (5.9%). In general, twelve
subbasins were affected (Figure 1). Subbasin ID = 3 had the highest percentage of high
burn severity (49.8%), following subbasin ID = 1 (48.6%) and subbasin ID = 20 (37.4%).
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3.1.2. Pre- and Post-Fire Vegetation Dynamics

The dynamics of vegetation regrowth following the fire were assessed through a
multi/temporal analysis of the NDVI and MSAVI2 indices. The basic statistics of the
NDVI and MSAVI2 time series used in the analysis are presented in Table 1. The high-
est values of NDVI and MSAVI2 were associated with the land use categories forest—
deciduous (FRSD), forest—evergreen (FRSE), and forest—mixed (FRST).

Table 1. First-order statistics of the NDVI and MSAVI2 time series for the period 1990–2021. AGRL,
agriculture; FRSD, deciduous forest; FRSE, evergreen forest; FRST, mixed forest; RNGB, shrubland;
UCOM, transportation/green areas.

NDV I MSAV I2

Statistics AGRL FRSD FRSE FRST RNGB UCOM AGRL FRSD FRSE FRST RNGB UCOM

Min. 0.170 0.340 0.290 0.320 0.240 0.120 0.100 0.180 0.130 0.150 0.090 0.070
1st Quantile 0.280 0.530 0.410 0.470 0.390 0.170 0.150 0.280 0.180 0.220 0.190 0.100

Median 0.340 0.560 0.440 0.510 0.430 0.220 0.190 0.300 0.190 0.240 0.210 0.130
Mean 0.345 0.564 0.457 0.517 0.427 0.224 0.193 0.307 0.204 0.249 0.213 0.128

3rd Quantile 0.400 0.610 0.520 0.570 0.470 0.260 0.230 0.340 0.240 0.280 0.230 0.150
Max. 0.550 0.680 0.600 0.650 0.560 0.380 0.310 0.430 0.300 0.360 0.320 0.220
Stdev 0.081 0.057 0.063 0.061 0.055 0.060 0.044 0.043 0.034 0.038 0.030 0.034
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Figure 2. NDVI predictions for the period August 2021 to January 2023 without the influence of
fire. (a) AGRL, agriculture. (b) RNGB, shrubland. (c) UCOM, transportation/green areas. (d) FRSD,
deciduous forest. (e) FRSE, evergreen forest. (f) FRST, mixed forest.

The Vector Autoregressive (VAR) model was developed using the average values of
the NDVI and MSAVI2 from the monthly data. The dataset was divided into two parts:
a training time series consisting of data from January 1990 to January 2021 and a testing
time series from February 2021 to July 2021. Forecasts for the period from August 2021 to
January 2023 were generated based on the training data. The Augmented Dickey–Fuller
(ADF) test was performed to determine the stationarity of the time series. The NDVI and
MSAVI2 time series for the pre-fire period (1990–2021), shown in Figures 2 and 3, did not
exhibit a significant upward or downward trend. The ADF test indicated that the null
hypothesis of a unit root could be rejected for all variables at the 5% significance level
(p-value < 0.05). Therefore, all the variables could be considered as from stationary time
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series and could proceed with the simulation analysis. Additionally, a stability test of the
VAR model was conducted to determine whether the parameters change over time. All the
characteristic roots were less than one, indicating that the VAR model satisfies the stability
condition and shows no structural breaks [85].
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Figure 3. MSAVI2 predictions for the period August 2021 to January 2023 without the influence of
fire. (a) AGRL, agriculture. (b) RNGB, shrubland. (c) UCOM, transportation/green areas. (d) FRSD,
deciduous forest. (e) FRSE, evergreen forest. (f) FRST, mixed forest.

The time series derived from the Vector Autoregression (VAR) model and the un-
burned/minimally affected control plots were used to determine fire impact and vegetation
regrowth. The mean NDVI and MSAVI2 of the unburned control plots, Vector Autore-
gression (VAR) model control plots, and burned plots are displayed in Figures 4 and 5.
Table 2 presents the mean NDVI and MSAVI2 differences between the burned and control
plots for each land use category. In the pre-fire period (August 2016–July 2021), the dif-
ferences between the values of the burned plots and those of control plots for all land use
categories were minimal. The NDVIburned and MSAVI2burned values were mainly below
NDVIcontrol and MSAVI2control for five years before the wildfire (Figures 4 and 5, Table 2).
Table 1 shows the first-order statistics of the NDVI and MSAVI2 time series for the period
1990–2021. After the fire, the NDVIburned and MSAVI2burned declined substantially for
the land use categories FRSD, FRSE, and FRST (NDVImean: FRSD: 0.34, FRSE: 0.37, FRST:
0.26; MSAVI2mean: FRSD: 0.18, FRSE: 0.18, FRST: 0.11). Within one year post-fire, the cate-
gories AGRL, RNGB, and UCOM showed rapid recovery (NDVImean: AGRL: 0.35, RNGB:
0.46, UCOM: 0.22; MSAVI2mean: AGRL: 0.20, RNGB: 0.21, UCOM: 0.14). The NDVIburned
and MSAVI2burned values of the categories FRSD, FRSE, and FRST still lagged behind the
NDVIcontrol and MSAVI2control values.



Remote Sens. 2024, 16, 4745 10 of 24

Remote Sens. 2024, 16, 4745 10 of 26 
 

 

 
Figure 3. 𝑀𝑆𝐴𝑉𝐼ଶ predictions for the period August 2021 to January 2023 without the influence of 
fire. (a) AGRL, agriculture. (b) RNGB, shrubland. (c) UCOM, transportation/green areas. (d) FRSD, 
deciduous forest. (e) FRSE, evergreen forest. (f) FRST, mixed forest. 

 
Figure 4. Mean 𝑁𝐷𝑉𝐼 for the burned and control plots and VAR modeling results from August 
2021 to August 2022. (a) AGRL, agriculture. (b) RNGB, shrubland. (c) UCOM, transportation/green 
areas. (d) FRSD, deciduous forest. (e) FRSE, evergreen forest. (f) FRST, mixed forest. 

Figure 4. Mean NDVI for the burned and control plots and VAR modeling results from August 2021
to August 2022. (a) AGRL, agriculture. (b) RNGB, shrubland. (c) UCOM, transportation/green areas.
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Remote Sens. 2024, 16, 4745 11 of 26 
 

 

 
Figure 5. Mean 𝑀𝑆𝐴𝑉𝐼ଶ for the burned and control plots and VAR modeling results for August 
2016–August 2022. (a) AGRL, agriculture. (b) RNGB, shrubland. (c) UCOM, transportation/green 
areas. (d) FRSD, deciduous forest. (e) FRSE, evergreen forest. (f) FRST, mixed forest. 

Table 2. Mean 𝑁𝐷𝑉𝐼 and 𝑀𝑆𝐴𝑉𝐼ଶ differences for each land use category between burned and 
control plots. %∆𝑁𝐷𝑉𝐼 = 𝑁𝐷𝑉𝐼௨ௗ  − 𝑁𝐷𝑉𝐼௧  and %∆𝑀𝑆𝐴𝑉𝐼ଶ = 𝑀𝑆𝐴𝑉𝐼ଶ௨ௗ  − 𝑀𝑆𝐴𝑉𝐼ଶ௧. 

Months AGRL %difference RNGB %difference UCOM %difference FRSD %difference FRSE %difference FRST %difference 𝑵𝑫𝑽𝑰 𝑴𝑺𝑨𝑽𝑰𝟐 𝑵𝑫𝑽𝑰 𝑴𝑺𝑨𝑽𝑰𝟐 𝑵𝑫𝑽𝑰 𝑴𝑺𝑨𝑽𝑰𝟐 𝑵𝑫𝑽𝑰 𝑴𝑺𝑨𝑽𝑰𝟐 𝑵𝑫𝑽𝑰 𝑴𝑺𝑨𝑽𝑰𝟐 𝑵𝑫𝑽𝑰 𝑴𝑺𝑨𝑽𝑰𝟐 
16 August 5.26 −4.00 10.10 4.17 −19.17 −12.85 −6.92 −13.52 12.00 4.00 8.00 7.44 
17 August 2.63 0.00 3.73 4.35 −17.64 −9.54 −11.49 −14.89 −1.62 13.04 5.15 7.52 
18 August 7.50 0.00 0.95 −3.85 −21.66 −14.26 −6.28 −12.75 −2.73 0.00 9.42 14.45 
19 August 12.82 8.33 4.80 8.33 −20.38 −15.28 −5.55 −11.12 0.17 16.67 5.94 10.78 
20 August 15.38 4.35 3.41 0.00 −19.82 −10.04 −4.08 −8.86 2.10 13.04 7.68 7.75 
21 August −28.57 −38.10 −6.67 −8.33 −18.12 −10.20 −54.85 −62.97 −30.26 −33.33 −73.47 −80.00 
22 August −9.81 −14.65 −0.44 2.37 −23.27 −15.76 −36.39 −43.33 −20.13 −21.41 −32.14 −30.98 

3.1.3. Burn Severity and Vegetation Response 
The burn severity map (Figure 1) was compared with vegetation data for the pre-fire 

and post-fire periods to investigate their relationship. Figures 6 and 7 show the mean 𝑁𝐷𝑉𝐼 and 𝑀𝑆𝐴𝑉𝐼ଶ of the burned area land use categories by burn severity class. The 
post-fire images showed that both vegetation indices declined sharply for the moderately 
and highly burned classes. In particular, for the mixed forest category (FRST), which had 
the highest burned percentage (i.e., 65.4%), the mean 𝑁𝐷𝑉𝐼 decreased by 0.48, from 0.59 
in July 2021 to 0.11 in August 2021, and the mean 𝑀𝑆𝐴𝑉𝐼ଶ decreased by 0.27, from 0.31 in 
July 2021 to 0.04 in August 2021. Regarding the 𝑁𝐷𝑉𝐼, in the same land use category, the 
areas of moderate-severity burn decreased by 0.38, and the areas of low-severity burn 
decreased by 0.24 over the same period. For the 𝑀𝑆𝐴𝑉𝐼ଶ, the areas of moderate-severity 
burn decreased by 0.22, and the areas of low-severity burn decreased by 0.15, respec-
tively. One year after the wildfire, the greatest increase in the 𝑁𝐷𝑉𝐼 and 𝑀𝑆𝐴𝑉𝐼ଶ was 
observed in the moderately and highly burned areas, demonstrating that highly burned 
areas showed faster recovery. In contrast, the increases in the 𝑁𝐷𝑉𝐼 and 𝑀𝑆𝐴𝑉𝐼ଶ for the 
unburned and low-severity classes were more moderate. 

Figure 5. Mean MSAVI2 for the burned and control plots and VAR modeling results for August
2016–August 2022. (a) AGRL, agriculture. (b) RNGB, shrubland. (c) UCOM, transportation/green
areas. (d) FRSD, deciduous forest. (e) FRSE, evergreen forest. (f) FRST, mixed forest.
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Table 2. Mean NDVI and MSAVI2 differences for each land use category between burned and control
plots. %∆NDVI = NDVIburned − NDVIcontrol and %∆MSAVI2= MSAVI2burned − MSAVI2control .

Months
AGRL %difference RNGB %difference UCOM %difference FRSD %difference FRSE %difference FRST %difference

NDVI MSAVI2 NDVI MSAVI2 NDVI MSAVI2 NDVI MSAVI2 NDVI MSAVI2 NDVI MSAVI2

16 August 5.26 −4.00 10.10 4.17 −19.17 −12.85 −6.92 −13.52 12.00 4.00 8.00 7.44
17 August 2.63 0.00 3.73 4.35 −17.64 −9.54 −11.49 −14.89 −1.62 13.04 5.15 7.52
18 August 7.50 0.00 0.95 −3.85 −21.66 −14.26 −6.28 −12.75 −2.73 0.00 9.42 14.45
19 August 12.82 8.33 4.80 8.33 −20.38 −15.28 −5.55 −11.12 0.17 16.67 5.94 10.78
20 August 15.38 4.35 3.41 0.00 −19.82 −10.04 −4.08 −8.86 2.10 13.04 7.68 7.75
21 August −28.57 −38.10 −6.67 −8.33 −18.12 −10.20 −54.85 −62.97 −30.26 −33.33 −73.47 −80.00
22 August −9.81 −14.65 −0.44 2.37 −23.27 −15.76 −36.39 −43.33 −20.13 −21.41 −32.14 −30.98

3.1.3. Burn Severity and Vegetation Response

The burn severity map (Figure 1) was compared with vegetation data for the pre-fire
and post-fire periods to investigate their relationship. Figures 6 and 7 show the mean
NDVI and MSAVI2 of the burned area land use categories by burn severity class. The
post-fire images showed that both vegetation indices declined sharply for the moderately
and highly burned classes. In particular, for the mixed forest category (FRST), which had
the highest burned percentage (i.e., 65.4%), the mean NDVI decreased by 0.48, from 0.59
in July 2021 to 0.11 in August 2021, and the mean MSAVI2 decreased by 0.27, from 0.31
in July 2021 to 0.04 in August 2021. Regarding the NDVI, in the same land use category,
the areas of moderate-severity burn decreased by 0.38, and the areas of low-severity burn
decreased by 0.24 over the same period. For the MSAVI2, the areas of moderate-severity
burn decreased by 0.22, and the areas of low-severity burn decreased by 0.15, respectively.
One year after the wildfire, the greatest increase in the NDVI and MSAVI2 was observed in
the moderately and highly burned areas, demonstrating that highly burned areas showed
faster recovery. In contrast, the increases in the NDVI and MSAVI2 for the unburned and
low-severity classes were more moderate.
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Figure 6. Mean NDVI by burn severity class, August 2016–August 2022. (a) AGRL, agriculture.
(b) RNGB, shrubland. (c) UCOM, transportation/green areas. (d) FRSD, deciduous forest. (e) FRSE,
evergreen forest. (f) FRST, mixed forest. All classes demonstrated consistently positive post-fire
NDVI gains in the first post-fire year.
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Figure 7. Mean MSAVI2 by burn severity class, August 2016–August 2022. (a) AGRL, agriculture.
(b) RNGB, shrubland. (c) UCOM, transportation/green areas. (d) FRSD, deciduous forest. (e) FRSE,
evergreen forest. (f) FRST, mixed forest. All classes demonstrated consistently positive post-fire
MSAVI2 gains in the first post-fire year.

3.2. Post-Fire Assessment of Hydrological Response
3.2.1. Model Performance

The pre-fire scenario was calibrated from January 2018 to December 2018 and validated
from January 2019 to March 2020. The evaluation was performed for both daily and hourly
time steps, and the annual precipitation and discharge statistics were used to examine
biases in discharge patterns. The simulation period represented both wet and dry periods,
with 2018 having an annual precipitation of 566 mm, and 2019 receiving 735 mm. The mean
and standard deviation of discharge for 2018 were 1.25 and 0.46, respectively, and for 2019,
they were 1.42 and 0.74.

Table 3 shows the model evaluation metrics at both the daily and hourly time steps,
and indicates reasonable performance [82]. However, the daily model exceeded the hourly
model for both calibration and validation periods (e.g., sub-daily model: NSEcalibration = 0.49
and NSEvalidation = 0.6, daily model: NSEcalibration = 0.79 and NSEvalidation = 0.86). Addi-
tionally, the daily model exhibited minor modeling uncertainties with a p-factor of 0.79
and an R-factor of 1.58 (compared to 0.83 and 1.71, respectively, for the sub-daily model).
Therefore, using the calibrated parameters from the pre-fire model is acceptable, as the
satisfactory model performance demonstrates reasonable accuracy in predicting discharge.

Table 3. Model performance statistics of the pre-fire model at daily and hourly temporal scales.

Time-Step Period p-Factor r-Factor R2 NSE PBIAS (%)

Daily Calibration 0.74 1.41 0.84 0.79 6.4
Validation 0.79 1.58 0.87 0.86 4.2

Sub-Daily Calibration 0.72 1.33 0.53 0.49 16.9
Validation 0.83 1.71 0.63 0.6 11.7

The post-fire scenario was calibrated using the calibrated values of the pre-fire scenario
for the unburned areas and adjusting the parameter values only for the burned areas
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of the catchment. The calibrated parameters representing surface runoff, groundwater,
and channel routing for the burned and unburned areas are presented in Table 4. The
two scenarios (i.e., pre-fire and post-fire) were applied for the entire simulation period
(1 January 2018 to 31 December 2022) to equally compare the impact of post-fire land use
and soil properties changes in the hydrological balance. Furthermore, considering that the
post-fire period from January 2022 to December 2022 displayed lower annual precipitation
(365.2 mm) (i.e., a drier year than 2018 and 2019), and that the pre-fire scenario’s calibrated
values incorporated both dry and wet years, the predictive ability of the post-fire scenario
is supported.

Table 4. Calibrated parameters used in the pre-fire and post-fire scenarios. The method “r” indicates
that the parameter value is to be multiplied by (1 + a given value), the method “v” indicates that the
parameter value is going to be replaced, and the method “a” indicates that the parameter is to be
added to a given value [81].

Process Parameter Description Method
Daily Sub-Daily

Range Range

Surface runoff CN2 Curve number r (relative) (−0.04, 0.1) (−0.002, 0.1)
Groundwater ALPHA_BF Baseflow alpha factor v (replace) (0.05, 0.69) (0.5, 1)

GW_DELAY Groundwater delay a (absolute) (10, 95) (10, 80)
RCHRG_DP Deep aquifer percolation fraction v (replace) (0, 0.5) (0.11, 0.4)
REVAPMN Threshold depth of water for “revap” to occur v (replace) (990, 1800) (800, 1800)
GW_REVAP Groundwater “revap” coefficient v (replace) (0.02, 0.2) (0.06, 0.21)

GWQMN Threshold depth of water for return flow to occur v (replace) (100, 500) (150, 500)
Lateral flow HRU_SLP Average slope steepness r (relative) (−0.01, 3) (0.2, 2.3)

Channel SLSUBBSN Average slope length r (relative) (−0.1, 0.2) (−0.6, 0.2)
Soil USLE_C Crop vegetation factor v (replace) (0.01, 0.2) (0.01, 0.2)

CHTMX Maximum canopy storage r (relative) (−0.6, 0.1) (−0.6, 0.1)
USLE_K Soil erodibility factor v (replace) (0.01, 0.2) (0.01, 0.2)
SOL_BD Moist bulk density of the soil layer r (relative) (−0.1, 0.3) (−0.1, 0.3)

SOL_AWC Soil available water storage capacity r (relative) (−0.03, 0.03) (−0.03, 0.03)
SOL_K Saturated hydraulic conductivity r (relative) (−0.2, 0.8) (−0.2, 0.8)

SOL_CBN Organic carbon content r (relative) (−0.02, 0.02) (−0.02, 0.02)
ESCO Soil evaporation compensation coefficient v (replace) (0.5, 0.95) (0.5, 0.95)

3.2.2. Hydrological Response

The daily and hourly hydrographs during the pre-fire and post-fire periods are de-
picted in Figures 8 and 9. In general, in the pre-fire period, the models captured most of
the seasonality and peak discharge of the observed values, indicating good agreement
between the observed and simulated values (Figures 8a and 9a). In the post-fire period, the
daily maximum simulated discharge increased from 10.5 m3/s to 35.2 m3/s, indicating a
considerable increase in runoff generation after the fire event. The maximum daily rainfall
depths for these periods were 67.60 mm and 101.40 mm, respectively. Figures 8a and 9a
show that similar rainfall depths resulted in higher peak discharges in the post-fire period.
Higher peak discharges were observed in the entire post-fire period. Furthermore, the flow
duration curves (FDCs) for the pre-fire and post-fire scenarios at a daily and hourly time
step for the entire simulation period were also compared (Figures 8b and 9b). Both scenarios
had similar middle and lower parts of the flow duration curves (i.e., baseflow). The upper
portion of the curve (e.g., high-flow events) for the post-fire scenario was characterized
by steeper slopes and higher peaks. This observation indicates higher variability in flow
regimes and a more rapid response to precipitation events after the fire.
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In addition, the maximum hourly discharges (m3/s) were compared with the maxi-
mum hourly rainfall intensity (mm/h) for rainfall events before and after the fire, as shown
in Figure 10. The red and blue dots represent the post-fire and pre-fire periods, respectively.
The size of the circles is according to the peak discharge for the pre- and post-fire conditions.
The maximum hourly discharge during the pre-fire period was 26.1 m3/s, whereas during
the post-fire period, it was 97.4 m3/s. At the same time, the maximum hourly rainfall
intensity was 12.0 mm/h for the pre-fire period and 28.0 mm/h for the post-fire period.
For instance, as shown in Figure 10, the pre-fire maximum hourly rainfall intensity of
13.20 mm/h led to a 17.30 m3/s maximum hourly discharge. In the same figure, it
can be seen that in the post-fire periods, the same maximum hourly rainfall intensity of
13.80 mm/h led to a 25.50 m3/s maximum hourly discharge. It was similarly observed
that there were higher peak discharges for the post-fire period in comparison to the pre-fire
period for the same rainfall intensities. Overall, these differences between the two scenarios
indicate high discharge for a short time period.

Furthermore, to analyze the interactions between the major hydrological components
of the pre-fire and post-fire scenarios, their monthly values were plotted against the pre-
cipitation depth (Figures 11 and 12). Similar patterns were observed for both conditions.
Wildfires can reduce vegetation and ground cover, resulting in a reduction in actual evapo-
transpiration. Actual evapotranspiration was lower by about 9.6% when the impact of the
fire was considered. The lower actual evapotranspiration and the loss of the topsoil organic
matters led to increased water yield. Indeed, the water yield, percolation, and surface
runoff were generally higher in the post-fire conditions. In particular, in the daily model,
the surface runoff was higher by about 32.8%, and percolation was higher by 58.1% in the
post-fire scenario. Actual evapotranspiration was lower by about 9.6% when the impact
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of the fire was considered. It was also noticed that the differences in the hydrological
components between the two scenarios were more pronounced during the wet season,
especially for high precipitation depths (similarly to Figures 9 and 10). During the dry
season, the hydrological components were similar for both scenarios. Notably, additional
data are required to investigate the runoff response during the dry and wet years.
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4. Discussion
4.1. Post-Fire Impacts on the Vegetation Response

In this study, remote sensing techniques were used to assess the impact of the 2021
wildfire in the Kifisos experimental subbasin. The burn severity map created using the
dNBR index showed that the burned area mainly consisted of highly and moderately
burned areas, while the low-burn-severity class and unburned areas accounted for a rela-
tively small percentage (Figure 1). The land use categories most affected by the fire were the
mixed forest, deciduous forest, evergreen forest, and shrubland. The agricultural areas had
moderately burned areas, and the artificial areas included mainly low-burn-severity areas.
Similar results have been observed by Falaras et al. [54], who investigated the influence
of the 2021 wildfires in the Attica region on soil erosion using remote sensing, GIS-based
techniques, and the revised universal soil loss equation (RUSLE) model. According to their
findings, the fire mostly affected forestry areas consisting of broad-leaved, sclerophyllous,
and mixed vegetation. The forests exhibited moderate to high burn severity, while agricul-
tural areas showed moderate to low burn severity. In addition, higher erosion risks were
noticed in the burned forest areas. These observations were also evident from the distri-
bution of high-burn-severity areas across different subbasins. Subbasins that contained
the aforementioned land use categories (ID = 3, 1, 20) presented the highest percentage
of high burn severity. This information is significant for prioritizing land management
and post-fire recovery measures (e.g., reforestation, soil stabilization, erosion control), as it
identifies the most affected areas that require immediate attention.

Furthermore, vegetation recovery was examined by analyzing the NDVI and MSAVI2.
A Vector Autoregressive (VAR) model was developed to analyze the time series data with-
out the impact of fire and to forecast future values. The values extracted from the forecasting
model and the unburned/minimally affected subbasins were used as control values to
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assess the vegetation dynamics. The results showed that one-year post-fire NDVIburned
and MSAVI2burned values were mainly below those of the unburned control plots. The
vegetation indices of the burned plots declined substantially for the forest—deciduous
(FRSD), forest—evergreen (FRSE), and forest—mixed categories (FRST), and they still
lagged behind the control plots one year post-fire. Only the categories agriculture (AGRL),
shrubland (RNGB), and transportation/green areas (UCOM) showed rapid recovery.

These results indicate that vegetation recovery varies depending on the land use cate-
gory, with some categories recovering faster than others [2]. However, the different recovery
rates across these land use categories could also be attributed to the anthropogenic impact
on the vegetation indices, which are correlated with grazing and crop cultivation [14].
Vegetation recovery rates in warmer climates, such as Mediterranean areas, are typically
more moderate [86]. It should be noted that, although the NDVI is responsive to variations
in vegetation density and fire heterogeneity [18], both vegetation indices followed similar
trends for all land use categories (Figures 4 and 5), suggesting gradual recovery to pre-fire
conditions. Moreover, the use of the VAR model in this study provides an important tool for
predicting vegetation dynamics and quantifying the impacts of disturbances on ecosystems.
The time series derived from the control plots showed similar patterns to those derived
from the forecasting model, validating the model’s predictive ability and its usefulness in
quantifying vegetation response.

Finally, the burn severity map and vegetation data were combined to evaluate the
correlation between vegetation recovery and burn severity one year after the fire. The
results showed that the mean NDVI and MSAVI2 values of the burned area decreased
significantly for the moderately and highly burned classes (Figures 6 and 7). One year
after the fire, the highly and moderately burned areas showed the highest increase in the
NDVI and MSAVI2, while the unburned and low-severity areas displayed a moderate
increase, indicating the influence of burn severity on vegetation recovery. The different
behaviors between the burn severity classes demonstrate the complexities of post-fire
vegetation dynamics. Lee and Chow [34] reported that highly burned areas showed the
highest gains in the NDVI during the first two years post-fire; however, they exhibited a net
decline in the third year. Similarly, regeneration has also been observed in highly burned
areas during the initial post-fire years [14,25,26]. However, higher rates of regeneration in
the long term were observed in low-severity areas, indicating a spatial heterogeneity in
vegetation response influenced by localized factors. These results highlight the complex
relationship between burn severity and vegetation response [13,27] and emphasize the
importance of monitoring vegetation dynamics over time to assess the long-term effects of
fires on ecosystems.

The outcomes suggest that remote sensing techniques can be used as a cost-effective
post-fire assessment and rehabilitation measure. The analysis of burn severity and vegeta-
tion response provides insights into identifying rehabilitating areas with slow or unsuitable
post-fire vegetation recovery [87]. Also, monitoring the post-fire trends in these areas helps
local planners determine if the ecosystems are returning to the pre-fire conditions and
whether rehabilitating programs are effective [26]. It is worth mentioning that this is a
preliminary study, and it is too early to predict the recovery period, as only one year has
passed. In addition, the inadequate resolution of satellite data, the choice of monthly tem-
poral resolution, and observational errors may prevent the capture of fine-scale variability
in land use and topography, which could introduce bias into the model results. For future
research, additional analysis supported by field observations, burn severity maps, and
continued vegetation index analysis is necessary to investigate whether the increase in
the highly and moderately burned areas is temporary or a lasting trend. This approach
can help identify the best locations, timing, and methods for implementing restoration
treatments and support efforts to restore vegetation to its pre-fire condition.
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4.2. Post-Fire Impacts on the Hydrological Response

The SWAT model was applied to investigate the effects of fire on the water balance
of a Mediterranean peri-urban catchment vulnerable to natural hazards. The main objec-
tive was to analyze the interactions between the major hydrological components and to
provide a methodology for integrating burn severity into SWAT modeling. The SWAT
model performed satisfactorily under pre-fire conditions at both daily and hourly time
scales, as indicated by the statistical analysis (Table 3). Better results were observed with
the daily interval compared to the hourly calibration and validation. These differences
can be attributed to the different runoff estimation methods employed by the two mod-
els [88]. The daily model used the CN method, while the hourly model used the GAML
method for surface runoff estimation. The GAML method requires detailed soil data and
high-resolution precipitation information. Additionally, it assumes that the soil profile
is homogeneous and that the previous soil moisture is uniformly distributed throughout
the profile [89]. Therefore, the method’s efficiency could be affected by uncertainties in
precipitation data resolution, soil heterogeneity, catchment size, and difficulties in param-
eterization [90–92]. Overall, the satisfactory model performance of the pre-fire scenario
indicates that the calibrated pre-fire model can be used as a suitable baseline for predicting
post-fire runoff.

Model calibration and validation could not be performed for post-fire conditions since
no discharge data were available, and only one hydrological year has passed since the
fire event. In addition, difficulties in installing and maintaining monitoring stations and
instruments in burned catchments during post-fire conditions make obtaining observed
discharge data challenging. The limited availability of data emphasizes the importance of
collecting such information for the scientific community and local communities to mitigate
potential post-fire impacts [4,93].

The post-fire scenario was calibrated using the pre-fire model’s calibrated values for
the areas unaffected by the fire (Table 4). In order to ensure an equal evaluation of the effects
of post-fire changes in land use and soil properties on the hydrological balance, both the
pre-fire and post-fire versions of the model were applied for the entire simulation period
(1 January 2028 to 31 December 2022). An increase in surface runoff was generally observed
at the subbasin scale following the occurrence of fire (Figures 8 and 9). The hydrographs
and the flow duration curves of the two models indicated higher peak discharges during
the post-fire period. Previous studies on flow duration curves for pre- and post-fire
scenarios have also found an increase in discharge due to the fire’s impact [41,94]. In
addition, this increase was evident from the analysis of maximum hourly discharges in
comparison to the maximum hourly rainfall intensity (mm/h) of rainfall events (Figure 10).
Higher peak discharges were observed during the same rainfall intensities for the post-
fire period. Similar results were found in previous studies that noted an enhancement
of the hydrological response during the post-fire period. A case study in the Zêzere
River catchment [4] and a case study in the Macieira de Alcôba mountain catchment [49] in
Portugal also indicated increased surface runoff and sediment concentration at the subbasin
level after the fire event.

Severe destruction of vegetation cover due to a high percentage of burn severity can
lead to reduced catchment evapotranspiration rates during the early post-fire period, while
differences in soil attributes can affect runoff generation mechanisms [3,6,95,96]. In this
study, in addition to surface runoff, water yield and percolation were also higher under
post-fire conditions, whereas actual evapotranspiration was lower (Figures 11 and 12).
These results align with previous research studies which mentioned decreases in evapo-
transpiration and increases in surface runoff due to the post-fire changes in land use cover
and soil characteristics [10,11,41,50]. For example, Zhou et al. [10], in a study of a bushfire
in southeast Australia, concluded that reduced evapotranspiration and soil infiltration led
to increased streamflow. Similarly, Havel et al. [41] reported higher surface runoff and
reduced subsurface flow. Poon and Kinoshita [11] and Soulis et al. [50] observed that the
loss of xerophytic bushes and trees with deep roots, replaced by grasslands, resulted in
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an overall decrease in evapotranspiration after the fire. Additionally, Pereira et al. [3] and
Wijesekara et al. [97] reported increased runoff peaks during wet periods and decreased
runoff during dry periods.

The limited research on post-fire vegetation recovery and hydrological responses
in Mediterranean regions highlights the important relationship between ecological and
hydrological processes in such fire-vulnerable ecosystems. A case study in Southern
California (characterized by a Mediterranean climate, Köppen Csa; hot, dry summers
and cool, wet winters) evaluated post-fire hydrological and vegetation recovery using
satellite data and local rainfall–runoff data, revealing how vegetation types and pre-fire
conditions shape recovery patterns [98]. The results showed that post-fire changes in
vegetation influence hydrological components, including an increase in surface runoff
and a decrease in actual evapotranspiration. Similarly, a study in central Chile showed
how fire severity combined with drought stressors affects forest recovery, indicating the
importance of managing these dual stressors for ecosystem resilience [99]. They concluded
that although Mediterranean ecosystems are characterized by their resilience to wildfires,
drought conditions and fire severity can create challenges for vegetation recovery. Both
findings highlight the need for integrating post-fire vegetation and hydrological monitoring
to guide management practices and enhance ecosystem resilience.

However, the increase in peak discharges can be attributed to a variety of factors,
including differences in soil hydraulic conductivity, rapid surface, and channel flow due to
vegetation destruction, antecedent conditions, and increased initial soil moisture resulting
from evapotranspiration reduction, grazing, and logging activities [36,37]. The discrepancy
between different resolutions of input data (i.e., soil, land use, elevation, climate, and
remote sensing data) could introduce uncertainties in SWAT simulation results by affecting
the spatial distribution of properties, model calibration, temporal dynamics, and model
sensitivity [100–102]. The use of input data with varying resolutions could potentially
affect the SWAT model’s ability to capture rapid changes in discharge following the fire
event. Identifying the mechanisms behind this phenomenon poses a significant challenge
that requires in-depth research. Such investigations may provide a more comprehensive
understanding of the hydrological response recovery process, the duration of the post-
fire recovery period, and the efficacy of various post-fire mitigation actions. Furthermore,
improving SWAT model calibration by incorporating discharge and soil moisture data into a
combined objective function, along with updated meteorological data and the integration of
different vegetation scenarios, is essential. This methodology can be applied to catchments
with different hydrological and geomorphological characteristics, enabling extended future
research into rainfall patterns and soil moisture conditions.

5. Conclusions

This study investigated the connection between burn severity and the vegetation and
hydrological response of a Mediterranean peri-urban system of high environmental and
socio-economic importance affected by a fire, using remote sensing data and hydrological
modeling. NDVI and MSAVI2 time series extracted from unburned control plots and
Vector Autoregression (VAR) model control plots provided a reliable and valuable tool to
evaluate the system’s vegetation regrowth after the fire. The SWAT model and detailed
hydro-meteorological data were also used to examine the hydrological response after the
fire. The main outcomes are summarized below:

• During the first post-fire year, vegetation showed slight recovery in highly burned
areas. The mean NDVI and MSAVI2 within the burned area were still lower than
those within the control plots. The analysis of the vegetation indices and burn severity
showed the different responses of each burn severity class regarding post-fire veg-
etation dynamics. The most significant increases in the NDVI and MSAVI2 were
observed in high- and moderate-burn-severity areas. The high-burn-severity areas
were associated with densely vegetated areas, emphasizing the influence of pre-fire
vegetation attributes on burn severity.
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• The SWAT model was calibrated only for pre-fire conditions, as discharge data were
unavailable after the fire. Despite limitations due to the absence of data, the SWAT
model proved to be an essential tool for investigating the effect of fire on the hydro-
logical components. In the post-fire conditions, an increase in surface runoff, water
yield, and percolation was observed, as well as a decrease in actual evapotranspiration.
The simulated hydrograph displayed higher peak discharges, particularly during the
wet period.

• The changes in post-fire land use and soil attributes were identified as the primary
drivers of the catchment’s water balance. However, identifying the mechanisms
controlling surface runoff remains challenging, as other factors could also be involved.

This study enhances the existing literature by investigating the vegetation and hydro-
logical response of an experimental catchment to assess the initial effects of a fire. There is
limited research on the interrelationships of vegetation recovery, hydrological response, and
burn severity. The preliminary results contribute to the understanding of Mediterranean
systems dynamics and highlight the complementary nature of vegetation recovery analysis
and hydrological modeling in understanding post-fire dynamics. Assessing burn severity
can also provide valuable insights for land management practices. It is important to ac-
knowledge that uncertainties in model outcomes may arise from various factors, including
data limitations, observational errors in input data, complexities in spatial and temporal
scales, and inaccuracies in model structure.
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