Exploring Transfer Learning for Anthropogenic Geomorphic Feature Extraction from Land Surface Parameters Using UNet
<p>(<b>a</b>) Location of 10 × 10 km USGS 3DEP tiles used in this study for which geomorphons were calculated; (<b>b</b>) training, validation, and testing extents for agricultural terrace (terraceDL) dataset [<a href="#B21-remotesensing-16-04670" class="html-bibr">21</a>] in Iowa, USA; (<b>c</b>) training, validation, and testing extents for surface coal mining valley fill face (vfillDL) dataset [<a href="#B22-remotesensing-16-04670" class="html-bibr">22</a>] in West Virginia, Kentucky, and Virginia, USA.</p> "> Figure 2
<p>Example agricultural terraces in Iowa, USA (<b>a</b>) and valley fill faces (<b>c</b>) in the Appalachian southern coalfields of the eastern United States. Red areas in (<b>a</b>,<b>c</b>) show the extents of terraces and valley fill faces, respectively, over a multidirectional hillshade. The LSPs used in this study are visualized in (<b>b</b>,<b>d</b>) (red = TPI calculated with a 50 m circular window; green = square root of slope; blue = TPI calculated with a 2 m inner and 5 m outer annulus window). Coordinates are relative to the NAD83 UTM Zone 15N projection for (<b>a</b>,<b>b</b>) and the NAD83 UTM Zone 17N projection for (<b>c</b>,<b>d</b>).</p> "> Figure 3
<p>Example land surface parameter (LSP) composite image chips (<b>a</b>) and associated geomorphon classifications (<b>b</b>). Chips were selected from random locations within the extent of the downloaded 3DEP DTM data. Each chip consists of 512 × 512 cells with a spatial resolution of 2 m.</p> "> Figure 4
<p>Conceptualization of UNet architecture [<a href="#B19-remotesensing-16-04670" class="html-bibr">19</a>] with the ResNet-34 [<a href="#B20-remotesensing-16-04670" class="html-bibr">20</a>] encoder backbone used in this study. E = encoder; D = decoder, CH = classification head, LSPs = land surface parameters; Conv = convolutional layer, BN = batch normalization, and ReLU = rectified linear unit.</p> "> Figure 5
<p>Example classification results using a random parameter initiation and 1000 training chips. (<b>a</b>) Multidirectional hillshade for example agricultural terrace classification; (<b>b</b>) reference agricultural terrace data; (<b>c</b>) agricultural terrace classification result; (<b>d</b>) multidirectional hillshade for example valley fill face classification; (<b>e</b>) reference valley fill face data; (<b>f</b>) valley fill face classification result; (<b>g</b>) multidirectional hillshade for example geomorphon classification; (<b>h</b>) reference geomorphon data; (<b>i</b>) geomorphon classification result.</p> "> Figure 6
<p>Training loss for terraceDL (<b>a</b>) and vfillDL (<b>b</b>) datasets using 1000 training samples, different weight initiations, and with the encoder frozen or unfrozen across all 50 training epochs. Magnified area shows results for epochs 40 through 50.</p> "> Figure 7
<p>Validation F1-score for terraceDL (<b>a</b>) and vfillDL (<b>b</b>) datasets using 1000 training samples, different weight initiations, and with the encoder frozen or unfrozen across all 50 training epochs. Magnified area shows results for epochs 40 through 50.</p> "> Figure 8
<p>Training loss for terraceDL (<b>a</b>) and vfillDL (<b>b</b>) datasets using varying training sample sizes, different weight initiations, and with the encoder frozen or unfrozen. Magnified area shows results for epochs 40 through 50.</p> "> Figure 9
<p>Validation F1-score for terraceDL (<b>a</b>) and vfillDL (<b>b</b>) datasets using varying training sample sizes, different weight initiations, and with the encoder frozen or unfrozen. Magnified area shows results for epochs 40 through 50.</p> "> Figure 10
<p>Assessment metrics calculated from the withheld test data for terraceDL (<b>top</b>) and vfillDL (<b>bottom</b>) datasets using different weight initiations and with the encoder frozen and unfrozen. Results reflect the experiment using 1000 training chips and the model parameters associated with the training epoch that provided the highest F1-score for the validation data.</p> "> Figure 11
<p>Assessment metrics for withheld test data for terraceDL dataset using different training sample sizes, weight initiations, and with the encoder frozen and unfrozen.</p> "> Figure 12
<p>Assessment metrics for withheld test data for vfillDL dataset using different training sample sizes, weight initiations, and with the encoder frozen and unfrozen.</p> "> Figure 13
<p>CKA analysis results for each convolutional layer in the architecture. Each graph represents a comparison of a pair of models. Each compared model was trained from a random initialization and using the largest training set available for the specific task. Since the ImageNet weights are not available for the decoder, the decoder blocks were not compared when ImageNet was included in the pair.</p> ">
Abstract
:1. Introduction
2. Background
2.1. Light Detection and Ranging (Lidar) and Land Surface Parameters (LSPs)
2.2. CNNs for Geomorphic Mapping
2.3. UNet Architecture
2.4. Transfer Learning
3. Methods
3.1. Study Areas and Datasets
3.2. Land Surface Parameters (LSPs)
3.3. Geomorphons
3.4. Chips and Data Partitions
3.5. Training Process
3.6. Model Assessment
4. Results
4.1. Performance Using 1000 Training Samples
4.2. Impact of Sample Size
4.3. Comparison of Test Set Predictions
4.4. CKA Analysis Results
5. Discussion
5.1. Key Findings
5.2. Limitations and Future Research
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hoeser, T.; Bachofer, F.; Kuenzer, C. Object Detection and Image Segmentation with Deep Learning on Earth Observation Data: A Review—Part II: Applications. Remote Sens. 2020, 12, 3053. [Google Scholar] [CrossRef]
- Hoeser, T.; Kuenzer, C. Object Detection and Image Segmentation with Deep Learning on Earth Observation Data: A Review-Part I: Evolution and Recent Trends. Remote Sens. 2020, 12, 1667. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Alem, A.; Kumar, S. Transfer Learning Models for Land Cover and Land Use Classification in Remote Sensing Image. Appl. Artif. Intell. 2022, 36, 2014192. [Google Scholar] [CrossRef]
- Ayyadevara, V.K.; Reddy, Y. Modern Computer Vision with PyTorch: Explore Deep Learning Concepts and Implement over 50 Real-World Image Applications; Packt Publishing Ltd.: Birmingham, UK, 2020. [Google Scholar]
- Ma, Y.; Chen, S.; Ermon, S.; Lobell, D.B. Transfer Learning in Environmental Remote Sensing. Remote Sens. Environ. 2024, 301, 113924. [Google Scholar] [CrossRef]
- Zhang, A.; Lipton, Z.C.; Li, M.; Smola, A.J. Dive into Deep Learning; Cambridge University Press: Cambridge, UK, 2023. [Google Scholar]
- Farhadpour, S.; Warner, T.A.; Maxwell, A.E. Selecting and Interpreting Multiclass Loss and Accuracy Assessment Metrics for Classifications with Class Imbalance: Guidance and Best Practices. Remote Sens. 2024, 16, 533. [Google Scholar] [CrossRef]
- Jadon, S. A Survey of Loss Functions for Semantic Segmentation. In Proceedings of the 2020 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), Viña del Mar, Chile, 27–29 October 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–7. [Google Scholar]
- Johnson, J.M.; Khoshgoftaar, T.M. Survey on Deep Learning with Class Imbalance. J. Big Data 2019, 6, 1–54. [Google Scholar] [CrossRef]
- Li, X.; Sun, X.; Meng, Y.; Liang, J.; Wu, F.; Li, J. Dice Loss for Data-Imbalanced NLP Tasks. arXiv 2020, arXiv:1911.02855. [Google Scholar]
- Maxwell, A.E.; Warner, T.A.; Guillén, L.A. Accuracy Assessment in Convolutional Neural Network-Based Deep Learning Remote Sensing Studies—Part 1: Literature Review. Remote Sens. 2021, 13, 2450. [Google Scholar] [CrossRef]
- Maxwell, A.E.; Warner, T.A.; Guillen, L.A. Accuracy Assessment in Convolutional Neural Network-Based Deep Learning Remote Sensing Studies—Part 2: Recommendations and Best Practices. Remote Sens. 2021, 13, 2591. [Google Scholar] [CrossRef]
- Sudre, C.H.; Li, W.; Vercauteren, T.; Ourselin, S.; Cardoso, M.J. Generalised Dice Overlap as a Deep Learning Loss Function for Highly Unbalanced Segmentations. In Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: Third International Workshop, DLMIA 2017, and 7th International Workshop, ML-CDS 2017, Held in Conjunction with MICCAI 2017, Québec City, QC, Canada, September 14, Proceedings 3; Springer International Publishing: Cham, Switzerland, 2017; Volume 10553, pp. 240–248. [Google Scholar]
- Maxwell, A.E.; Shobe, C.M. Land-Surface Parameters for Spatial Predictive Mapping and Modeling. Earth-Sci. Rev. 2022, 226, 103944. [Google Scholar] [CrossRef]
- Franklin, S.E. Interpretation and Use of Geomorphometry in Remote Sensing: A Guide and Review of Integrated Applications. Int. J. Remote Sens. 2020, 41, 7700–7733. [Google Scholar] [CrossRef]
- Wilhelm, T.; Geis, M.; Püttschneider, J.; Sievernich, T.; Weber, T.; Wohlfarth, K.; Wöhler, C. Domars16k: A Diverse Dataset for Weakly Supervised Geomorphologic Analysis on Mars. Remote Sens. 2020, 12, 3981. [Google Scholar] [CrossRef]
- Zhang, W.; Liljedahl, A.K.; Kanevskiy, M.; Epstein, H.E.; Jones, B.M.; Jorgenson, M.T.; Kent, K. Transferability of the Deep Learning Mask R-CNN Model for Automated Mapping of Ice-Wedge Polygons in High-Resolution Satellite and UAV Images. Remote Sens. 2020, 12, 1085. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015, Proceedings, Part III 18; Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. arXiv 2015, arXiv:1512.03385. [Google Scholar] [CrossRef]
- Maxwell, A. terraceDL: A Geomorphology Deep Learning Dataset of Agricultural Terraces in Iowa, USA, 2023. [CrossRef]
- Maxwell, A. vfillDL: A Geomorphology Deep Learning Dataset of Valley Fill Faces Resulting from Mountaintop Removal Coal Mining (Southern West Virginia, Eastern Kentucky, and Southwestern Virginia, USA), 2023. [CrossRef]
- Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Fei-Fei, L. Imagenet: A Large-Scale Hierarchical Image Database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; EEE: Piscataway, NJ, USA, 2009; pp. 248–255. [Google Scholar]
- Jasiewicz, J.; Stepinski, T.F. Geomorphons—A Pattern Recognition Approach to Classification and Mapping of Landforms. Geomorphology 2013, 182, 147–156. [Google Scholar] [CrossRef]
- Stepinski, T.F.; Jasiewicz, J. Geomorphons—A New Approach to Classification of Landforms. Proc. Geomorphometry 2011, 2011, 109–112. [Google Scholar]
- Sofia, G.; Fontana, G.D.; Tarolli, P. High-Resolution Topography and Anthropogenic Feature Extraction: Testing Geomorphometric Parameters in Floodplains. Hydrol. Process. 2014, 28, 2046–2061. [Google Scholar] [CrossRef]
- Tarolli, P. High-Resolution Topography for Understanding Earth Surface Processes: Opportunities and Challenges. Geomorphology 2014, 216, 295–312. [Google Scholar] [CrossRef]
- Jaboyedoff, M.; Oppikofer, T.; Abellán, A.; Derron, M.-H.; Loye, A.; Metzger, R.; Pedrazzini, A. Use of LIDAR in Landslide Investigations: A Review. Nat. Hazards 2012, 61, 5–28. [Google Scholar] [CrossRef]
- van Westen, C.J.; Castellanos, E.; Kuriakose, S.L. Spatial Data for Landslide Susceptibility, Hazard, and Vulnerability Assessment: An Overview. Eng. Geol. 2008, 102, 112–131. [Google Scholar] [CrossRef]
- Chase, A.F.; Chase, D.Z.; Fisher, C.T.; Leisz, S.J.; Weishampel, J.F. Geospatial Revolution and Remote Sensing LiDAR in Mesoamerican Archaeology. Proc. Natl. Acad. Sci. USA 2012, 109, 12916–12921. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Diaz, J.C.; Carter, W.E.; Shrestha, R.L.; Leisz, S.J.; Fisher, C.T.; González, A.M.; Thompson, D.; Elkins, S. Archaeological Prospection of North Eastern Honduras with Airborne Mapping LiDAR. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; pp. 902–905. [Google Scholar]
- Hesse, R. LiDAR-derived Local Relief Models—A new tool for archaeological prospection. Archaeol. Prospect. 2010, 17, 67–72. [Google Scholar] [CrossRef]
- Schindling, J.; Gibbes, C. LiDAR as a Tool for Archaeological Research: A Case Study. Archaeol. Anthropol. Sci. 2014, 6, 411–423. [Google Scholar] [CrossRef]
- Arundel, S.T.; Phillips, L.A.; Lowe, A.J.; Bobinmyer, J.; Mantey, K.S.; Dunn, C.A.; Constance, E.W.; Usery, E.L. Preparing The National Map for the 3D Elevation Program—Products, Process and Research. Cartogr. Geogr. Inf. Sci. 2015, 42, 40–53. [Google Scholar] [CrossRef]
- Maxwell, A.E.; Pourmohammadi, P.; Poyner, J.D. Mapping the Topographic Features of Mining-Related Valley Fills Using Mask R-CNN Deep Learning and Digital Elevation Data. Remote Sens. 2020, 12, 547. [Google Scholar] [CrossRef]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-Cnn. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2961–2969. [Google Scholar]
- Maxwell, A.E.; Odom, W.E.; Shobe, C.M.; Doctor, D.H.; Bester, M.S.; Ore, T. Exploring the Influence of Input Feature Space on CNN-Based Geomorphic Feature Extraction from Digital Terrain Data. Earth Space Sci. 2023, 10, e2023EA002845. [Google Scholar] [CrossRef]
- Long, J.; Shelhamer, E.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Haralick, R.M. On a Texture-Context Feature Extraction Algorithm for Remotely Sensed Imagery. In Proceedings of the 1971 IEEE Conference on Decision and Control, Miami Beach, FL, USA, 15–17 December 1971; pp. 650–657. [Google Scholar]
- Blaschke, T. Object Based Image Analysis for Remote Sensing. ISPRS J. Photogramm. Remote Sens. 2010, 65, 2–16. [Google Scholar] [CrossRef]
- Blaschke, T.; Hay, G.J.; Kelly, M.; Lang, S.; Hofmann, P.; Addink, E.; Queiroz Feitosa, R.; van der Meer, F.; van der Werff, H.; van Coillie, F.; et al. Geographic Object-Based Image Analysis—Towards a New Paradigm. ISPRS J. Photogramm. Remote Sens. 2014, 87, 180–191. [Google Scholar] [CrossRef]
- Chen, G.; Weng, Q.; Hay, G.J.; He, Y. Geographic Object-Based Image Analysis (GEOBIA): Emerging Trends and Future Opportunities. GISci. Remote Sens. 2018, 55, 159–182. [Google Scholar] [CrossRef]
- Ma, L.; Li, M.; Ma, X.; Cheng, L.; Du, P.; Liu, Y. A Review of Supervised Object-Based Land-Cover Image Classification. ISPRS J. Photogramm. Remote Sens. 2017, 130, 277–293. [Google Scholar] [CrossRef]
- Behrens, T.; Schmidt, K.; MacMillan, R.A.; Viscarra Rossel, R.A. Multi-Scale Digital Soil Mapping with Deep Learning. Sci. Rep. 2018, 8, 15244. [Google Scholar] [CrossRef] [PubMed]
- Drăguţ, L.; Blaschke, T. Automated Classification of Landform Elements Using Object-Based Image Analysis. Geomorphology 2006, 81, 330–344. [Google Scholar] [CrossRef]
- van der Meij, W.M.; Meijles, E.W.; Marcos, D.; Harkema, T.T.L.; Candel, J.H.J.; Maas, G.J. Comparing Geomorphological Maps Made Manually and by Deep Learning. Earth Surf. Process. Landf. 2022, 47, 1089–1107. [Google Scholar] [CrossRef]
- Dornik, A.; Drăguţ, L.; Urdea, P. Classification of Soil Types Using Geographic Object-Based Image Analysis and Random Forests. Pedosphere 2018, 28, 913–925. [Google Scholar] [CrossRef]
- Feizizadeh, B.; Kazemi Garajeh, M.; Blaschke, T.; Lakes, T. An Object Based Image Analysis Applied for Volcanic and Glacial Landforms Mapping in Sahand Mountain, Iran. CATENA 2021, 198, 105073. [Google Scholar] [CrossRef]
- Saha, K.; Wells, N.A.; Munro-Stasiuk, M. An Object-Oriented Approach to Automated Landform Mapping: A Case Study of Drumlins. Comput. Geosci. 2011, 37, 1324–1336. [Google Scholar] [CrossRef]
- Verhagen, P.; Drăguţ, L. Object-Based Landform Delineation and Classification from DEMs for Archaeological Predictive Mapping. J. Archaeol. Sci. 2012, 39, 698–703. [Google Scholar] [CrossRef]
- Huang, L.; Liu, L.; Jiang, L.; Zhang, T. Automatic Mapping of Thermokarst Landforms from Remote Sensing Images Using Deep Learning: A Case Study in the Northeastern Tibetan Plateau. Remote Sens. 2018, 10, 2067. [Google Scholar] [CrossRef]
- Zhang, W.; Witharana, C.; Liljedahl, A.K.; Kanevskiy, M. Deep Convolutional Neural Networks for Automated Characterization of Arctic Ice-Wedge Polygons in Very High Spatial Resolution Aerial Imagery. Remote Sens. 2018, 10, 1487. [Google Scholar] [CrossRef]
- Guyot, A.; Lennon, M.; Lorho, T.; Hubert-Moy, L. Combined Detection and Segmentation of Archeological Structures from LiDAR Data Using a Deep Learning Approach. J. Comput. Appl. Archaeol. 2021, 4, 1. [Google Scholar] [CrossRef]
- Guyot, A.; Hubert-Moy, L.; Lorho, T. Detecting Neolithic Burial Mounds from LiDAR-Derived Elevation Data Using a Multi-Scale Approach and Machine Learning Techniques. Remote Sens. 2018, 10, 225. [Google Scholar] [CrossRef]
- Shumack, S.; Hesse, P.; Farebrother, W. Deep Learning for Dune Pattern Mapping with the AW3D30 Global Surface Model. Earth Surf. Process. Landf. 2020, 45, 2417–2431. [Google Scholar] [CrossRef]
- Trier, Ø.D.; Cowley, D.C.; Waldeland, A.U. Using Deep Neural Networks on Airborne Laser Scanning Data: Results from a Case Study of Semi-Automatic Mapping of Archaeological Topography on Arran, Scotland. Archaeol. Prospect. 2019, 26, 165–175. [Google Scholar] [CrossRef]
- Xu, Y.; Zhu, H.; Hu, C.; Liu, H.; Cheng, Y. Deep Learning of DEM Image Texture for Landform Classification in the Shandong Area, China. Front. Earth Sci. 2021, 16, 352–367. [Google Scholar] [CrossRef]
- Li, S.; Xiong, L.; Tang, G.; Strobl, J. Deep Learning-Based Approach for Landform Classification from Integrated Data Sources of Digital Elevation Model and Imagery. Geomorphology 2020, 354, 107045. [Google Scholar] [CrossRef]
- Robson, B.A.; Bolch, T.; MacDonell, S.; Hölbling, D.; Rastner, P.; Schaffer, N. Automated Detection of Rock Glaciers Using Deep Learning and Object-Based Image Analysis. Remote Sens. Environ. 2020, 250, 112033. [Google Scholar] [CrossRef]
- Schönfeldt, E.; Winocur, D.; Pánek, T.; Korup, O. Deep Learning Reveals One of Earth’s Largest Landslide Terrain in Patagonia. Earth Planet. Sci. Lett. 2022, 593, 117642. [Google Scholar] [CrossRef]
- Xie, Z.; Haritashya, U.K.; Asari, V.K.; Young, B.W.; Bishop, M.P.; Kargel, J.S. GlacierNet: A Deep-Learning Approach for Debris-Covered Glacier Mapping. IEEE Access 2020, 8, 83495–83510. [Google Scholar] [CrossRef]
- Zhong, J.; Sun, J.; Lai, Z. ICESat-2 and Multi-Spectral Images Based Coral Reefs Geomorphic Zone Mapping Using a Deep Learning Approach. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 6085–6098. [Google Scholar] [CrossRef]
- Du, L.; You, X.; Li, K.; Meng, L.; Cheng, G.; Xiong, L.; Wang, G. Multi-Modal Deep Learning for Landform Recognition. ISPRS J. Photogramm. Remote Sens. 2019, 158, 63–75. [Google Scholar] [CrossRef]
- Janowski, L.; Tylmann, K.; Trzcinska, K.; Rudowski, S.; Tegowski, J. Exploration of Glacial Landforms by Object-Based Image Analysis and Spectral Parameters of Digital Elevation Model. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–17. [Google Scholar] [CrossRef]
- Salas, E.; Argialas, D. Automatic Identification of Marine Geomorphologic Features Using Convolutional Neural Networks in Seafloor Digital Elevation Models: Segmentation of DEM for Marine Geomorphologic Feature Mapping with Deep Learning Algorithms. In Proceedings of the 12th Hellenic Conference on Artificial Intelligence, Corfu, Greece, 7–9 September 2022; pp. 1–8. [Google Scholar]
- Padarian, J.; Minasny, B.; McBratney, A.B. Using Deep Learning for Digital Soil Mapping. Soil 2019, 5, 79–89. [Google Scholar] [CrossRef]
- Habumugisha, J.M.; Chen, N.; Rahman, M.; Islam, M.M.; Ahmad, H.; Elbeltagi, A.; Sharma, G.; Liza, S.N.; Dewan, A. Landslide Susceptibility Mapping with Deep Learning Algorithms. Sustainability 2022, 14, 1734. [Google Scholar] [CrossRef]
- Huang, F.; Zhang, J.; Zhou, C.; Wang, Y.; Huang, J.; Zhu, L. A Deep Learning Algorithm Using a Fully Connected Sparse Autoencoder Neural Network for Landslide Susceptibility Prediction. Landslides 2020, 17, 217–229. [Google Scholar] [CrossRef]
- Odom, W.; Doctor, D. Rapid Estimation of Minimum Depth-to-Bedrock from Lidar Leveraging Deep-Learning-Derived Surficial Material Maps. Appl. Comput. Geosci. 2023, 18, 100116. [Google Scholar] [CrossRef]
- Suh, J.W.; Anderson, E.; Ouimet, W.; Johnson, K.M.; Witharana, C. Mapping Relict Charcoal Hearths in New England Using Deep Convolutional Neural Networks and LiDAR Data. Remote Sens. 2021, 13, 4630. [Google Scholar] [CrossRef]
- Banasiak, P.Z.; Berezowski, P.L.; Zapłata, R.; Mielcarek, M.; Duraj, K.; Stereńczak, K. Semantic Segmentation (U-Net) of Archaeological Features in Airborne Laser Scanning—Example of the Białowieża Forest. Remote Sens. 2022, 14, 995. [Google Scholar] [CrossRef]
- Chen, L.-C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 801–818. [Google Scholar]
- Chen, Z.; Zhang, T.; Ouyang, C. End-to-End Airplane Detection Using Transfer Learning in Remote Sensing Images. Remote Sens. 2018, 10, 139. [Google Scholar] [CrossRef]
- Brown, C.F.; Brumby, S.P.; Guzder-Williams, B.; Birch, T.; Hyde, S.B.; Mazzariello, J.; Czerwinski, W.; Pasquarella, V.J.; Haertel, R.; Ilyushchenko, S.; et al. Dynamic World, Near Real-Time Global 10 m Land Use Land Cover Mapping. Sci. Data 2022, 9, 251. [Google Scholar] [CrossRef]
- Hu, K.; Zhang, D.; Xia, M. CDUNet: Cloud Detection UNet for Remote Sensing Imagery. Remote Sens. 2021, 13, 4533. [Google Scholar] [CrossRef]
- Rastogi, K.; Bodani, P.; Sharma, S.A. Automatic Building Footprint Extraction from Very High-Resolution Imagery Using Deep Learning Techniques. Geocarto Int. 2022, 37, 1501–1513. [Google Scholar] [CrossRef]
- Maxwell, A.E.; Bester, M.S.; Guillen, L.A.; Ramezan, C.A.; Carpinello, D.J.; Fan, Y.; Hartley, F.M.; Maynard, S.M.; Pyron, J.L. Semantic Segmentation Deep Learning for Extracting Surface Mine Extents from Historic Topographic Maps. Remote Sens. 2020, 12, 4145. [Google Scholar] [CrossRef]
- Cao, K.; Zhang, X. An Improved Res-Unet Model for Tree Species Classification Using Airborne High-Resolution Images. Remote Sens. 2020, 12, 1128. [Google Scholar] [CrossRef]
- Wei, S.; Zhang, H.; Wang, C.; Wang, Y.; Xu, L. Multi-Temporal SAR Data Large-Scale Crop Mapping Based on U-Net Model. Remote Sens. 2019, 11, 68. [Google Scholar] [CrossRef]
- Agarap, A.F. Deep Learning Using Rectified Linear Units (Relu). arXiv 2018, arXiv:1803.08375. [Google Scholar]
- Sharma, S.; Sharma, S.; Athaiya, A. Activation Functions in Neural Networks. Towards Data Sci. 2017, 6, 310–316. [Google Scholar] [CrossRef]
- Bjorck, J.; Gomes, C.; Selman, B.; Weinberger, K.Q. Understanding Batch Normalization. arXiv 2018, arXiv:1806.02375. [Google Scholar]
- Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In Proceedings of the International Conference on Machine Learning, PMLR, Lille, France, 6–11 July 2015; pp. 448–456. [Google Scholar]
- Luo, P.; Wang, X.; Shao, W.; Peng, Z. Towards Understanding Regularization in Batch Normalization. arXiv 2018, arXiv:1809.00846. [Google Scholar]
- Bengio, Y. Deep Learning of Representations for Unsupervised and Transfer Learning. In Proceedings of the ICML Workshop on Unsupervised and Transfer Learning, Bellevue, WA, USA, 2 July 2012; JMLR Workshop and Conference Proceedings. pp. 17–36. [Google Scholar]
- Krishna, S.T.; Kalluri, H.K. Deep Learning and Transfer Learning Approaches for Image Classification. Int. J. Recent Technol. Eng. (IJRTE) 2019, 7, 427–432. [Google Scholar]
- Li, W.; Wang, Z.; Wang, Y.; Wu, J.; Wang, J.; Jia, Y.; Gui, G. Classification of High-Spatial-Resolution Remote Sensing Scenes Method Using Transfer Learning and Deep Convolutional Neural Network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 1986–1995. [Google Scholar] [CrossRef]
- Zhao, B.; Huang, B.; Zhong, Y. Transfer Learning With Fully Pretrained Deep Convolution Networks for Land-Use Classification. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1436–1440. [Google Scholar] [CrossRef]
- Davari Majd, R.; Momeni, M.; Moallem, P. Transferable Object-Based Framework Based on Deep Convolutional Neural Networks for Building Extraction. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 2627–2635. [Google Scholar] [CrossRef]
- Prakash, P.S.; Soni, J.; Bharath, H.A. Building Extraction from Remote Sensing Images Using Deep Learning and Transfer Learning. In Proceedings of the IGARSS 2022—2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 3079–3082. [Google Scholar]
- 3D Elevation Program|U.S. Geological Survey. Available online: https://www.usgs.gov/3d-elevation-program (accessed on 21 May 2024).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- Mcneely, R.; Logan, A.A.; Obrecht, J.; Giglierano, J.; Wolter, C. Iowa Best Management Practices (BMP) Mapping Project Handbook; Iowa State University (ISU): Ames, IA, USA, 2017; 37p. [Google Scholar]
- Miller, A.J.; Zégre, N.P. Mountaintop Removal Mining and Catchment Hydrology. Water 2014, 6, 472–499. [Google Scholar] [CrossRef]
- Palmer, M.A.; Bernhardt, E.S.; Schlesinger, W.H.; Eshleman, K.N.; Foufoula-Georgiou, E.; Hendryx, M.S.; Lemly, A.D.; Likens, G.E.; Loucks, O.L.; Power, M.E.; et al. Mountaintop Mining Consequences. Science 2010, 327, 148–149. [Google Scholar] [CrossRef]
- Ross, M.R.V.; McGlynn, B.L.; Bernhardt, E.S. Deep Impact: Effects of Mountaintop Mining on Surface Topography, Bedrock Structure, and Downstream Waters. Environ. Sci. Technol. 2016, 50, 2064–2074. [Google Scholar] [CrossRef]
- Wickham, J.; Wood, P.B.; Nicholson, M.C.; Jenkins, W.; Druckenbrod, D.; Suter, G.W.; Strager, M.P.; Mazzarella, C.; Galloway, W.; Amos, J. The Overlooked Terrestrial Impacts of Mountaintop Mining. BioScience 2013, 63, 335–348. [Google Scholar] [CrossRef]
- Hijmans, R.J. Terra: Spatial Data Analysis; 2024. Available online: https://cran.r-project.org/web/packages/terra/index.html (accessed on 18 May 2024).
- Ilich, A.R.; Misiuk, B.; Lecours, V.; Murawski, S.A. MultiscaleDTM 2021. Available online: https://cran.r-project.org/web/packages/MultiscaleDTM/index.html (accessed on 18 May 2024).
- Whitebox Geospatial. Available online: https://www.whiteboxgeo.com/ (accessed on 18 May 2024).
- Lindsay, J.B. Whitebox GAT: A Case Study in Geomorphometric Analysis. Comput. Geosci. 2016, 95, 75–84. [Google Scholar] [CrossRef]
- PyTorch. Available online: https://pytorch.org/ (accessed on 30 October 2023).
- Welcome to Python.Org. Available online: https://www.python.org/ (accessed on 17 October 2022).
- CUDA Deep Neural Network (cuDNN)|NVIDIA Developer. Available online: https://developer.nvidia.com/cudnn (accessed on 30 October 2023).
- CUDA Toolkit—Free Tools and Training. Available online: https://developer.nvidia.com/cuda-toolkit (accessed on 30 October 2023).
- Iakubovskii, P. Segmentation Models Pytorch. GitHub Repos. 2019. [Google Scholar]
- Loshchilov, I.; Hutter, F. Decoupled Weight Decay Regularization. arXiv 2017, arXiv:1711.05101. [Google Scholar]
- Smith, L.N. Cyclical Learning Rates for Training Neural Networks. In Proceedings of the 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), Santa Rosa, CA, USA, 24–31 March 2017; pp. 464–472. [Google Scholar]
- Smith, L.N.; Topin, N. Super-Convergence: Very Fast Training of Neural Networks Using Large Learning Rates. In Proceedings of the Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications, Baltimore, MD, USA, 15–17 April 2019; International Society for Optics and Photonics: Bellingham, WA, USA, 2019; Volume 11006, p. 1100612. [Google Scholar]
- Phan, T.H.; Yamamoto, K. Resolving Class Imbalance in Object Detection with Weighted Cross Entropy Losses. arXiv 2020, arXiv:2006.01413. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Abraham, N.; Khan, N.M. A Novel Focal Tversky Loss Function with Improved Attention U-Net for Lesion Segmentation. arXiv 2018, arXiv:1810.07842. [Google Scholar]
- Hashemi, S.R.; Salehi, S.S.M.; Erdogmus, D.; Prabhu, S.P.; Warfield, S.K.; Gholipour, A. Tversky as a Loss Function for Highly Unbalanced Image Segmentation Using 3d Fully Convolutional Deep Networks. arXiv 2018, arXiv:1803.11078. [Google Scholar]
- Ma, J.; Chen, J.; Ng, M.; Huang, R.; Li, Y.; Li, C.; Yang, X.; Martel, A.L. Loss Odyssey in Medical Image Segmentation. Med. Image Anal. 2021, 71, 102035. [Google Scholar] [CrossRef]
- Tharwat, A. Classification Assessment Methods. Appl. Comput. Inform. 2020, 17, 168–192. [Google Scholar] [CrossRef]
- Kornblith, S.; Norouzi, M.; Lee, H.; Hinton, G. Similarity of Neural Network Representations Revisited. In Proceedings of the International Conference on Machine Learning; PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 3519–3529. [Google Scholar]
- Nguyen, T.; Raghu, M.; Kornblith, S. Do Wide and Deep Networks Learn the Same Things? Uncovering How Neural Network Representations Vary with Width and Depth. arXiv 2020, arXiv:2010.15327. [Google Scholar]
- Kim, D. Numpee/CKA.Pytorch. 2024. Available online: https://github.com/numpee/CKA.pytorch (accessed on 21 May 2024).
- Lin, T.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C. Microsoft Coco: Common Objects in Context. In Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6–12, 2014, Proceedings, Part V 13; Springer: Cham, Switzerland, 2014; pp. 740–755. [Google Scholar]
- Kawaguchi, K.; Kaelbling, L.P.; Bengio, Y. Generalization in Deep Learning. arXiv 2017, arXiv:1710.05468. [Google Scholar]
- Penatti, O.A.; Nogueira, K.; Dos Santos, J.A. Do Deep Features Generalize from Everyday Objects to Remote Sensing and Aerial Scenes Domains? In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Boston, MA, USA, 7–12 June 2015; pp. 44–51. [Google Scholar]
- Schwindt, S.; Meisinger, L.; Negreiros, B.; Schneider, T.; Nowak, W. Transfer Learning Achieves High Recall for Object Classification in Fluvial Environments with Limited Data. Geomorphology 2024, 455, 109185. [Google Scholar] [CrossRef]
- Maxwell, A.E.; Bester, M.S.; Ramezan, C.A. Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sens. 2022, 14, 5760. [Google Scholar] [CrossRef]
- Krishnan, S.; Crosby, C.; Nandigam, V.; Phan, M.; Cowart, C.; Baru, C.; Arrowsmith, R. OpenTopography: A Services Oriented Architecture for Community Access to LIDAR Topography. In Proceedings of the 2nd International Conference on Computing for Geospatial Research & Applications, Washington, DC, USA, 23–25 May 2011; pp. 1–8. [Google Scholar]
- Mai, G.; Huang, W.; Sun, J.; Song, S.; Mishra, D.; Liu, N.; Gao, S.; Liu, T.; Cong, G.; Hu, Y.; et al. On the Opportunities and Challenges of Foundation Models for Geospatial Artificial Intelligence. arXiv 2023, arXiv:2304.06798. [Google Scholar]
- Mai, G.; Cundy, C.; Choi, K.; Hu, Y.; Lao, N.; Ermon, S. Towards a Foundation Model for Geospatial Artificial Intelligence (Vision Paper). In Proceedings of the 30th International Conference on Advances in Geographic Information Systems, Seattle, WA, USA, 1–4 November 2022; Association for Computing Machinery: New York, NY, USA, 2022; pp. 1–4. [Google Scholar]
- Mendieta, M.; Han, B.; Shi, X.; Zhu, Y.; Chen, C. Towards Geospatial Foundation Models via Continual Pretraining. In Proceedings of the Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 2–6 October 2023; pp. 16806–16816. [Google Scholar]
- Vaswani, A. Attention Is All You Need. In Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Dosovitskiy, A. An Image Is Worth 16x16 Words: Transformers for Image Recognition at Scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Xie, E.; Wang, W.; Yu, Z.; Anandkumar, A.; Alvarez, J.M.; Luo, P. SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers. Adv. Neural Inf. Process. Syst. 2021, 34, 12077–12090. [Google Scholar]
Dataset | Training | Validation | Testing |
---|---|---|---|
Agricultural terraces | 66,000 | 15,505 | 26,453 |
Valley fill faces | 1105 | 304 | 874 |
Dataset | Training | Validation | Testing |
---|---|---|---|
Geomorphons | 28,800 | 6228 | 7200 |
Agricultural terraces | 50, 100, 250, 500, 750, 1000 | 1488 | 4183 |
Valley fill faces | 50, 100, 250, 500, 750, 1000 | 226 | 620 |
Name | Input(s) | Layer | Input Shape | Output Shape | Parameters |
---|---|---|---|---|---|
Input | - | LSPs | [MB, 3, 512, 512] | - | |
E1 | Input | 7 × 7 2D Conv (stride = 2) + BN + ReLU | [MB, 3, 512, 512] | [MB, 64, 256, 256] | 9536 |
E2 | E1 | 2 × 2 2D max pool (stride = 2) | [MB, 64, 256, 256] | [MB, 64, 128, 128] | - |
ResNet block | [MB, 64, 128, 128] | [MB, 64, 128, 128] | 73,984 | ||
ResNet block | [MB, 64, 128, 128] | [MB, 64, 128, 128] | 73,984 | ||
ResNet block | [MB, 64, 128, 128] | [MB, 64, 128, 128] | 73,984 | ||
E3 | E2 | ResNet block + dowsample | [MB, 64, 128, 128] | [MB, 64, 64, 64] | 230,144 |
ResNet block | [MB, 64, 128, 128] | [MB, 128, 64, 64] | 295,424 | ||
ResNet block | [MB, 64, 128, 128] | [MB, 128, 64, 64] | 295,424 | ||
ResNet block | [MB, 64, 128, 128] | [MB, 128, 64, 64] | 295,424 | ||
E4 | E3 | ResNet block + downsample | [MB, 128, 64, 64] | [MB, 256, 32, 32] | 919,040 |
ResNet block | [MB, 256, 32, 32] | [MB, 256, 32, 32] | 1,180,672 | ||
ResNet block | [MB, 256, 32, 32] | [MB, 256, 32, 32] | 1,180,672 | ||
ResNet block | [MB, 256, 32, 32] | [MB, 256, 32, 32] | 1,180,672 | ||
ResNet block | [MB, 256, 32, 32] | [MB, 256, 32, 32] | 1,180,672 | ||
ResNet block | [MB, 256, 32, 32] | [MB, 256, 32, 32] | 1,180,672 | ||
E5 | E4 | ResNet block + downsample | [MB, 256, 32, 32] | [MB, 512, 16, 16] | 3,673,088 |
ResNet block | [MB, 512, 16, 16] | [MB, 512, 16, 16] | 4,720,640 | ||
ResNet block | [MB, 512, 16, 16] | [MB, 512, 16, 16] | 4,720,640 | ||
D1 | E5 + E4 | Decoder block 1 | [MB, 256 + 512, 32, 32] | [MB, 256, 32, 32] | 2,360,320 |
D2 | D1 + E3 | Decoder block 2 | [MB,128 + 256, 64, 64] | [MB, 128, 64, 64] | 590,336 |
D3 | D2 + E2 | Decoder block 3 | [MB, 64 + 128, 128, 128] | [MB, 64, 128, 128] | 147,712 |
D4 | D3 + E1 | Decoder block 4 | [MB, 64 + 64, 128, 128] | [MB, 32, 256, 256] | 46,208 |
D5 | D4 | Decoder block 5 | [MB, 32, 512, 512] | [MB, 16, 512, 512] | 6976 |
CH | D5 | Classification head | [MB, 16, 512, 512] | [MB, 1, 512, 512] | 145 |
Total | 24,436,369 |
Dataset | Initiation | Frozen | Unfrozen |
---|---|---|---|
terraceDL | Random | X | |
Geomorphons | X | X | |
vfillDL | X | X | |
ImageNet | X | X | |
vfillDL | Random | X | |
Geomorphons | X | X | |
terraceDL | X | X | |
ImageNet | X | X |
Metric | Equation |
---|---|
Overall Accuracy (OA) | |
Recall | |
Precision | |
F1-Score |
Initiation | Frozen/Unfrozen | Training Sample Size (Number of Chips) | OA | F1-Score | Recall | Precision |
---|---|---|---|---|---|---|
Random | Unfrozen | 50 | 0.982 | 0.367 | 0.456 | 0.308 |
100 | 0.989 | 0.457 | 0.395 | 0.541 | ||
250 | 0.989 | 0.497 | 0.447 | 0.560 | ||
500 | 0.990 | 0.525 | 0.489 | 0.566 | ||
750 | 0.990 | 0.531 | 0.490 | 0.579 | ||
1000 | 0.990 | 0.548 | 0.536 | 0.560 | ||
ImageNet | Frozen | 50 | 0.985 | 0.432 | 0.473 | 0.398 |
100 | 0.988 | 0.486 | 0.470 | 0.505 | ||
250 | 0.990 | 0.507 | 0.455 | 0.571 | ||
500 | 0.990 | 0.527 | 0.489 | 0.571 | ||
750 | 0.990 | 0.532 | 0.489 | 0.582 | ||
1000 | 0.990 | 0.548 | 0.522 | 0.577 | ||
Unfrozen | 50 | 0.986 | 0.454 | 0.490 | 0.423 | |
100 | 0.987 | 0.485 | 0.523 | 0.451 | ||
250 | 0.990 | 0.484 | 0.404 | 0.602 | ||
500 | 0.990 | 0.528 | 0.475 | 0.595 | ||
750 | 0.990 | 0.534 | 0.486 | 0.591 | ||
1000 | 0.990 | 0.544 | 0.504 | 0.592 | ||
Geomorphons | Frozen | 50 | 0.985 | 0.308 | 0.289 | 0.331 |
100 | 0.984 | 0.371 | 0.392 | 0.352 | ||
250 | 0.987 | 0.412 | 0.399 | 0.425 | ||
500 | 0.988 | 0.451 | 0.427 | 0.478 | ||
750 | 0.988 | 0.460 | 0.435 | 0.489 | ||
1000 | 0.988 | 0.469 | 0.437 | 0.508 | ||
Unfrozen | 50 | 0.981 | 0.290 | 0.336 | 0.255 | |
100 | 0.987 | 0.357 | 0.315 | 0.413 | ||
250 | 0.987 | 0.392 | 0.352 | 0.442 | ||
500 | 0.988 | 0.439 | 0.392 | 0.499 | ||
750 | 0.989 | 0.454 | 0.393 | 0.538 | ||
1000 | 0.989 | 0.456 | 0.397 | 0.534 | ||
vfillDL | Frozen | 50 | 0.980 | 0.348 | 0.445 | 0.285 |
100 | 0.987 | 0.425 | 0.415 | 0.435 | ||
250 | 0.989 | 0.456 | 0.409 | 0.515 | ||
500 | 0.988 | 0.476 | 0.477 | 0.475 | ||
750 | 0.989 | 0.491 | 0.462 | 0.522 | ||
1000 | 0.989 | 0.506 | 0.489 | 0.524 | ||
Unfrozen | 50 | 0.986 | 0.372 | 0.366 | 0.379 | |
100 | 0.987 | 0.427 | 0.400 | 0.458 | ||
250 | 0.988 | 0.463 | 0.427 | 0.505 | ||
500 | 0.989 | 0.485 | 0.433 | 0.551 | ||
750 | 0.989 | 0.495 | 0.441 | 0.562 | ||
1000 | 0.990 | 0.501 | 0.447 | 0.570 |
Initiation | Frozen/Unfrozen | Training Sample Size (Number of Chips) | OA | F1-Score | Recall | Precision |
---|---|---|---|---|---|---|
Random | Unfrozen | 50 | 0.966 | 0.574 | 0.519 | 0.642 |
100 | 0.972 | 0.631 | 0.540 | 0.758 | ||
250 | 0.974 | 0.683 | 0.631 | 0.745 | ||
500 | 0.975 | 0.686 | 0.619 | 0.770 | ||
750 | 0.976 | 0.696 | 0.620 | 0.792 | ||
1000 | 0.976 | 0.709 | 0.652 | 0.776 | ||
ImageNet | Frozen | 50 | 0.966 | 0.540 | 0.452 | 0.670 |
100 | 0.970 | 0.601 | 0.505 | 0.744 | ||
250 | 0.972 | 0.625 | 0.514 | 0.797 | ||
500 | 0.973 | 0.637 | 0.524 | 0.812 | ||
750 | 0.975 | 0.676 | 0.591 | 0.788 | ||
1000 | 0.975 | 0.672 | 0.575 | 0.809 | ||
Unfrozen | 50 | 0.969 | 0.548 | 0.417 | 0.798 | |
100 | 0.972 | 0.624 | 0.513 | 0.795 | ||
250 | 0.975 | 0.662 | 0.555 | 0.821 | ||
500 | 0.976 | 0.688 | 0.586 | 0.835 | ||
750 | 0.977 | 0.698 | 0.596 | 0.844 | ||
1000 | 0.977 | 0.705 | 0.620 | 0.819 | ||
Geomorphons | Frozen | 50 | 0.916 | 0.374 | 0.563 | 0.280 |
100 | 0.954 | 0.469 | 0.453 | 0.487 | ||
250 | 0.963 | 0.504 | 0.416 | 0.639 | ||
500 | 0.967 | 0.531 | 0.412 | 0.746 | ||
750 | 0.968 | 0.577 | 0.483 | 0.718 | ||
1000 | 0.970 | 0.592 | 0.482 | 0.768 | ||
Unfrozen | 50 | 0.956 | 0.372 | 0.295 | 0.505 | |
100 | 0.961 | 0.418 | 0.311 | 0.638 | ||
250 | 0.965 | 0.480 | 0.367 | 0.695 | ||
500 | 0.965 | 0.572 | 0.526 | 0.628 | ||
750 | 0.969 | 0.560 | 0.444 | 0.758 | ||
1000 | 0.970 | 0.610 | 0.523 | 0.734 | ||
terraceDL | Frozen | 50 | 0.969 | 0.559 | 0.444 | 0.753 |
100 | 0.970 | 0.598 | 0.495 | 0.756 | ||
250 | 0.971 | 0.604 | 0.495 | 0.774 | ||
500 | 0.973 | 0.654 | 0.573 | 0.763 | ||
750 | 0.973 | 0.638 | 0.542 | 0.776 | ||
1000 | 0.973 | 0.647 | 0.547 | 0.791 | ||
Unfrozen | 50 | 0.970 | 0.599 | 0.505 | 0.736 | |
100 | 0.971 | 0.615 | 0.511 | 0.771 | ||
250 | 0.973 | 0.644 | 0.546 | 0.785 | ||
500 | 0.974 | 0.657 | 0.558 | 0.798 | ||
750 | 0.974 | 0.673 | 0.603 | 0.762 | ||
1000 | 0.974 | 0.675 | 0.597 | 0.776 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maxwell, A.E.; Farhadpour, S.; Ali, M. Exploring Transfer Learning for Anthropogenic Geomorphic Feature Extraction from Land Surface Parameters Using UNet. Remote Sens. 2024, 16, 4670. https://doi.org/10.3390/rs16244670
Maxwell AE, Farhadpour S, Ali M. Exploring Transfer Learning for Anthropogenic Geomorphic Feature Extraction from Land Surface Parameters Using UNet. Remote Sensing. 2024; 16(24):4670. https://doi.org/10.3390/rs16244670
Chicago/Turabian StyleMaxwell, Aaron E., Sarah Farhadpour, and Muhammad Ali. 2024. "Exploring Transfer Learning for Anthropogenic Geomorphic Feature Extraction from Land Surface Parameters Using UNet" Remote Sensing 16, no. 24: 4670. https://doi.org/10.3390/rs16244670
APA StyleMaxwell, A. E., Farhadpour, S., & Ali, M. (2024). Exploring Transfer Learning for Anthropogenic Geomorphic Feature Extraction from Land Surface Parameters Using UNet. Remote Sensing, 16(24), 4670. https://doi.org/10.3390/rs16244670