Runoff Characteristics and Their Response to Meteorological Condition in the Yarlung Zangbo River Basin: Spatial Heterogeneity Due to the Glacier Coverage Difference
"> Figure 1
<p>The distribution of hydrological stations in the Yarlung Zangbo River Basin and the subbasins controlled by each station.</p> "> Figure 2
<p>Schematic diagram of glacier module. P represents precipitation, SF represents snowfall, T<sub>av</sub> is the daily average temperature, SFTMP is the critical temperature at which snowfall occurs. S is the sublimation rate of ice/snow, M is the melt rate of ice/snow, and F represents the turnover rate of snow to ice. f is the refreezing proportion after ice melting and W represents the water equivalent of ice/snow.</p> "> Figure 3
<p>The spatial distributions of soil type (<b>a</b>) and land use (<b>b</b>) over the study area.</p> "> Figure 4
<p>Contribution of seasonal runoff at each station. The four boxes in each row represent the contribution of seasonal runoff at the nine stations in the study area.</p> "> Figure 5
<p>Monthly timestep parameter sensitivity assessment for nine stations in the YZRB. Yellow indicates higher sensitivity of the parameter, green corresponds to lower sensitivity, and black patches denote parameters considered insensitive at that station and not considered in subsequent model tuning processes.</p> "> Figure 6
<p>Monthly observed and simulated runoff trends from 2003 to 2016 for the nine stations in the YZRB. The slope coefficient is provided for both observed runoff (in red) and simulated runoff using the SWAT-glac model (in green). The dashed blue line separates the runoff calibration and validation time periods.</p> "> Figure 7
<p>Monthly average simulated rainfall, snowmelt, glacier, and groundwater runoff at each station in the YZRB from 2003 to 2016, along with their contributions to annual runoff.</p> "> Figure 8
<p>Distribution of simulated average monthly runoff at each station. The solid black line represents the error bars of average monthly runoff.</p> "> Figure 9
<p>Bivariate scatterplot matrix of simulated runoff versus precipitation, maximum and minimum temperatures for the five meteorological stations. The five stations are divided into two graphs to illustrate the content conveyed by the graphs: the left graph compares the Lazi, Rikaze, and Lhasa stations, while the right graph compares the Linzhi and Bomi stations.</p> "> Figure 10
<p>Correlation between monthly average simulated glacier runoff and monthly total precipitation and monthly average air temperature at each station. Black circles represent the correlation between glacier runoff and precipitation, while red circles represent the correlation between glacier runoff and monthly average air temperature.</p> ">
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data and Analysis
3. Model Development
3.1. Coupling Glacier Module with the SWAT Model
3.2. The SWAT-Glac Model Set-Up
3.3. Model Parameters
3.4. Assessment Criteria
3.5. Runoff Components
4. Results
4.1. Sensitivity Analysis Results
4.2. Model Performance
4.3. Runoff and Corresponding Components
4.4. Runoff Process Analysis
4.4.1. Variability in Regional Runoff
4.4.2. Impacts of Precipitation on Runoff
4.4.3. Impacts of Air Temperature on Runoff
5. Discussions
5.1. Localized Model Parameters Suggest the Impact Glaciers on Runoff Processes
5.2. Runoff Components of YZRB Under the Impact of Different Glacier Coverage
Region | Relevant Studies | Period | Model | Runoff Contribution (%) | |||
---|---|---|---|---|---|---|---|
PRE | SNO | GLA | GWQ | ||||
NX | Zhang et al. [5] | 1961–1999 | VIC+DD | 65.4 | 23 | 11.6 | - |
Lutz et al. [22] | 1998–2007 | SPHY | 59 | 9 | 16 | 16 | |
Su et al. [33] | 1971–2000 | VIC+DD | 57.7 | 27.3 | 15 | - | |
Chen et al. [31] | 2003–2014 | CREST | 79.5 | 10.6 | 9.9 | - | |
Zhao et al. [19] | 1971–2010 | VIC+DD | 71.4 | 23.1 | 5.5 | - | |
Sun and Su [4] | 1980–2000 | VIC+DD | 62.3 | 23.8 | 13.9 | - | |
Xuan et al. [35] | 1993–1999 | SWAT | 52 | 19 | - | 29 | |
Khanal et al. [32] | 1985–2014 | SPHY | 62.1 | 13.2 | 1.8 | 22.9 | |
Wang et al. [34] | 1981–2019 | WEB-DHM | - | 16.6–22.3 | 3.5–7.2 | - | |
Sun et al. [11] | 1971–2020 | VIC+DD | 63 | 24 | 13 | - | |
This Study | 2003–2014 | SWAT+DD | 53.5 | 0.8 | 16.9 | 28.8 | |
GZ | Xuan et al. [54] | 2000–2011 | SWAT | 64 | 18 | - | 18 |
This Study | 2003–2008 | SWAT+DD | 27.7 | 3.8 | 51.4 | 17.2 | |
PL | Ban et al. [62] | 2004–2018 | SPHY | 10 | 25 | 45 | 20 |
This Study | 2011–2016 | SWAT+DD | 23.4 | 2.6 | 54.8 | 19.2 |
5.3. Uneven Distribution of Glaciers Changes the Response of Runoff to Meteorological Conditions
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhu, Y.; Sang, Y.F.; Wang, B.; Lutz, A.; Hu, S.; Chen, D.; Singh, V.P. Heterogeneity in Spatiotemporal Variability of High Mountain Asia’s Runoff and Its Underlying Mechanisms. Water Resour. Res. 2023, 59, e2022WR032721. [Google Scholar] [CrossRef]
- Liu, S.; Yao, Y.; Kuang, X.; Zheng, C. A preliminary investigation on the climate-discharge relationship in the upper region of the Yarlung Zangbo River basin. J. Hydrol. 2021, 603, 127066. [Google Scholar] [CrossRef]
- Pritchard, H.D. Asia’s shrinking glaciers protect large populations from drought stress. Nature 2019, 569, 649–654. [Google Scholar] [CrossRef]
- Sun, H.; Su, F. Precipitation correction and reconstruction for streamflow simulation based on 262 rain gauges in the upper Brahmaputra of southern Tibetan Plateau. J. Hydrol. 2020, 590, 125484. [Google Scholar] [CrossRef]
- Zhang, L.; Su, F.; Yang, D.; Hao, Z.; Tong, K. Discharge regime and simulation for the upstream of major rivers over Tibetan Plateau. J. Geophys. Res. Atmos. 2013, 118, 8500–8518. [Google Scholar] [CrossRef]
- Duethmann, D.; Bolch, T.; Farinotti, D.; Kriegel, D.; Vorogushyn, S.; Merz, B.; Pieczonka, T.; Jiang, T.; Su, B.; Güntner, A. Attribution of streamflow trends in snow and glacier melt-dominated catchments of the Tarim River, Central Asia. Water Resour. Res. 2015, 51, 4727–4750. [Google Scholar] [CrossRef]
- Engel, M.; Penna, D.; Bertoldi, G.; Dell’Agnese, A.; Soulsby, C.; Comiti, F. Identifying run-off contributions during melt-induced run-off events in a glacierized alpine catchment. Hydrol. Process. 2015, 30, 343–364. [Google Scholar] [CrossRef]
- Pu, T.; Qin, D.; Kang, S.; Niu, H.; He, Y.; Wang, S. Water isotopes and hydrograph separation in different glacial catchments in the southeast margin of the Tibetan Plateau. Hydrol. Process. 2017, 31, 3810–3826. [Google Scholar] [CrossRef]
- Rodriguez, M.; Ohlanders, N.; Pellicciotti, F.; Williams, M.W.; McPhee, J. Estimating runoff from a glacierized catchment using natural tracers in the semi-arid Andes cordillera. Hydrol. Process. 2016, 30, 3609–3626. [Google Scholar] [CrossRef]
- Rets, E.; Khomiakova, V.; Kornilova, E.; Ekaykin, A.; Kozachek, A.; Mikhalenko, V. How and when glacial runoff is important: Tracing dynamics of meltwater and rainfall contribution to river runoff from headwaters to lowland in the Caucasus Mountains. Sci. Total Environ. 2024, 927, 172201. [Google Scholar] [CrossRef]
- Sun, H.; Yao, T.; Su, F.; Yang, W.; Huang, G.; Chen, D. Regional difference in runoff regimes and changes in the Yarlung Zangbo river basin. Hydrol. Earth Syst. Sci. Discuss. 2023, 2023, 1–53. [Google Scholar]
- Immerzeel, W.W.; Lutz, A.F.; Andrade, M.; Bahl, A.; Biemans, H.; Bolch, T.; Hyde, S.; Brumby, S.; Davies, B.J.; Elmore, A.C.; et al. Importance and vulnerability of the world’s water towers. Nature 2020, 577, 364–369. [Google Scholar] [CrossRef] [PubMed]
- Su, B.; Xiao, C.; Chen, D.; Ying, X.; Huang, Y.; Guo, R.; Zhao, H.; Chen, A.; Che, Y. Mismatch between the population and meltwater changes creates opportunities and risks for global glacier-fed basins. Sci. Bull. 2022, 67, 9–12. [Google Scholar] [CrossRef] [PubMed]
- Huss, M.; Hock, R. Global-scale hydrological response to future glacier mass loss. Nat. Clim. Chang. 2018, 8, 135–140. [Google Scholar] [CrossRef]
- Moore, R.D. Stream Temperature Patterns in British Columbia, Canada, Based on Routine Spot Measurements. Can. Water Resour. J./Rev. Can. Des Ressour. Hydr. 2006, 31, 41–56. [Google Scholar] [CrossRef]
- Stahl, K.; Moore, R.D. Influence of watershed glacier coverage on summer streamflow in British Columbia, Canada. Water Resour. Res. 2006, 42, W06201. [Google Scholar] [CrossRef]
- Wufu, A.; Chen, Y.; Yang, S.; Lou, H.; Wang, P.; Li, C.; Wang, J.; Ma, L. Changes in Glacial Meltwater Runoff and Its Response to Climate Change in the Tianshan Region Detected Using Unmanned Aerial Vehicles (UAVs) and Satellite Remote Sensing. Water 2021, 13, 1753. [Google Scholar] [CrossRef]
- Lee, J.R.; Raymond, B.; Bracegirdle, T.J.; Chades, I.; Fuller, R.A.; Shaw, J.D.; Terauds, A. Climate change drives expansion of Antarctic ice-free habitat. Nature 2017, 547, 49–54. [Google Scholar] [CrossRef]
- Zhao, Q.; Ding, Y.; Wang, J.; Gao, H.; Zhang, S.; Zhao, C.; Xu, J.; Han, H.; Shangguan, D. Projecting climate change impacts on hydrological processes on the Tibetan Plateau with model calibration against the glacier inventory data and observed streamflow. J. Hydrol. 2019, 573, 60–81. [Google Scholar] [CrossRef]
- Jost, G.; Moore, R.D.; Menounos, B.; Wheate, R. Quantifying the contribution of glacier runoff to streamflow in the upper Columbia River Basin, Canada. Hydrol. Earth Syst. Sci. 2012, 16, 849–860. [Google Scholar] [CrossRef]
- Rodriguez Suarez, J.A.; Diaz-Fierros, F.; Perez, R.; Soto, B. Assessing the influence of afforestation with Eucalyptus globulus on hydrological response from a small catchment in northwestern Spain using the HBV hydrological model. Hydrol. Process. 2013, 28, 5561–5572. [Google Scholar] [CrossRef]
- Lutz, A.F.; Immerzeel, W.W.; Shrestha, A.B.; Bierkens, M.F.P. Consistent increase in High Asia’s runoff due to increasing glacier melt and precipitation. Nat. Clim. Chang. 2014, 4, 587–592. [Google Scholar] [CrossRef]
- Singh, V.; Jain, S.K.; Shukla, S. Glacier change and glacier runoff variation in the Himalayan Baspa river basin. J. Hydrol. 2021, 593, 125918. [Google Scholar] [CrossRef]
- Gan, R.; Luo, Y.; Zuo, Q.; Sun, L. Effects of projected climate change on the glacier and runoff generation in the Naryn River Basin, Central Asia. J. Hydrol. 2015, 523, 240–251. [Google Scholar] [CrossRef]
- Luo, Y.; Arnold, J.; Liu, S.; Wang, X.; Chen, X. Inclusion of glacier processes for distributed hydrological modeling at basin scale with application to a watershed in Tianshan Mountains, northwest China. J. Hydrol. 2013, 477, 72–85. [Google Scholar] [CrossRef]
- Zhang, Y.; Luo, Y.; Sun, L.; Liu, S.; Chen, X.; Wang, X. Using glacier area ratio to quantify effects of melt water on runoff. J. Hydrol. 2016, 538, 269–277. [Google Scholar] [CrossRef]
- Wu, F.; Zhan, J.; Wang, Z.; Zhang, Q. Streamflow variation due to glacier melting and climate change in upstream Heihe River Basin, Northwest China. Phys. Chem. Earth Parts A/B/C 2015, 79–82, 11–19. [Google Scholar] [CrossRef]
- Yin, Z.; Feng, Q.; Liu, S.; Zou, S.; Li, J.; Yang, L.; Deo, R. The Spatial and Temporal Contribution of Glacier Runoff to Watershed Discharge in the Yarkant River Basin, Northwest China. Water 2017, 9, 159. [Google Scholar] [CrossRef]
- Devia, G.K.; Ganasri, B.P.; Dwarakish, G.S. A Review on Hydrological Models. Aquat. Procedia 2015, 4, 1001–1007. [Google Scholar] [CrossRef]
- Nyeko, M. Hydrologic Modelling of Data Scarce Basin with SWAT Model: Capabilities and Limitations. Water Resour. Manag. 2014, 29, 81–94. [Google Scholar] [CrossRef]
- Chen, X.; Long, D.; Hong, Y.; Zeng, C.; Yan, D. Improved modeling of snow and glacier melting by a progressive two-stage calibration strategy with GRACE and multisource data: How snow and glacier meltwater contributes to the runoff of the Upper Brahmaputra River basin? Water Resour. Res. 2017, 53, 2431–2466. [Google Scholar] [CrossRef]
- Khanal, S.; Lutz, A.F.; Kraaijenbrink, P.D.A.; van den Hurk, B.; Yao, T.; Immerzeel, W.W. Variable 21st Century Climate Change Response for Rivers in High Mountain Asia at Seasonal to Decadal Time Scales. Water Resour. Res. 2021, 57, e2020WR029266. [Google Scholar] [CrossRef]
- Su, F.; Zhang, L.; Ou, T.; Chen, D.; Yao, T.; Tong, K.; Qi, Y. Hydrological response to future climate changes for the major upstream river basins in the Tibetan Plateau. Glob. Planet. Chang. 2016, 136, 82–95. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, L.; Zhou, J.; Yao, T.; Yang, W.; Zhong, X.; Liu, R.; Hu, Z.; Luo, L.; Ye, Q.; et al. Vanishing Glaciers at Southeast Tibetan Plateau Have Not Offset the Declining Runoff at Yarlung Zangbo. Geophys. Res. Lett. 2021, 48, e2021GL094651. [Google Scholar] [CrossRef]
- Xuan, W.; Xu, Y.-P.; Fu, Q.; Booij, M.J.; Zhang, X.; Pan, S. Hydrological responses to climate change in Yarlung Zangbo River basin, Southwest China. J. Hydrol. 2021, 597, 125761. [Google Scholar] [CrossRef]
- Li, C.; Hao, J.; Zhang, G.; Fang, H.; Wang, Y.; Lu, H. Runoff variations affected by climate change and human activities in Yarlung Zangbo River, southeastern Tibetan Plateau. CATENA 2023, 230, 107184. [Google Scholar] [CrossRef]
- Guo, W.; Liu, S.; Xu, J.; Wu, L.; Shangguan, D.; Yao, X.; Wei, J.; Bao, W.; Yu, P.; Liu, Q.; et al. The second Chinese glacier inventory: Data, methods and results. J. Glaciol. 2017, 61, 357–372. [Google Scholar] [CrossRef]
- Feng, Y.; Jiang, K.; Kuang, X.; Yao, Y.; Liang, S.; Yu, K.; Liu, J.; Zheng, C. The dual role of meltwater in buffering river runoff in the Yarlung Zangbo Basin, Tibetan Plateau. J. Hydrol. Reg. Stud. 2024, 54, 101857. [Google Scholar] [CrossRef]
- Ji, H.; Peng, D.; Gu, Y.; Luo, X.; Pang, B.; Zhu, Z. Snowmelt Runoff in the Yarlung Zangbo River Basin and Runoff Change in the Future. Remote Sens. 2022, 15, 55. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large Area Hydrologic Modeling and Assessment Part I: Model Development1. JAWRA J. Am. Water Resour. Assoc. 2007, 34, 73–89. [Google Scholar] [CrossRef]
- Chen, L.; Chen, S.; Li, S.; Shen, Z. Temporal and spatial scaling effects of parameter sensitivity in relation to non-point source pollution simulation. J. Hydrol. 2019, 571, 36–49. [Google Scholar] [CrossRef]
- Scott Munro, D. A revised Canadian perspective: Progress in glacier hydrology. Hydrol. Process. 2005, 19, 231–245. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, N.; He, J.; Wu, X.; Song, G. A distributed surface energy and mass balance model and its application to a mountain glacier in China. Chin. Sci. Bull. 2010, 55, 2079–2087. [Google Scholar] [CrossRef]
- Hock, R.; Jacobsen, P.; Braun, A. Modelling the Response of Mountain Glacier Discharge to Climate Warming. In Global Change and Mountain Regions: An Overview of Current Knowledge; Huber, U.M., Reasoner, M.A., Bugmann, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 243–252. [Google Scholar]
- Neitch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R.; King, K.W. Soil Water Assessment Tool Theoretical Document, version 2000; Grassland, Soil and Water Research Laboratory, Agricultural Research Service: Temple, TX, USA, 2002.
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements; Irrigation and Drain, Paper No. 56.; FAO: Rome, Italy, 1998. [Google Scholar]
- Chen, J.; Ohmura, A. Estimation of alpine glacier water resources and their change since the 1870s. In Hydrology in Mountainous Regions—I. Hydrologic Measurements, the Water Cycle; IAHS: Wallingford, CT, USA, 1990; Volume 193, pp. 127–135. [Google Scholar]
- Liu, S.; Sun, W.; Shen, Y.; Li, G. Glacier changes since the Little Ice Age maximum in the western Qilian Shan, northwest China, and consequences of glacier runoff for water supply. J. Glaciol. 2003, 49, 117–124. [Google Scholar]
- Li, M.; Di, Z.; Duan, Q. Effect of sensitivity analysis on parameter optimization: Case study based on streamflow simulations using the SWAT model in China. J. Hydrol. 2021, 603, 126896. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Johnson, C.A.; van Genuchten, M.T. Estimating uncertain flow and transport parameters using a sequential uncertainty fitting procedure. J. Vadose Zone 2004, 3, 1340–1352. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Yang, J.; Maximov, I.; Siber, R.; Bogner, K.; Mieleitner, J.; Zobrist, J.; Srinivasan, R. Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. J. Hydrol. 2007, 333, 413–430. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Rouholahnejad, E.; Vaghefi, S.; Srinivasan, R.; Yang, H.; Kløve, B. A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. J. Hydrol. 2015, 524, 733–752. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Xuan, W.; Fu, Q.; Qin, G.; Zhu, C.; Pan, S.; Xu, Y.-P. Hydrological Simulation and Runoff Component Analysis over a Cold Mountainous River Basin in Southwest China. Water 2018, 10, 1705. [Google Scholar] [CrossRef]
- Chen, Z.; Zhu, R.; Yin, Z.; Feng, Q.; Yang, L.; Wang, L.; Lu, R.; Fang, C. Hydrological response to future climate change in a mountainous watershed in the Northeast of Tibetan Plateau. J. Hydrol. Reg. Stud. 2022, 44, 101256. [Google Scholar] [CrossRef]
- Wu, H.; Chen, B. Evaluating uncertainty estimates in distributed hydrological modeling for the Wenjing River watershed in China by GLUE, SUFI-2, and ParaSol methods. Ecol. Eng. 2015, 76, 110–121. [Google Scholar] [CrossRef]
- He, Q.; Kuang, X.; Chen, J.; Hao, Y.; Feng, Y.; Wu, P.; Zheng, C. Glacier retreat and its impact on groundwater system evolution in the Yarlung Zangbo source region, Tibetan Plateau. J. Hydrol. Reg. Stud. 2023, 47, 101368. [Google Scholar] [CrossRef]
- Cui, Y.; Ye, B.; Wang, J.; Liu, Y. Influence of degree-day factor variation on the mass balance of Glacier No. 1 at the headwaters of Ürümqi River, China. J. Earth Sci. 2013, 24, 1008–1022. [Google Scholar] [CrossRef]
- Du, X.; Silwal, G.; Faramarzi, M. Investigating the impacts of glacier melt on stream temperature in a cold-region watershed: Coupling a glacier melt model with a hydrological model. J. Hydrol. 2022, 605, 127303. [Google Scholar] [CrossRef]
- Sun, G.; Hallema, D.; Asbjornsen, H. Ecohydrological processes and ecosystem services in the Anthropocene: A review. Ecol. Process. 2017, 6, 35. [Google Scholar] [CrossRef]
- Mohsenstandi, O.; Stefan, H.G.; Erickson, T.R. A nonlinear regression model for weekly stream temperatures. Water Resour. Res. 1998, 34, 2685–2692. [Google Scholar]
- Ban, C.; Xu, Z.; Zuo, D.; Li, P.; Wang, J.; Huang, G.; Chen, D. Hydrological simulation and runoff components analysis in the high cold alpine region: Case study in the upper reaches of the Parlung Zangbo watershed of the Yarlung Zangbo River basin. J. Beijing Norm. Univ. 2023, 59, 85–93. [Google Scholar]
- Rounce, D.R.; Hock, R.; Maussion, F.; Hugonnet, R.; Kochtitzky, W.; Huss, M.; Berthier, E.; Brinkerhoff, D.; Compagno, L.; Copland, L.; et al. Global glacier change in the 21st century: Every increase in temperature matters. Science 2023, 379, 78–83. [Google Scholar] [CrossRef]
Hydrological Stations | SWAT-Glac | Calibration | Validation | ||||
---|---|---|---|---|---|---|---|
R2 | NSE | PBIAS (%) | R2 | NSE | PBIAS (%) | ||
RKZ | × | 0.81 | 0.73 | 28.0 | 0.89 | 0.66 | 21.8 |
✓ | 0.81 | 0.77 | 20.2 | 0.90 | 0.73 | 15.5 | |
LS | × | 0.79 | 0.69 | 17.2 | 0.70 | 0.60 | 18.3 |
✓ | 0.77 | 0.75 | −1.6 | 0.70 | 0.68 | 2.8 | |
GZ | × | 0.87 | 0.43 | 51.1 | 0.49 | 0.16 | 51.4 |
✓ | 0.89 | 0.87 | −9.6 | 0.92 | 0.89 | −9.6 | |
PL | × | 0.69 | −0.11 | 62.5 | 0.43 | 0.01 | 52.3 |
✓ | 0.89 | 0.85 | −17.9 | 0.79 | 0.73 | −24.7 | |
LZ | × | 0.93 | 0.81 | 29.3 | 0.89 | 0.62 | 34.6 |
✓ | 0.95 | 0.95 | 3.9 | 0.94 | 0.88 | 17.5 | |
NGS | × | 0.98 | 0.96 | 14.4 | 0.77 | 0.66 | 19.1 |
✓ | 0.97 | 0.97 | 5.9 | 0.72 | 0.70 | 10.7 | |
YC | × | 0.91 | 0.89 | 17.4 | 0.96 | 0.93 | 19.2 |
✓ | 0.91 | 0.91 | 5.1 | 0.96 | 0.96 | 3.9 | |
NX | × | 0.94 | 0.70 | 40.2 | 0.91 | 0.81 | 40.5 |
✓ | 0.96 | 0.92 | 16.6 | 0.97 | 0.95 | 17.4 | |
DX | × | 0.90 | 0.13 | 59.9 | 0.87 | 0.22 | 54.4 |
✓ | 0.90 | 0.83 | 16.7 | 0.90 | 0.88 | 9.7 |
Stations | Parameter Setting Methods | Calibration | Validation | ||||
---|---|---|---|---|---|---|---|
R2 | NSE | PBIAS (%) | R2 | NSE | PBIAS (%) | ||
GZ | Global | 0.89 | 0.67 | 25.9 | 0.93 | 0.69 | 25.1 |
Local | 0.89 | 0.87 | −6.6 | 0.91 | 0.88 | −13.5 | |
PL | Global | 0.86 | 0.82 | 0.7 | 0.78 | 0.73 | −4.0 |
Local | 0.89 | 0.86 | −15.6 | 0.82 | 0.76 | −24.1 | |
LZ | Global | 0.67 | 0.61 | −20.6 | 0.83 | 0.73 | −14.7 |
Local | 0.95 | 0.95 | 1.3 | 0.93 | 0.88 | 16.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, L.; Deng, Y.; Bai, G.; Tan, Y.; Tuo, Y.; An, R.; Wang, X.; Chen, M. Runoff Characteristics and Their Response to Meteorological Condition in the Yarlung Zangbo River Basin: Spatial Heterogeneity Due to the Glacier Coverage Difference. Remote Sens. 2024, 16, 4646. https://doi.org/10.3390/rs16244646
Zhu L, Deng Y, Bai G, Tan Y, Tuo Y, An R, Wang X, Chen M. Runoff Characteristics and Their Response to Meteorological Condition in the Yarlung Zangbo River Basin: Spatial Heterogeneity Due to the Glacier Coverage Difference. Remote Sensing. 2024; 16(24):4646. https://doi.org/10.3390/rs16244646
Chicago/Turabian StyleZhu, Lei, Yun Deng, Ganggang Bai, Yi Tan, Youcai Tuo, Ruidong An, Xingmin Wang, and Min Chen. 2024. "Runoff Characteristics and Their Response to Meteorological Condition in the Yarlung Zangbo River Basin: Spatial Heterogeneity Due to the Glacier Coverage Difference" Remote Sensing 16, no. 24: 4646. https://doi.org/10.3390/rs16244646
APA StyleZhu, L., Deng, Y., Bai, G., Tan, Y., Tuo, Y., An, R., Wang, X., & Chen, M. (2024). Runoff Characteristics and Their Response to Meteorological Condition in the Yarlung Zangbo River Basin: Spatial Heterogeneity Due to the Glacier Coverage Difference. Remote Sensing, 16(24), 4646. https://doi.org/10.3390/rs16244646