Perceptual Quality Assessment for Pansharpened Images Based on Deep Feature Similarity Measure
<p>Flowchart of the DFSM-net.</p> "> Figure 2
<p>Flowchart of feature extraction and similarity measure block.</p> "> Figure 3
<p>SRCC by two different training methods.</p> "> Figure 4
<p>Performance evaluation on six satellite datasets.</p> "> Figure 5
<p>A sample pair of a PAN/MS image and the fusion images fused by different methods.</p> "> Figure 6
<p>Scatter plots of the predicted scores against the subjective difference mean opinion scores (DMOS). (<b>a</b>) Loss function w/o <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="script">L</mi> <mrow> <mi>C</mi> <mi>V</mi> </mrow> </msub> </mrow> </semantics></math>. (<b>b</b>) Loss function with <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="script">L</mi> <mrow> <mi>C</mi> <mi>V</mi> </mrow> </msub> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
- (1)
- We propose a perceptual quality assessment method based on deep feature similarity measure (DFSM-net), which can quantitatively calculate the similarity of the corresponding pair of deep features to improve the accuracy of feature parameters in reflecting the distortions of the fused image.
- (2)
- We propose a loss measurement based on the idea of decomposition to quantify the categorical variation in a batch, enabling the network to evaluate the error in a batch from another perspective and thereby enhancing the precision of network prediction scores.
2. Proposed Method
2.1. Feature Extraction and Similarity Measure Block
2.2. Feature Regression
2.3. Loss Function
2.4. Network Training Details
3. Results and Discussion
3.1. Datasets
3.2. Experimental Setup
3.3. Experimental Results and Analysis
3.3.1. Statistical Results on All Images in the Dataset
3.3.2. Evaluation Results of the Sample Images
3.4. Ablation Experiment
3.4.1. Effectiveness of Similarity Measure (SM) Block
3.4.2. Effectiveness of Siamese Feature Extraction Branch
3.4.3. Effectiveness of the Pre-Trained Feature Extraction Network
3.4.4. Selection of Loss Function
3.4.5. Selection of Weight for the
3.4.6. Cross-Assessment on Subsets
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Meng, X.C.; Bao, K.D.; Shu, J.F.; Zhou, B.Z.; Shao, F.; Sun, W.W.; Li, S.T. A Blind Full-Resolution Quality Evaluation Method for Pansharpening. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–16. [Google Scholar] [CrossRef]
- Aiazzi, B.; Baronti, S.; Selva, M. Improving Component Substitution Pansharpening Through Multivariate Regression of MS + Pan Data. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3230–3239. [Google Scholar] [CrossRef]
- Laben, C.A.; Brower, B.V. Process for Enhancing the Spatial Resolution of Multispectral Imagery Using Pan-Sharpening. U.S. Patent US6011875A, 4 January 2000. [Google Scholar]
- Aiazzi, B.; Alparone, L.; Baronti, S.; Garzelli, A.; Selva, M. MTF-tailored Multiscale Fusion of High-resolution MS and Pan Imagery. Photogramm. Eng. Remote Sens. 2006, 72, 591–596. [Google Scholar] [CrossRef]
- Alparone, L.; Garzelli, A.; Vivone, G. Intersensor Statistical Matching for Pansharpening: Theoretical Issues and Practical Solutions. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4682–4695. [Google Scholar] [CrossRef]
- Meng, X.C.; Shen, H.F.; Li, H.F.; Zhang, L.P.; Fu, R.D. Review of the pansharpening methods for remote sensing images based on the idea of meta-analysis: Practical discussion and challenges. Inf. Fusion 2019, 46, 102–113. [Google Scholar] [CrossRef]
- Shen, H.; Meng, X.; Zhang, L. An Integrated Framework for the Spatio–Temporal–Spectral Fusion of Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2016, 54, 7135–7148. [Google Scholar] [CrossRef]
- Dian, R.; Li, S.; Guo, A.; Fang, L. Deep Hyperspectral Image Sharpening. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 5345–5355. [Google Scholar] [CrossRef]
- Hang, R.; Li, Z.; Ghamisi, P.; Hong, D.; Xia, G.; Liu, Q. Classification of Hyperspectral and LiDAR Data Using Coupled CNNs. IEEE Trans. Geosci. Remote Sens. 2020, 58, 4939–4950. [Google Scholar] [CrossRef]
- Zhuang, L.; Gao, L.; Zhang, B.; Fu, X.; Bioucas-Dias, J.M. Hyperspectral Image Denoising and Anomaly Detection Based on Low-Rank and Sparse Representations. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–17. [Google Scholar] [CrossRef]
- Li, J.; Zheng, K.; Liu, W.; Li, Z.; Yu, H.; Ni, L. Model-Guided Coarse-to-Fine Fusion Network for Unsupervised Hyperspectral Image Super-Resolution. IEEE Geosci. Remote Sens. Lett. 2023, 20, 1–5. [Google Scholar] [CrossRef]
- Xie, Q.; Zhou, M.; Zhao, Q.; Xu, Z.; Meng, D. MHF-Net: An Interpretable Deep Network for Multispectral and Hyperspectral Image Fusion. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 1457–1473. [Google Scholar] [CrossRef] [PubMed]
- Vivone, G.; Mura, M.D.; Garzelli, A.; Restaino, R.; Scarpa, G.; Ulfarsson, M.O.; Alparone, L.; Chanussot, J. A New Benchmark Based on Recent Advances in Multispectral Pansharpening: Revisiting Pansharpening with Classical and Emerging Pansharpening Methods. IEEE Geosci. Remote Sens. Mag. 2021, 9, 53–81. [Google Scholar] [CrossRef]
- Arienzo, A.; Vivone, G.; Garzelli, A.; Alparone, L.; Chanussot, J. Full-Resolution Quality Assessment of Pansharpening: Theoretical and hands-on approaches. IEEE Geosci. Remote Sens. Mag. 2022, 10, 168–201. [Google Scholar] [CrossRef]
- Wald, L.; Ranchin, T.; Mangolini, M. Fusion of satellite images of different spatial resolutions: Assessing the quality of resulting images. Photogramm. Eng. Remote Sens. 1997, 63, 691–699. [Google Scholar]
- Zhou, W.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef]
- Alparone, L.; Baronti, S.; Garzelli, A.; Nencini, F. A Global Quality Measurement of Pan-Sharpened Multispectral Imagery. IEEE Geosci. Remote Sens. Lett. 2004, 1, 313–317. [Google Scholar] [CrossRef]
- Garzelli, A.; Nencini, F. Hypercomplex Quality Assessment of Multi/Hyperspectral Images. IEEE Geosci. Remote Sens. Lett. 2009, 6, 662–665. [Google Scholar] [CrossRef]
- Alparone, L.; Aiazzi, B.; Baronti, S.; Garzelli, A.; Nencini, F.; Selva, M. Multispectral and panchromatic data fusion assessment without reference. Photogramm. Eng. Remote Sens. 2008, 74, 193–200. [Google Scholar] [CrossRef]
- Kwan, C.; Budavari, B.; Bovik, A.C.; Marchisio, G.B. Blind Quality Assessment of Fused WorldView-3 Images by Using the Combinations of Pansharpening and Hypersharpening Paradigms. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1835–1839. [Google Scholar] [CrossRef]
- Alparone, L.; Garzelli, A.; Vivone, G. Spatial Consistency for Full-Scale Assessment of Pansharpening. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 5132–5134. [Google Scholar]
- Wang, Z.; Simoncelli, E.P.; Bovik, A.C. Multiscale structural similarity for image quality assessment. In Proceedings of the Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, Pacific Grove, CA, USA, 9–12 November 2003; pp. 1398–1402. [Google Scholar]
- Zhang, L.; Zhang, L.; Mou, X.; Zhang, D. FSIM: A Feature Similarity Index for Image Quality Assessment. IEEE Trans. Image Process. 2011, 20, 2378–2386. [Google Scholar] [CrossRef]
- Gatys, L.A.; Ecker, A.S.; Bethge, M. Image Style Transfer Using Convolutional Neural Networks. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 2414–2423. [Google Scholar]
- Chen, H.; Shao, F.; Chai, X.; Jiang, Q.; Meng, X.; Ho, Y.S. Collaborative Learning and Style-Adaptive Pooling Network for Perceptual Evaluation of Arbitrary Style Transfer. IEEE Trans. Neural Netw. Learn. Syst. 2023. [Google Scholar] [CrossRef] [PubMed]
- Bao, K.; Meng, X.; Chai, X.; Shao, F. A Blind Full Resolution Assessment Method for Pansharpened Images Based on Multistream Collaborative Learning. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–11. [Google Scholar] [CrossRef]
- Lee, D.D.; Seung, H.S. Algorithms for non-negative matrix factorization. In Proceedings of the 13th International Conference on Neural Information Processing Systems, Denver, CO, USA, 1 January 2000; pp. 535–541. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. CoRR 2014, abs/1409.1556. [Google Scholar]
- Ding, K.; Ma, K.; Wang, S.; Simoncelli, E.P. Image Quality Assessment: Unifying Structure and Texture Similarity. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 2567–2581. [Google Scholar] [CrossRef]
- Xiong, Y.M.; Shao, F.; Meng, X.C.; Jiang, Q.P.; Sun, W.W.; Fu, R.D.; Ho, Y.S. A large-scale remote sensing database for subjective and objective quality assessment of pansharpened images. J. Vis. Commun. Image Represent. 2020, 73, 102947. [Google Scholar] [CrossRef]
- Sheikh, H.R.; Sabir, M.F.; Bovik, A.C. A Statistical Evaluation of Recent Full Reference Image Quality Assessment Algorithms. IEEE Trans. Image Process. 2006, 15, 3440–3451. [Google Scholar] [CrossRef] [PubMed]
- Larson, E.C.; Chandler, D.M. Most apparent distortion: Full-reference image quality assessment and the role of strategy. J. Electron. Imaging 2010, 19, 011006. [Google Scholar]
- Hosu, V.; Lin, H.; Sziranyi, T.; Saupe, D. KonIQ-10k: An Ecologically Valid Database for Deep Learning of Blind Image Quality Assessment. IEEE Trans. Image Process. 2020, 29, 4041–4056. [Google Scholar] [CrossRef]
- Zhou, B.Z.; Shao, F.; Meng, X.C.; Fu, R.D.; Ho, Y.S. No-Reference Quality Assessment for Pansharpened Images via Opinion-Unaware Learning. IEEE Access 2019, 7, 40388–40401. [Google Scholar] [CrossRef]
- Agudelo-Medina, O.A.; Benítez-Restrepo, H.D.; Vivone, G.; Bovik, A.C. Perceptual Quality Assessment of Pan-Sharpened Images. Remote. Sens. 2019, 11, 877. [Google Scholar] [CrossRef]
- Aiazzi, B.; Alparone, L.; Baronti, S.; Carlà, R.; Garzelli, A.; Santurri, L. Full scale assessment of pansharpening methods and data products. In Proceedings of the Image and Signal Processing for Remote Sensing XX, Amsterdam, The Netherlands, 22–24 September 2014; pp. 924, 402–1924, 1402–1912. [Google Scholar]
- Mittal, A.; Soundararajan, R.; Bovik, A.C. Making a “Completely Blind” Image Quality Analyzer. IEEE Signal Process. Lett. 2013, 20, 209–212. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, G.; Wei, L.Y.; Yang, L.; Xu, L. A method to improve full-resolution remote sensing pansharpening image quality assessment via feature combination. Signal Process. 2023, 208, 108975. [Google Scholar] [CrossRef]
- Vivone, G. Robust Band-Dependent Spatial-Detail Approaches for Panchromatic Sharpening. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6421–6433. [Google Scholar] [CrossRef]
- Restaino, R.; Vivone, G.; Mura, M.D.; Chanussot, J. Fusion of Multispectral and Panchromatic Images Based on Morphological Operators. IEEE Trans. Image Process. 2016, 25, 2882–2895. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Q.Q.; Wei, Y.C.; Meng, X.C.; Shen, H.F.; Zhang, L.P. A Multiscale and Multidepth Convolutional Neural Network for Remote Sensing Imagery Pan-Sharpening. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 978–989. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Y.; Liu, Q. Psgan: A Generative Adversarial Network for Remote Sensing Image Pan-Sharpening. In Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 873–877. [Google Scholar]
- Su, S.; Yan, Q.; Zhu, Y.; Zhang, C.; Ge, X.; Sun, J.; Zhang, Y. Blindly Assess Image Quality in the Wild Guided by a Self-Adaptive Hyper Network. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 3664–3673. [Google Scholar]
- Bosse, S.; Maniry, D.; Müller, K.R.; Wiegand, T.; Samek, W. Deep Neural Networks for No-Reference and Full-Reference Image Quality Assessment. IEEE Trans. Image Process. 2018, 27, 206–219. [Google Scholar] [CrossRef]
- Zhu, H.; Li, L.; Wu, J.; Dong, W.; Shi, G. MetaIQA: Deep Meta-Learning for No-Reference Image Quality Assessment. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 14131–14140. [Google Scholar]
- Badal, N.; Soundararajan, R.; Garg, A.; Patil, A. No Reference Pansharpened Image Quality Assessment Through Deep Feature Similarity. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 7235–7247. [Google Scholar] [CrossRef]
IQA Method | QNR (Rank) | NIQE (Rank) | GQNR (Rank) | HQNR (Rank) | MQNR (Rank) | FCBM (Rank) | MCL-Net (Rank) | Proposed (Rank) |
---|---|---|---|---|---|---|---|---|
BDSD-PC | 0.9526 (3) | 0.6481 (4) | 1.4537 (3) | 0.9641 (3) | 0.6598 (1) | 0.5005 (1) | 0.5323 (3) | 0.3567 (1) |
PSGAN | 0.9766 (1) | 0.3301 (2) | 0.2213 (2) | 0.9671 (2) | 1.1644 (5) | 0.5245 (5) | 0.5315 (2) | 0.4005 (2) |
MSDCNN | 0.9754 (2) | 0.2900 (1) | 0.2144 (1) | 0.9682 (1) | 1.3304 (6) | 0.5236 (4) | 0.5287 (1) | 0.4024 (3) |
MF | 0.8532 (5) | 0.6657 (5) | 5.5824 (5) | 0.9395 (4) | 0.7088 (2) | 0.5106 (4) | 0.5469 (6) | 0.4179 (4) |
GSA | 0.8566 (4) | 0.6330 (3) | 4.5014 (4) | 0.9215 (6) | 0.7191 (3) | 0.5045 (2) | 0.5400 (4) | 0.4201 (5) |
MTF-GLP | 0.8472 (6) | 0.6787 (6) | 5.7922 (6) | 0.9368 (5) | 0.9403 (4) | 0.5064 (3) | 0.5403 (5) | 0.4712 (6) |
Setting | ||||
---|---|---|---|---|
w/o SM and | 0.4081 | 0.2698 | 0.4099 | 0.1525 |
w/o | 0.5971 | 0.4031 | 0.5938 | 0.1491 |
w/o SM | 0.7755 | 0.5651 | 0.8101 | 0.0899 |
Proposed | 0.8100 | 0.6063 | 0.8578 | 0.0838 |
Model | ||||
---|---|---|---|---|
Downsampling | 0.7126 | 0.5059 | 0.7101 | 0.1449 |
Proposed | 0.8100 | 0.6063 | 0.8578 | 0.0838 |
Model | ||||
---|---|---|---|---|
Single spatial branch | 0.6454 | 0.4470 | 0.6710 | 0.1199 |
Single spectral branch | 0.7891 | 0.5779 | 0.8395 | 0.0896 |
Proposed | 0.8100 | 0.6063 | 0.8578 | 0.0838 |
Model | ||||
---|---|---|---|---|
Directly trained | 0.7613 | 0.5414 | 0.8038 | 0.0982 |
Pre-trained | 0.8100 | 0.6063 | 0.8578 | 0.0838 |
Setting | ||||
---|---|---|---|---|
0.5 | 0.8050 | 0.5984 | 0.8495 | 0.0924 |
1 | 0.8057 | 0.6018 | 0.8555 | 0.0846 |
2 | 0.8095 | 0.6052 | 0.8568 | 0.0837 |
4 | 0.8100 | 0.6063 | 0.8578 | 0.0838 |
8 | 0.7950 | 0.5994 | 0.8304 | 0.1074 |
Setting | ||||
---|---|---|---|---|
Training on Subset 1 | 0.7959 | 0.5855 | 0.8428 | 0.1001 |
Cross assessment on Subset 2 | 0.8071 | 0.5953 | 0.8007 | 0.1068 |
Training on Subset 2 | 0.8200 | 0.6137 | 0.8099 | 0.0825 |
Cross assessment on Subset 1 | 0.7730 | 0.5594 | 0.7834 | 0.1107 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Zhang, S.; Meng, X.; Chen, L.; Shao, F. Perceptual Quality Assessment for Pansharpened Images Based on Deep Feature Similarity Measure. Remote Sens. 2024, 16, 4621. https://doi.org/10.3390/rs16244621
Zhang Z, Zhang S, Meng X, Chen L, Shao F. Perceptual Quality Assessment for Pansharpened Images Based on Deep Feature Similarity Measure. Remote Sensing. 2024; 16(24):4621. https://doi.org/10.3390/rs16244621
Chicago/Turabian StyleZhang, Zhenhua, Shenfu Zhang, Xiangchao Meng, Liang Chen, and Feng Shao. 2024. "Perceptual Quality Assessment for Pansharpened Images Based on Deep Feature Similarity Measure" Remote Sensing 16, no. 24: 4621. https://doi.org/10.3390/rs16244621
APA StyleZhang, Z., Zhang, S., Meng, X., Chen, L., & Shao, F. (2024). Perceptual Quality Assessment for Pansharpened Images Based on Deep Feature Similarity Measure. Remote Sensing, 16(24), 4621. https://doi.org/10.3390/rs16244621