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Abstract: Change detection is crucial for evaluating land use, land cover changes, and sustainable
development, constituting a significant component of Earth observation tasks. The difficulty in
extracting features from high-resolution images, coupled with the complexity of image content, poses
challenges for traditional change detection algorithms in terms of accuracy and applicability. The
recent emergence of deep learning methods has led to substantial progress in the field of change
detection. However, existing frameworks often involve the simplistic integration of bi-temporal
features in specific areas, lacking the fusion of temporal information and semantic details in the
images. In this paper, we propose an attention-guided multi-scale fusion network (AMFNet), which
effectively integrates bi-temporal image features and diverse semantics at both the encoding and
decoding stages. AMFNet utilizes a unique attention-guided mechanism to dynamically adjust
feature fusion, enhancing adaptability and accuracy in change detection tasks. Our method intelli-
gently incorporates temporal information into the deep learning model, considering the temporal
dependency inherent in these tasks. We decode based on an interactive feature map, which improves
the model’s understanding of evolving patterns over time. Additionally, we introduce multi-level
supervised training to facilitate the learning of fused features across multiple scales. In comparison
with different algorithms, our proposed method achieves F1 values of 0.9079, 0.8225, and 0.8809
in the LEVIR-CD, GZ-CD, and SYSU-CD datasets, respectively. Our model outperforms the SOTA
model, SAGNet, by 0.69% in terms of F1 and 1.15% in terms of IoU on the LEVIR-CD dataset, by
2.8% in terms of F1 and 1.79% in terms of IoU on the GZ-CD dataset, and by 0.54% in terms of F1
and 0.38% in terms of IoU on the SYSU-CD dataset. The method proposed in this study can be
applied to various complex scenarios, establishing a change detection method with strong model
generalization capabilities.

Keywords: change detection; remote sensing image; deep learning; multi-scale supervised

1. Introduction

Land surface change monitoring is an important application of remote sensing im-
age change detection [1], extensively utilized across various domains, including land
management [2], disaster evaluation [3], agricultural analysis [4], landslide detection [5],
and ecosystem surveillance [6]. However, the increasing pace of urbanization and shifts
in ecological environments have significantly increased the complexity of land surfaces.
This increase in complexity is marked by a diversification of background attributes and a
concentration of dynamic features, such as buildings and vegetation, thereby amplifying
the challenges associated with change detection tasks [7,8]. In this process, each pixel is
assigned a binary label, with 0 indicating no change and 1 indicating change. Features
extracted from photos taken at the same location but at different periods are used to define
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these categories [4]. Research in the domain of change detection commenced with a no-
table study by West et al. [9] in 1977, employing differential techniques in remote sensing
imagery to detect changes, signaling the inception of this field of study. Pixel-based tech-
niques, including image algebra, picture manipulation, and classification comparison, have
been used in this field traditionally. The algebraic method involves generating a different
image through the calculation of pixel information in bi-temporal remote sensing images.
Subsequently, an appropriate threshold is applied to determine changed and unchanged
areas [10], employing methods like the ratio method [11], regression method [12], change
vector analysis [13], etc. In 2020, Du et al. [14] introduced a method known as logic-verified
change vector analysis (LV-CVA), an advancement of change vector analysis (CVA). This
method integrates logical reasoning and decision-making processes and incorporates addi-
tional temporal imagery to accurately identify errors in CVA. The core concept of image
transformation methods lies in the reselection and recombination of spectral bands or
the application of projection transformations. By extracting the fundamental features of
the data and using these more representative features, this approach seeks to improve
detection efficiency and precision. Notable techniques in this category include principal
component analysis (PCA) [15,16] and multivariate change detection (MCD) [17]. Unsuper-
vised change detection is commonly achieved by algebra-based and transformation-based
techniques [18,19]. These approaches rely on model assumptions or comparison rules to
identify change areas; however, they are not without limitations. To improve detection per-
formance, many researchers have turned unsupervised methods into supervised methods.
Among them, the classification comparison method is a popular supervised remote sensing
change detection method [20]. The photos from two different periods are classified indepen-
dently, and the position and kind of changes are identified by comparing the classification
results pixel by pixel [21]. Arithmetic and transformation-based methods are less effective
in high-resolution images since they mostly rely on empirical design. Juan et al. [22]
developed a detection algorithm that includes both pixel and object representations. After
segmenting large images into overlapping sub-images, supervised sub-image retrieval is
employed to identify changed regions containing artificial objects. Wan et al. [23] aimed to
reduce false positives from region shifts and object misplacements in traditional methods
using synthetic aperture radar (SAR) and optical images as simultaneous data sources.
With this technique, multi-temporal data from several sensors may be used effectively and
interference-free. In high-resolution data processing using object-oriented methods, the fo-
cus has shifted from individual pixels to segmented objects. Objects, unlike pixels, provide
richer contextual information [24]. In terms of accuracy, object-oriented change detection
techniques, such as post-classification [25] and multiple and multi-scale classification [26],
typically perform better than pixel-level techniques. However, these approaches can lose
detail and vary in accuracy due to their reliance on differential images and superpixel
generation. To address this, Han et al. [27] applied a weighted Dempster–Shafer theory
(wDST) fusion approach, integrating various pixel-based detections to yield more stable
object-based change detection outcomes.

The advent of the big data age and improvements in high-performance computers are
the main causes of the recent explosion in deep learning [28–31]. Its ability to effectively
extract deep features has led to its application in remote sensing image analysis [32–34].
Convolutional neural networks (CNNs), a fundamental deep learning framework, are
adept at autonomously learning the complex spatial–spectral characteristics of remote
sensing imagery [35–37]. However, due to their high computational needs and stringent
input–output size restrictions, the fully connected layers in conventional CNN change
detection approaches encounter difficulties. To address this, fully convolutional networks
(FCNs) have been introduced. FCNs employ end-layer convolution operations to shift from
image-level to pixel-level classification [38], making them compatible with pixel-based
change detection. Furthermore, FCN-based techniques have advanced remote sensing
segmentation, leading to diverse neural network models and significant breakthroughs.
Notably, Li et al. [39] enhanced FCNs with multi-scale convolution modules, demonstrating
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the efficacy of multi-scale features in refining change detection in high-resolution imagery.
U-Net [40] enhances the FCN framework by integrating an innovative feature fusion
technique. It merges features at the channel level, creating more impactful characteristics
than those generated by FCN. The transformer technique from natural language processing
(NLP) was applied to the field of computer vision (CV) by Chen et al. [41]. In order to
achieve comprehensive end-to-end change detection, Xing et al. [42] combined a pyramid-
shaped decoder. This innovative approach has resulted in a significantly smaller model
size, making it more suitable for peripheral devices and industrial uses. Chen et al. [43]
introduced an inventive use of a self-attention mechanism for change detection, specifically
designed to model spatio-temporal relationships, with an emphasis on the collection of
neighboring scale information.

Currently, neural networks encounter several obstacles in the field of change detection [44–47].
(1) Common techniques frequently combine bi-temporal remote sensing pictures based
merely on the channel aspect for extracting features. While deep neural networks have
the capability to implicitly discern differences between images, this method frequently
falls short of effectively capturing essential differences [48]. (2) Most change detection
networks prioritize identifying key features within each individual time phase during
bi-temporal feature fusion, thus overlooking critical elements of interaction across bi-
temporal dimensions. Improving the extraction of information from hyper-spectral image
inputs [49], as well as enhancing the integration of semantic information across the same-
level feature maps of bi-temporal hyperspectral images, represents a significant area for
potential advancements [50,51]. Consequently, an attention-guided multi-scale fusion
network is introduced, which is specially designed to integrate feature information across
multiple scales and dimensions in an integrated manner. Using the attention mechanism,
AMFNet can improve the effectiveness of the feature fusion process and ensure that the
information flow between different scales is more accurate and targeted. In addition, by
encoding on the interactive feature map, AMFNet further makes full use of bi-temporal
information, rather than a single temporal graph, to extract features alone, which enhances
the sensitivity and analytical ability of the model to time changes. In the feature encoding
stage, we use the weight-sharing systematic down-sampling method to construct a pyramid-
shaped multi-scale [52] feature map. This method can effectively extract various features
of bi-temporal hyper-spectral remote sensing images simultaneously, including textural,
spectral, and spatial features. In this way, the model can capture subtle changes in images
at different scales. For two corresponding images at an identical layer, the bi-temporal
fusion attention module (BFAM) plays a pivotal role. This module discerns the most
significant components among the bi-temporal features, enabling effective integration and
localization of the features associated with bi-temporal change objects. We further process
the feature maps, which have undergone initial information exchange through BFAM, by
applying addition and concatenation. This step is crucial for extracting both differential and
comprehensive global information. The bilateral fusion module (BFM) efficiently merges
this information. The integrated attention module (IAM) refines this process, focusing on
extracting channel and spatial variations within the bi-temporally fused feature maps. The
following summarizes the primary contributions of our study:

1. We propose an attention-guided multi-scale fusion network (AMFNet) for change
detection in high-resolution remote sensing images. The network makes full use of
the abundant features of remote sensing images and optimizes feature interaction and
semantic information fusion through an attention mechanism, effectively addressing
issues of uncertain target edges and omissions.

2. We propose the bi-temporal fusion attention module (BFAM) and bilateral fusion
module (BFM). BFAM can combine channel and spatial attention mechanisms and
utilizing temporal information. BFM extracts the differential and global information of
bi-temporal features, better pinpointing detailed features and texture characteristics,
achieving complementary of information between the two branches.
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3. The integrated attention module (IAM) is introduced to allow the network to identify
diverse features across spatial and channel dimensions while eliminating and reducing
redundant features. It extracts the changing regions as positions with high feature
weights, thereby enhancing the network’s detection accuracy.

4. Our AMFNet, as shown by comprehensive testing on two datasets for remote sensing
image change detection, achieves both robustness and superior accuracy, outperform-
ing other deep learning change detection methods.

2. Materials and Methods
2.1. Proposed Approach
2.1.1. Network Structure

In this study, we propose an attention-guided multiscale fusion network with the
goal of improving the accuracy of differentiating between changed and unchanged ar-
eas. This network structure consists of one decoding branch and two encoding branches.
Initially, each bi-temporal picture is input separately into a Siamese ResNet34 [53] with
shared weights, generating multi-level features. Subsequently, for the focused and effec-
tive fusion of bi-temporal features, the feature maps at the same hierarchical level in the
encoding process are passed through the BFAM to generate corresponding interactive
feature maps. Each interactive feature map contains valid semantic information from both
temporal instances. In the encoding part, after merging the interacted feature maps on
an equal footing, we input the interactive feature maps of corresponding layers into both
addition and concatenation operations during the decoding stage. This process extracts
diverse semantic information. Both sets of semantic information are then fused through
the bilateral fusion module (BFM) and further refined by the integrated attention module
(IAM) to enhance feature representation. These two modules, when used consecutively, can
effectively achieve the coherence of special extraction and enhancement. In the decoding
phase of our network, the feature maps generated from shallow layers are upsampled and
then combined with the corresponding interactive feature maps from deeper layers. This
process is repeated, layer by layer, until the feature map size matches the original input
size. During the decoding process, we adopt a multiscale supervised learning approach to
proportionally fuse the cross-entropy losses. The final result is produced through a sigmoid
classifier. The overall schematic diagram is illustrated in Figure 1.
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Figure 1. General overview of AMFNet.
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2.1.2. Bi-Temporal Feature Attention Module

In the change detection model, bi-temporal feature fusion involves operator fusion
methods, convolution fusion methods, and attention fusion methods. Simple operator fu-
sion methods directly add, subtract, or concatenate bi-temporal features for fusion [54–56].
However, noise in bi-temporal features might easily interfere with obtaining reliable de-
tection results using these methods. Convolutional fusion methods enhance bi-temporal
features in terms of multi-scale and semantic hierarchies through various convolution
operations, reducing the noise interference on bi-temporal features [57]. Typically, the
attention fusion approaches use an attention mechanism to effectively fuse bi-temporal
characteristics in the channel and spatial dimensions. Convolutional methods concen-
trate on enhancing bi-temporal characteristics before fusion, while attention refinement
approaches focus on improving these characteristics after operator fusion. The temporal
information of bi-temporal characteristics is disregarded by both.

As illustrated in Figure 2, we propose a bi-temporal feature attention model (BFAM)
to address the problems mentioned previously. BFAM effectively fuses features by utilizing
temporal information. The significant portions of the characteristics are identified using
channel and spatial attention, and the key sections between the bi-temporal features are
identified using temporal information. The channel branch achieves the aggregate of
channel information by transmitting the input bi-temporal characteristics across channels
via global pooling. The aggregation process can be represented as follows:

f c = Concat(Avg(T1_input), Max(T1_input), Avg(T2_input), Max(T2_input)), (1)

where fc represents the fused channel features. Concat denotes concatenation in the channel
dimension. Global average pooling is represented by Avg(.), and global maximum pooling
by Max(.). T1_input and T2_input are the bi-temporal feature inputs. The fused channel
features are then passed through one-dimensional convolutions separately with adaptively
determined kernel numbers (k), effectively capturing dependencies between channels. This
is followed by the generation of attention weights Wc1 and Wc2 for the channels using a
nonlinear activation function, softmax. The formulation of the two channel weights can be
expressed as follows:

Wc1, Wc2 =
eConv1( fc)

eConv1( fc)+eConv2( fc)
,

eConv2( fc)

eConv1( fc)+eConv2( fc)
, (2)

where Conv1(.) and Conv2(.) represent one-dimensional convolution. The methodology
for determining the weights in the spatial dimension parallels that of the channel dimen-
sion. Global pooling is applied in the spatial dimension, and weights are obtained using
two-dimensional convolution and a nonlinear activation function. In the spatial branch, we
identify specific regions between bi-temporal characteristics by calculating the bi-temporal
spatial weights WS1 and WS2. By integrating bi-temporal channel weights and bi-temporal
spatial weights, comprehensive bi-temporal weights are obtained, highlighting the essential
parts among bi-temporal features. Subsequently, these bi-temporal weights are multiplied
with the bi-temporal features for an effective fusion of these features. The resulting output
is processed through a 1 × 1 convolution and a depth-wise separable convolution, char-
acterized by a lower parameter count, and is then summed with the original input. The
output can be formalized as follows:

fT1_output = f ds( f 1×1(WC1 + WS1)⊗ fT1_input)) + fT1_input,

fT2_output = f ds( f 1×1(WC2 + WS2)⊗ fT2_input)) + fT2_input,
(3)

where f 1×1 represents a set of 1× 1 convolutions, batch normalization, and ReLU activation
functions, and f ds stands for depth-wise separable convolution [58], which encompasses
depth-wise convolution and point-wise convolution. ⊗ stands for the multiplication
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operation. This approach significantly reduces the number of parameters while ensuring a
larger receptive field.
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Figure 2. Bi-temporal feature attention module.

2.1.3. Bilateral Fusion Module

In change detection, the commonly used methods for extracting change information
involve addition, subtraction, and concatenation operations [47]. However, these simple
operator operations for extracting change features often lead to redundant information,
significantly reducing the robustness of change detection. Moreover, deep-level semantic
information in the network is abstract, and direct simple operations can result in misjudg-
ments and omissions [59]. To reasonably utilize the difference information and global
information generated from the subtraction and concatenation of bi-temporal feature maps,
we propose a BFM module, as shown in Figure 3. This module aims to precisely locate
changed positions from the abstract bi-temporal feature information in the deep network,
further revealing details and texture features of the changes.

fcat_input fsub_input

Conv1×1

Avgpool

Conv1×1

Conv1×1

DSconv

foutput

Figure 3. Bilateral fusion module.

Two branches make up the module: the right branch for extracting difference infor-
mation and the left branch for extracting global information. Since the initial difference
information is obtained by subtracting bi-temporal feature maps, the size of f _sub is
C × H × W. It is then processed through a 1 × 1 convolution and a depth-wise separable
convolution [58] to further extract difference features. For the left branch, the initial global
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information is obtained by concatenating bi-temporal feature maps along the channel
dimension, resulting in f _cat with a size of 2C × H × W. It first passes through a 1 × 1
convolution to obtain an output of size C × H × W and then undergoes global average
pooling to obtain a feature map of size C × 1 × 1. After further extracting features through
a 1 × 1 convolution from the weight feature map, it is multiplied by the feature map of size
C × H × W before global pooling to obtain more accurate global information. The ultimate
output, f _out, is obtained by fusing the characteristics of the two branches and adding the
result to f _sub.

Through a sequence of convolution and pooling procedures, the module better extracts
change features. The use of a residual structure guides the difference between information
and global information, which mutually influence each other, resulting in finer granularity
in extracting the edges of change regions. The following are the mathematical expressions:

f _out = f 1×1(Avgpool( f 1×1( f _cat)))1×1( f _sub) + f _sub. (4)

2.1.4. Integrated Attention Module

Remote sensing images, especially high-resolution ones, frequently encompass ex-
tensive data volumes and intricate content details. However, our focus is on the change
information between bi-temporal images, primarily including buildings, vegetation, rivers,
and infrastructure [55]. The characteristics of the changed targets are often not obvious [40],
and the complex background interferes with the target areas [25]. For each pixel label,
it is challenging for the network to classify and recognize correctly, which may lead to
misjudgment and omission of target features. Considering that unidirectional axial atten-
tion may result in the omission of feature information in other dimensions, we propose
a novel attention mechanism module, IAM, which consists of two branches. The first
branch guides the initial features, while the second branch integrates spatial attention and
channel attention mechanisms, enabling simultaneous focus on channel and spatial change
information. The two branches employ skip connections for feature fusion, facilitating
mutual guidance between the branches. This adaptive attention mechanism allows for
more attention to be placed on the changing areas, highlighting their importance while
suppressing the non-changing regions. The output is more refined attention features, with a
greater focus on the details of the edges in the changing areas. The structure of this module
is displayed in Figure 4.

CAM SAM

co
n
ca
te
n
at
io
n

Conv1×1finput
foutput

fc

fs

Figure 4. Integrated attention module.

Suppose that input finput ∈ RC×H×W , where H and W denote the feature map’s height
and width, respectively, while C signifies the quantity of channels involved. Initially, the
input features are subjected to channel dimension weight resetting by CAM, which involves
spatial axis operations on features under each channel. The structure of CAM is illustrated
in Figure 5. Specifically, this means condensing the feature map into two vectors of size
C × 1 × 1 by executing both spatial plane max pooling and global average pooling. These
two vectors are then input separately into a multi-layer perceptron (MLP) in order to
perform classification. The channel attention weights Wd(d = 1, . . . , D) (where D is the
feature dimension and d is the dth feature) are calculated by integrating the MLP outputs
and passing them through a sigmoid activation function. These weights also have the size
of C × 1 × 1. Each element of this vector represents the receptive field of the corresponding
channel space. The weighted fusion of the channel attention weights Wd and the input
feature map f _in results in the process of refining input features in the channel. This
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reduces unnecessary channels and highlights those that are important for change detection.
The computational formula for the above process can be described as follows:

Wd = σ(MLP(AυgPool( finput)) + MLP(MaxPool( finput)), (5)

fc = fin ⊗ Wd, (6)

where σ represents sigmoid activation function. MLP represents multi-layer perceptron
operation. Avg(.) and Max(.) represent global average pooling and global maximum
pooling, respectively.

MaxPool

AvgPool

MLP

Channel Attention Map

Figure 5. Channel attention module.

SAM begins by applying AvgPool and MaxPool operations along the channel axis to
the feature map fin. The structure of SAM is shown in Figure 6. This compression of channel
information produces two tensors of size 1 × H × W. These tensors are then concatenated
and processed through two consecutive 3 × 3 convolution operations, which flexibly
construct spatial relationships of features. This convolutional operation is equivalent to
the receptive field of a 3 × 3 convolution but with a significantly reduced parameter count.
Finally, a sigmoid activation function is introduced to enhance its nonlinear expression,
resulting in the spatial attention weight map Wp(p = 1, . . . , N), where N represents the
total number of pixels in each feature map and p denotes the value of the pth pixel in
the attention map. Higher and lower weights are, respectively, allocated to pixels that
have changed and those that have not changed. The input feature map fin is multiplied
element-wise by each element in Wp. Pixels within changing regions are multiplied by
higher weights, while pixels within unchanged areas are suppressed by lower weights,
achieving spatial refinement. This enables the network to rapidly detect areas undergoing
change. The computation formula is as follows:

Wp = σ( f 3×3( f 3×3([Avgpool( fc); MaxPool( fc)]))), (7)

fs = fin ⊗ Wp, (8)

where f 3×3(·) symbolizes a two-dimensional convolution, inclusive of batch normalization
and a ReLU activation function, characterized by a 3-unit convolution kernel. [; ] denotes
the operation of concatenation along the channel dimension. Meanwhile, fs is indicative of
a feature map that has been enhanced through the use of SAM. fs and the original input
undergo a series of multiplication and fusion operations, enhancing feature selection and
preserving important information. The concatenated feature map is then passed through
a convolutional layer with a kernel size of f 1×1. Lastly, the final output feature map,
f _output, is obtained by adding the Conv1 × 1 output element-by-element to the original
feature map. The formula for the process is specified as follows:

S1 = ( fs ⊗ finput)⊗ fs, (9)

S2 = S1 Concat finput, (10)

foutput = f 1×1(S2)⊕ finput. (11)
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Conv3×3

MaxPool

AvgPool

Conv3×3

Spatial Attention Map

Figure 6. Spatial attention module.

2.2. Datasets

In order to thoroughly confirm the validity of our AMFNet model, we assessed its
capability using three distinct remote sensing image change detection datasets: SYSU-
CD [60], LEVIR-CD [43], and GZ-CD [61].

2.2.1. SYSU-CD

Sun Yat-sen University created and released the SYSU-CD dataset [60] in 2022, which is
a collection of datasets created especially for change detection applications. This dataset is
primarily focused on detecting changes in various natural elements. The dataset comprises
distinct sets for training, validating, and testing purposes. It is methodically divided in a
ratio of 6:2:2, with 12,000 images allocated for training, 4000 for validation, and another 4000
for testing, ensuring comprehensive coverage for machine learning applications. Each
image within the dataset maintains a standard resolution of 256 × 256 pixels, suitable for
detailed analysis. Figure 7 displays some example.

T1_img

T2_img

Label

a b c d e

Figure 7. Diagram of the SYSU-CD dataset. (a–e) correspond to example images in the dataset.

2.2.2. LEVIR-CD

Including very high-quality Google Earth pictures, the LEVIR-CD [43] dataset is a
large-scale change detection dataset. The dataset spans a timeframe of 5 to 14 years, with the
images captured between 2002 and 2018 primarily focusing on significant transformations
in building structures. It includes bi-temporal remote sensing images from 20 distinct
areas across multiple cities in Texas, encompassing a wide array of buildings like villas,
skyscrapers, small garages, and large warehouses. This diverse collection takes into
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consideration changes due to seasonal shifts and varying light conditions. For practical
applications, the images are resized to 256 × 256 pixels. Using a 7:1:2 ratio, the dataset is
logically split into training, validation, and test sets containing 7120, 1024, and 2048 picture
pairings, respectively. The data structure is depicted in Figure 8.

T1_img

T2_img

Label

a b c d e

Figure 8. Diagram of the LEVIR-CD dataset. (a–e) correspond to example images in the dataset.

2.2.3. GZ-CD

The GZ-CD dataset [61], obtained from a suburban area of Guangzhou, China, cap-
tures the rapid urban development experienced during its collection, including various
alterations in the architecture’s shape and size. It showcases a rich diversity of building
types, ranging from expansive industrial facilities to compact mobile homes. Given that
the bi-temporal images in this dataset maintain consistent resolution, they were specifically
utilized for resolution-independent difference experiments within this methodology to eval-
uate the model’s adaptability and generalization skills. Figure 9 displays some examples.

T1_img

T2_img

Label

a b c d e

Figure 9. Diagram of the GZ-CD dataset. (a–e) correspond to example images in the dataset.
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2.3. Implementation Details
2.3.1. Evaluation Metrics

To evaluate the performance of our AMFNet model in change detection tasks, we
utilized a comprehensive set of evaluation metrics, including precision (PR), recall (RC),
overall accuracy (OA), Kappa coefficient (KAPPA), intersection over union (IoU), and
F1 score (F1). These metrics collectively offer a detailed assessment of the model. The
primary indicators used for evaluation are the F1 score, which measures the accuracy of
the changed category, and the IoU, assessing the overlap between predicted and actual
changed areas. Additionally, PR, RC, OA, and KAPPA serve as supporting indicators,
enriching the evaluation by providing insights into various aspects of the model’s accuracy
and reliability. The calculation method of each index is as follows:

PR =
TP

TP + FP
, (12)

RC =
TP

TP + FN
, (13)

F1 =
2 × PR × RC

PR + RC
, (14)

OA =
TP + TN

TP + TN + FP + FN
, (15)

E =
(TP + FP)× (TP + FN) + (FN + TN)× (FP + TN)

(TP + TN + FP + FN)2 , (16)

KAPPA =
OA − E

1 − E
, (17)

IoU =
TP

TP + FP + FN
. (18)

In the formulas mentioned above, TP denotes the true positive, which corresponds
to the area of change predicted correctly; FP signifies the false positive, representing the
unchanged area mistakenly identified as changed; TN is the true negative, referring to the
area that is correctly identified as unchanged; FN indicates the false negative, which is the
area of change incorrectly labeled as unchanged.

2.3.2. Multi-Scale Deep Supervised Training

To assist the network in better learning useful feature representations and to accelerate
the training process, we incorporate additional loss functions at multiple intermediate
layers of the network for multi-scale supervision [52,62]. Changes in change detection
tasks can occur at various scales, from large-scale geographical or architectural changes to
minor object movements or alterations. Multi-scale supervision ensures that the network
effectively learns features at all scales, thereby enhancing its ability to detect changes across
different scales. The goal of multi-scale supervision training is to minimize the following:

L = L1 +
L2

γ2
+

L3

γ3
, (19)

γ2 =
L2

L1
, (20)

γ3 =
L3

L1
. (21)

For losses at different levels, we sequentially define them as L1, L2, and L3 from
shallow to deep layers. γ2 and γ3 represent the weights of auxiliary losses at different
scales, respectively. We use shallow layer losses as a baseline because shallow layers are
usually able to capture more details and texture information, which is crucial for change
detection tasks. Moreover, features in shallow layers are closer to the input data, making
the loss calculation potentially more stable.
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3. Experiment and Results.

In this part, we use the GZ-CD, SYSU-CD, and LEVIR-CD datasets for ablation stud-
ies and comparison experiments to thoroughly assess the performance of our proposed
network and components.

3.1. Experimental Details

The research was conducted using a GeForce RTX 4090 GPU manufactured by NVIDIA,
with the chip produced in Taiwan, China, and employed PyTorch (version 2.1) with CUDA
12.1 as the foundational framework. During training, the batch size was established at
six, with an initial learning rate (lr0) of 0.0001. This learning rate is subject to dynamic
modification, adhering to a polynomial adjustment strategy. The computational expression
for this adjustment is detailed as follows:

lr = lr0 ∗
(

1 − epoch
num_epoch

)p
. (22)

The new learning rate, denoted as lr, is calculated from the initial learning rate lr0,
taking into account the current iteration number (epoch), the maximum iteration number
(num_epoch), and a constant p that controls the decay rate. The epoch count is fixed at 200.
Moreover, the network employs binary cross-entropy loss as its loss function and utilizes
the Adam optimization algorithm.

3.2. Ablation Experiments on LEVIR-CD

Selecting the right backbone network is crucial for our experiments. We considered
ResNet18, ResNet34, ResNet50, VGG16, and VGG19. Table 1, highlighting the best results
in bold, indicates ResNet34’s superior performance.

Table 1. Comparative experiments of AMFNet under different backbone networks (best results are
highlighted in bold type).

Backbone PR (%) RC (%) IoU (%) F1 (%)

VGG19 82.53 82.79 76.16 79.43
VGG16 85.36 84.68 78.54 80.21
ResNet18 93.98 90.38 81.54 89.36
ResNet50 94.22 90.35 82.54 90.05
ResNet34 95.51 92.15 83.13 90.79

By adding or removing modules, we examine the function of each component in order
to comprehend complicated neural networks. We use the LEVIR-CD dataset for ablation
studies to assess these modules’ performance on the backbone network. To directly view
the effectiveness of the model, we focus on the PR (precision), RC (recall), IoU (ontersection
over union), and F1 metrics. The details are exhibited in Table 2.

Table 2. The assessment of our proposed module through ablative experiments (best results are
highlighted in bold type).

Method PR (%) RC (%) IoU (%) F1 (%) Time
(ms)

Baseline 94.10 87.72 80.83 88.74 15.12
Baseline + BFAM 94.57 89.31 81.61 89.87 20.47
Baseline + BFAM + BFM 95.16 88.54 82.21 90.24 22.32
Baseline + BFAM + BFM + IAM 95.30 90.99 82.73 90.55 24.23
Baseline + BFAM + BFM + IAM + aux_loss 95.51 92.15 83.13 90.79 27.89

1. Ablation experiments of BFAM: We propose the attention-guided BFAM module,
which effectively incorporates temporal dynamics into the feature fusion process at
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both channel and spatial dimensions. This module enhances IoU and F1 scores by
0.78% and 1.13 %, respectively, validating the effectiveness of the proposed module.
Table 3 shows the ablation experiment of the convolution kernel size k used for one-
dimensional convolution at the channel latitude. The experiment proves that the
model performs best when k is an adaptive channel size. From heatmap2 in Figure 10,
it can be observed that, compared to heatmap1, the addition of BFAM significantly
reduces the areas of misjudgment. The weights along the edges of the target buildings
become more pronounced, leading to a more precise localization of the edges.

2. Ablation experiments of BFM: Our proposed BFM facilitates the network in precisely
identifying changing locations during the feature decoding phase by integrating
global and differential information, thereby enhancing the representation of texture
and edge features. Experimental results shown in Table 2 demonstrate that BFM
successfully integrates two semantic pieces of information, improving the MIoU score
by 0.60% and the F1 score by 0.37%, enhancing the model’s accuracy.

3. Ablation experiments of IAM: The attention module enables the network to adaptively
adjust the weights and pixel positions across each channel, emphasizing factors related
to changes while suppressing irrelevant ones. This method is a crucial approach to
improving feature extraction efficiency in the network. The experimental findings
presented in Table 2 show that AMFNet raises the F1 score by 0.31% and the IoU by
0.52%, affirming the accuracy of the proposed module. From Heatmap3 in Figure 10,
it is evident that employing interactive features for decoding, a key innovation in
this paper, achieves remarkable results. The decoded feature maps undergo further
processing through BFM and IAM, leading to a higher emphasis on the target regions.
This results in a reduction of misjudgments and omissions along the edges, making
the distinction between changed and unchanged regions more apparent.

4. Ablation experiments of multi-scale supervised training: In order to enhance the
detection capability of changes at various scales, we add losses from different layers in
the decoding stage to the overall training loss in a certain proportion. This results in an
improvement of 0.40% and 0.78% in the F1 and IoU scores, respectively, strengthening
the model’s robustness.

T1_img T2_img Label Heatmap1 Heatmap2 Heatmap3

Figure 10. Heatmaps depicting the ablation of different modules. Heatmap1 represents the heatmap
of the backbone network, Heatmap2 is the heatmap after adding the BFAM module, and Heatmap3
is the heatmap after adding the BFAM, BFM, and IAM modules.

Table 4 presents the ablation experiment results of BFAM and IAM on the LEVIR-CD
dataset. Both modules are attention-guided fusion modules, with BFAM fusing multi-
scale bi-temporal feature maps in the encoding stage and IAM highlighting changing
regions and suppressing non-changing regions in the decoding stage. For comparison, we
selected CBAM [63] as a conventional attention mechanism model. The first and second
rows indicate that using BFAM allows concentrating on the more critical aspects between
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bi-temporal features in the encoding stage, effectively fusing the bi-temporal features,
thereby improving performance. The data in the first and third rows suggest that relative
to conventional attention models, employing IAM enhances the merging of multi-semantic
features during the decoding phase, thus boosting performance. The fourth row shows that
using both BFAM and IAM simultaneously can further enhance performance. According
to the data above, change detection capabilities may be further enhanced by integrating
BFAM and IAM, which together can boost performance even more.

Table 3. Ablation experiment of one-dimensional convolution kernel of channel latitude in BFAM
(best results are highlighted in bold type).

Kernel Size IoU (%) F1 (%)

k = 3 82.60 89.46
k = 5 82.97 90.30
k = 7 81.78 88.35
k is adaptive 83.13 90.79

Table 4. Attention-guided module ablation experiments (best results are highlighted in bold type).

Encoding Stage Fusion Unit Decoding Stage Interaction Unit IoU (%) F1 (%)

Add Regular Attention Module 81.84 89.96
BFAM Regular Attention Module 82.61 90.30
Add IAM 82.87 90.12
BFAM IAM 83.13 90.79

3.3. Comparative Experiments with Other Classical Networks
3.3.1. Comparative Experiments of Different Algorithms on LEVIR-CD

To fully comprehend and analyze the performance of our model, we contrasted it with
many models. Every method applied the same training approach to guarantee compar-
ative fairness, ensuring reliable results. The specific quantified results of various model
evaluation metrics are listed in Table 5. Params (M) represents the total number of trainable
parameters in the model, expressed in millions, indicating the model’s complexity and
capacity. FLOPs (G) denotes the number of floating-point operations required to run the
model once, measured in billions, reflecting the computational cost. Time (ms) measures
the time taken to execute one forward pass of the model in milliseconds, providing a direct
metric of the model’s inference speed. From the comparative experimental results, it is
evident that among the change detection methods using deep learning, FC-EF performs the
worst, with F1 and IoU scores of only 83.17% and 71.19%, respectively. In contrast, AMFNet
demonstrated increases of 0.69% in F1 score and 1.15% in IoU, alongside notable improve-
ments in precision (+2.98%), recall (+2.39%), Kappa (+0.72%), and overall accuracy (+0.05%).
Our approach exceeds other algorithms in terms of overall performance based on many
measures, which is a clear indication of its potential superiority in practical applications.

To visualize the prediction results, Figure 11 displays the predicted maps of different
algorithms on the LEVIR-CD dataset. We selected three sets of different remote sensing
images and generated prediction maps, further illustrating that our algorithm outperforms
other state-of-the-art algorithms. Here, white indicates true positives, black indicates true
negatives, red indicates false positives, and green indicates false negatives. From the
prediction results of the three sets of comparative experiments, it can be observed that other
change detection models exhibit more severe omissions and exaggerations, especially in
areas with similar features such as color and lighting. In contrast, our proposed algorithm
performs better in detecting small-area and high-similarity change regions, providing more
accurate predictions of edge details.
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Figure 11. Three groups of comparative diagrams illustrating the performance of different algorithms
on the LEVIR-CD dataset. (a–l) corresponds to the predicted maps of labels, FC-EF, FC-Siam-Conc,
FC-Siam-Diff, ChangNet, DSIFN, BIT, ICFNet, SNUNet, DMINet, SAGNet, and our AMFNet network.

Table 5. Comparative experiments on the LEVIR-CD dataset (best results are highlighted in bold type).

Method PR(%) RC (%) OA (%) Kappa
(%) IoU (%) F1 (%) Params

(M)
FLOPs

(G)
Time
(ms)

FC-EF [64] 85.58 80.89 98.33 82.30 71.19 83.17 1.35 3.57 7.59
FC-Siam-Diff [64] 89.49 80.67 98.53 84.08 73.69 84.85 1.35 4.72 5.13
FC-Siam-Conc [64] 86.76 85.83 98.61 85.56 75.89 86.29 1.55 5.32 5.22
ChangeNet [65] 91.63 86.88 98.93 88.63 80.49 89.19 47.20 10.91 17.01
DSIFN [66] 91.53 85.70 98.87 87.75 79.12 88.34 35.73 82.26 12.13
BIT [41] 91.26 88.51 98.98 89.33 81.59 89.86 3.49 10.63 16.12
ICIFNet [67] 91.31 87.23 98.56 89.16 81.24 89.18 23.84 24.51 49.53
SNUNet [68] 91.51 88.51 99.00 89.46 81.79 89.98 12.03 54.82 9.66
DMINet [69] 92.02 87.77 98.99 89.31 81.56 89.85 6.24 14.55 12.87
SAGNet [55] 91.79 88.76 99.02 89.58 81.98 90.10 32.23 12.25 25.32
Ours 94.77 91.15 99.07 90.30 83.13 90.79 30.27 10.81 27.89

3.3.2. Comparative Experiments of Different Algorithms on GZ-CD

We ran comparison tests on the GZ-CD dataset to confirm the effectiveness of our
AMFNet method. The outcomes are shown in Table 6. It is evident from the F1 and
IoU scores that FC-Siam-Diff performs the worst, with F1 and IoU scores of only 71.06%
and 55.11%, respectively. The remaining change detection algorithms show improvements
in all four metrics, with our AMFNet exhibiting the best performance. F1 and IoU scores
reached 88.09% and 69.85%, respectively, which are 1.79% and 2.80% higher than the second-
ranked SAGNet, indicating excellent generalization ability and robustness of our algorithm.
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Table 6. Comparative experiments on the GZ-CD dataset (best results are highlighted in bold type).

Method PR (%) RC (%) OA (%) Kappa (%) IoU (%) F1 (%)

FC-EF [64] 79.86 65.53 95.28 69.44 56.24 71.99
FC-Siam-Diff [64] 82.70 57.99 94.99 65.55 51.72 68.18
FC-Siam-Conc [64] 82.16 62.80 95.29 68.67 55.26 71.19
ChangeNet [65] 88.63 82.99 97.44 84.32 75.01 85.72
DSIFN [66] 89.35 75.46 96.91 79.83 68.76 81.49
BIT [41] 86.80 82.04 97.18 82.80 72.94 84.35
ICIFNet [67] 88.09 81.31 97.25 83.05 73.25 84.56
SNUNet [68] 89.00 84.80 97.62 85.54 76.75 86.85
DMINet [69] 86.62 82.85 97.23 83.17 73.45 84.70
SAGNet [55] 89.56 84.05 97.58 84.98 75.91 86.30
Ours 90.40 89.74 97.85 86.91 78.71 88.09

On the GZ-CD dataset, the predicted maps for each comparative experiment are
illustrated in Figure 12. Other change detection algorithms often exhibit extensive misjudg-
ments and omissions at the edges of change regions. In contrast, our proposed algorithm
achieves more accurate edge detection and demonstrates stronger detection capabilities for
small targets similar to the background. In Figure 12(II), the portion enclosed by the three
buildings on the right side of the image remains unchanged and is still land. However,
due to external environmental changes such as lighting and seasonality, many algorithms
misclassify it as a changed area. Our algorithm accurately identifies this as an unchanged
area, proving the effectiveness of our AMFNet algorithm in change detection tasks.
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Figure 12. Three groups of comparison diagrams of different algorithms on GZ-CD dataset.
(a–l) corresponds to the predicted maps of labels, FC-EF, FC-Siam-Conc, FC-Siam-Diff, ChangNet,
DSIFN, BIT, ICFNet, SNUNet, DMINet, SAGNet, and our AMFNet network.
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3.3.3. Comparative Experiments of Different Algorithms on SYSU-CD

Concerning the SYSU-CD dataset, our model AMFNet achieved the highest IoU and F1
indicators, reaching 69.85% and 82.25%, respectively. The outcomes are shown in Table 7.

Table 7. Comparative experiments on the SYSU-CD dataset (best results are highlighted in bold type).

Method PR (%) RC(%) OA (%) Kappa (%) IoU (%) F1 (%)

FC-EF [64] 78.78 76.69 89.63 70.97 63.56 77.72
FC-Siam-Diff [64] 80.35 74.26 88.71 64.42 55.11 71.06
FC-Siam-Conc[64] 81.51 75.11 90.11 71.80 64.17 78.18
ChangeNet [65] 79.91 71.11 88.97 68.19 60.33 75.25
DSIFN [66] 78.82 81.30 90.44 73.76 66.72 80.04
BIT [41] 81.22 73.87 89.81 70.81 63.09 77.37
ICIFNet [67] 78.23 74.38 89.08 69.17 61.62 76.25
SNUNet [68] 79.37 78.39 90.10 72.42 65.13 78.88
DMINet [69] 81.54 79.44 91.15 74.59 67.06 80.28
SAGNet [55] 81.25 81.76 91.72 76.57 69.31 81.87
Ours 88.23 82.51 92.30 77.38 69.85 82.25

Figure 13 illustrates the prediction results of different algorithms on the SYSU-CD
dataset. Notably, in Figure 13(II), the bottom-right corner contains a shadow, and the
outlines of the buildings are somewhat blurred, posing a significant challenge to the change
detection task. Other change detection algorithms perform poorly in this region, resulting
in numerous misjudgments. In contrast, our proposed algorithm accurately identifies
changes in this part. From Figure 13, it is evident that the AMFNet algorithm achieves more
precise edge detection and can effectively extract image features for accurate judgment
even in challenging environments. It demonstrates robustness in situations where the
target area is highly similar to the background.
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Figure 13. Three groups of comparative diagrams illustrating the performance of different algorithms
on the SYSU-CD dataset. (a–l) corresponds to the predicted maps of labels, FC-EF, FC-Siam-Conc,
FC-Siam-Diff, ChangNet, DSIFN, BIT, ICFNet, SNUNet, DMINet, SAGNet, and our AMFNet network.



Remote Sens. 2024, 16, 1765 18 of 21

4. Discussion
4.1. Advantages of the Proposed Method

The proposed attention-guided multi-scale fusion network (AMFNet) introduces sig-
nificant advancements in the field of change detection. By integrating the bi-temporal fea-
ture attention module (BFAM), AMFNet effectively manages the interaction of bi-temporal
features, reducing redundancy and enhancing the perception of changes over time. This
is a crucial improvement over traditional methods that rely merely on simple arithmetic
operations. The incorporation of the bi-temporal fusion module (BFM) in the decoder
further refines the process by selectively fusing semantic information, which significantly
reduces the intrusion of irrelevant data. Furthermore, the innovative use of the interactive
attention module (IAM) in the decoding process not only preserves the temporal sequence
but also emphasizes the importance of non-local relationships, allowing for a more nu-
anced understanding of the scene dynamics. These methodological enhancements enable
AMFNet to achieve superior performance metrics, as evidenced by its high F1 scores and
intersection over union (IoU) metrics across multiple datasets.

4.2. Limitations and Expectations

While the proposed AMFNet demonstrates impressive performance, it is not without
its limitations. The complexity introduced by attention mechanisms and multiscale fusion
could lead to increased computational demands [70], potentially hindering real-time pro-
cessing capabilities or deployment in computationally constrained environments [71]. The
model’s sensitivity to hyperparameters and network architecture choices also poses a chal-
lenge, necessitating careful tuning to achieve the best possible performance. Furthermore,
the current evaluation of the model’s effectiveness has been limited to specific datasets,
and its adaptability to larger-scale remote sensing images with more diverse regions [69]
remains uncertain. Looking ahead, it is essential to concentrate research efforts on enhanc-
ing computational efficiency, reducing the model’s sensitivity to parameter settings, and
improving scalability. Such advancements will be crucial in extending the applicability
of AMFNet to a wider array of real-world scenarios, thereby solidifying its position as a
robust tool in the realm of remote sensing and change detection.

5. Conclusions

In this paper, we proposed an attention-guided multiscale fusion network. The
traditional change detection algorithm simply adds and subtracts bi-temporal features,
which have a large amount of redundant information and insufficient perception of the
tense. So, in the encoding part, we utilized BFAM to facilitate the interaction of bi-temporal
features at the same level, eliminating redundant information. Our decoding process was
based on interactive feature maps, preserving both the temporal sequence and rich non-local
relationships of bi-temporal features during further fusion. By incorporating BFM into the
decoder network to fuse global semantic and differential semantic information, we avoided
introducing a significant amount of irrelevant semantic information through simple fusion
methods. By assigning weights adaptively to different regions, the IAM sharpened the
network’s emphasis on differentiating targets from backgrounds and enhances its capacity
to identify tiny objects and edge features. Our proposed AMFNet outperforms existing
algorithms on the LEVIR-CD, GZ-CD, and SYSU-CD datasets, according to experimental
findings. Specifically, it achieved F1 scores of 90.79%, 88.09%, and 82.25%, and IoU metrics
of 83.13%, 78.71%, and 69.85% for each dataset, respectively. The model exhibited excellent
generalization and robustness.
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