On the Initial Phase of the Ongoing Unrest at Campi Flegrei and Its Relation with Subsidence at Vesuvio (Italy)
"> Figure 1
<p>Map of the Campi Flegrei and Vesuvio areas, UTM WGS84 33N coordinates. Palette colours indicate elevations [<a href="#B7-remotesensing-16-01717" class="html-bibr">7</a>], cyan areas are bodies of water. Black dots and labels: R, Rione Terra; S, Solfatara; P, Pisciarelli. The red rectangle encloses the area referred to in this paper as the “Campi Flegrei area”. The orange and magenta curves indicate the rims of the Campi Flegrei caldera collapses of the Campanian Ignimbrite (about 39 ka) and the Neapolitan Yellow Tuff (about 15 ka) eruptions [<a href="#B8-remotesensing-16-01717" class="html-bibr">8</a>]. The blue curve indicates the rim of the collapsed caldera of an older structure, Mt. Somma, with the Vesuvio cone rising from the centre.</p> "> Figure 2
<p>Changes in ground level at Rione Terra (R in <a href="#remotesensing-16-01717-f001" class="html-fig">Figure 1</a>), which is the area of maximum vertical displacement at Campi Flegrei. (<b>a</b>) From 1905 to the end of 2023. (<b>b</b>) Period investigated in this work. Blue points, levelling data [<a href="#B4-remotesensing-16-01717" class="html-bibr">4</a>]; red points, vertical displacement from GNSS data [<a href="#B18-remotesensing-16-01717" class="html-bibr">18</a>]; green points, temporal function of the first independent component obtained from the analysis of SAR data, reversed in sign and properly scaled.</p> "> Figure 3
<p>Displacement data dates (reprinted from [<a href="#B33-remotesensing-16-01717" class="html-bibr">33</a>]). The acquisition dates of the ascending- and descending-orbit images are represented by red and blue circles, respectively. The green circles indicate the dates of the computed horizontal (<math display="inline"><semantics> <msub> <mi>u</mi> <mi>H</mi> </msub> </semantics></math>) and quasi-vertical (<math display="inline"><semantics> <msub> <mi>u</mi> <mi>V</mi> </msub> </semantics></math>) displacements.</p> "> Figure 4
<p>Scatter plots of the quasi-vertical displacement <math display="inline"><semantics> <msub> <mi>u</mi> <mi>V</mi> </msub> </semantics></math> at selected locations in Campi Flegrei (P09, P06, P15, P17) and in the area of maximum pre-2000 subsidence (P18) from 1993 to 2010. Each location is circular, with a diameter of 600 m. The map in (<b>a</b>) displays all the sampled locations. The map uses a colour scheme to represent locations characterised by similar scatter plots. Cyan indicates locations with noisy almost-zero displacements during Campi Flegrei subsidence and uplift after then; an example is shown in (<b>c</b>). Blue indicates locations with a positive correlation with P18 during Campi Flegrei subsidence and uplift after then; an example is shown in (<b>d</b>). Red indicates locations with a positive correlation with P18 during the whole 1993–2010 period; an example is shown in (<b>e</b>). Magenta indicates locations with a positive correlation with P18 during the whole 1993–2010 period, with some peculiarities; an example is shown in (<b>f</b>). The epoch is identified by the colour of the symbols in each scatter plot, which can be seen in (<b>b</b>). The scatter plots for all the sampled locations are shown in the <a href="#app1-remotesensing-16-01717" class="html-app">Supplementary Information Figures S3–S19</a>.</p> "> Figure 5
<p>Scatter plots of the horizontal displacement <math display="inline"><semantics> <msub> <mi>u</mi> <mi>H</mi> </msub> </semantics></math> at selected locations in Campi Flegrei (P03, P06, P07, P11) and the quasi-vertical displacement <math display="inline"><semantics> <msub> <mi>u</mi> <mi>V</mi> </msub> </semantics></math> in the area of maximum pre-2000 subsidence (P18) from 1993 to 2010. Each location is circular, with a diameter of 600 m. The map in (<b>a</b>) displays all the sampled locations. The map uses a colour scheme to represent locations characterised by similar scatter plots. Cyan indicates locations with noisy almost-zero horizontal displacements during Campi Flegrei subsidence and westward horizontal displacements after then; an example is shown in (<b>c</b>). Blue indicates locations with a positive correlation with the quasi-vertical displacement at P18 during Campi Flegrei subsidence and almost-zero horizontal displacements after then; an example is shown in (<b>d</b>). Red indicates locations with a positive correlation with the quasi-vertical displacement at P18 during Campi Flegrei subsidence and westward horizontal displacements after then; the sole example is shown in (<b>e</b>). Magenta indicates locations with a negative correlation with the quasi-vertical displacement at P18 during Campi Flegrei subsidence and westward horizontal displacements after then; the sole example is shown in (<b>f</b>). The epoch is identified by the colour of the symbols in each scatter plot, which can be seen in (<b>b</b>). The scatter plots for all the sampled locations are shown in the <a href="#app1-remotesensing-16-01717" class="html-app">Supplementary Information Figures S20–S36</a>.</p> "> Figure 6
<p>Campi Flegrei area: temporal functions and spatial distributions of the first two ICs. Each temporal function starts at zero, and the value corresponding to the maximum of its modulus is non-negative. The full range of variation, i.e., the difference between the maximum and minimum of the temporal function, is 1. The spatial distributions are presented in centimetres of displacement during the period when the related temporal function underwent its maximum variation. IC1 experienced this from the beginning of 1993 to the beginning of 2005, while IC2 experienced it from the end of 1999 to 2010. (<b>a</b>,<b>d</b>) Temporal functions of IC1 and IC2, respectively. (<b>b</b>,<b>c</b>) Spatial distributions of IC1, showing <math display="inline"><semantics> <msub> <mi>u</mi> <mi>V</mi> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>u</mi> <mi>H</mi> </msub> </semantics></math>, respectively. (<b>e</b>,<b>f</b>) Spatial distributions of IC2, showing <math display="inline"><semantics> <msub> <mi>u</mi> <mi>V</mi> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>u</mi> <mi>H</mi> </msub> </semantics></math>, respectively. Grey tones in (<b>b</b>,<b>c</b>,<b>e</b>,<b>f</b>) indicate topography (see <a href="#remotesensing-16-01717-f001" class="html-fig">Figure 1</a>).</p> "> Figure 7
<p>Vesuvio area: temporal functions and spatial distributions of the first two ICs. Each temporal function starts at zero, and the value corresponding to the maximum of its modulus is non-negative. The full range of variation, i.e., the difference between the maximum and minimum of the temporal function, is 1. The spatial distributions are presented in centimetres of displacement during the period when the related temporal function underwent its maximum variation. IC1 experienced this from the beginning of 1993 to 2010, while IC2 experienced it from 2001 to 2010. (<b>a</b>,<b>d</b>) Temporal functions of IC1 and IC2, respectively. (<b>b</b>,<b>c</b>) Spatial distributions of IC1, showing <math display="inline"><semantics> <msub> <mi>u</mi> <mi>V</mi> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>u</mi> <mi>H</mi> </msub> </semantics></math>, respectively. (<b>e</b>,<b>f</b>) Spatial distributions of IC2, showing <math display="inline"><semantics> <msub> <mi>u</mi> <mi>V</mi> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>u</mi> <mi>H</mi> </msub> </semantics></math>, respectively. Grey tones in (<b>b</b>,<b>c</b>,<b>e</b>,<b>f</b>) indicate topography (see <a href="#remotesensing-16-01717-f001" class="html-fig">Figure 1</a>).</p> "> Figure 8
<p>Whole area including Campi Flegrei and Vesuvio: selection of the number of components through automatic relevance determination (ARD). (<b>a</b>) Ratio of minimum-to-maximum posterior mixing matrix variances in relation to the number of components. The ARD criterion suggests retaining either two or four components. The red dashed line indicates the value of <math display="inline"><semantics> <mrow> <mn>0.04</mn> </mrow> </semantics></math> used by [<a href="#B50-remotesensing-16-01717" class="html-bibr">50</a>] as a threshold to determine the number of components to retain (two in this case). This is an arbitrary threshold, and a different choice (e.g., <math display="inline"><semantics> <mrow> <mn>0.01</mn> </mrow> </semantics></math>, green dashed line) would lead to the selection of a different number of components (four in this case). The addition of IC3 and IC4 does not affect the interpretation of the first two ICs. (<b>b</b>) Explained variance of the dataset in relation to the number of components.</p> "> Figure 9
<p>Whole area including Campi Flegrei and Vesuvio: temporal functions of the first two ICs. Each temporal function starts at zero, and the value corresponding to the maximum of its modulus is non-negative. The full range of variation, i.e., the difference between the maximum and minimum of the temporal function, is 1. Selecting either 2 or 4 components has a negligible impact on the temporal functions of IC1 and IC2. IC1 accurately tracks the vertical displacement at Rione Terra from levelling data but may appear reversed due to scaling (see also <a href="#remotesensing-16-01717-f002" class="html-fig">Figure 2</a>). IC2 remains almost constant until around 2001, after which it increases at a steady rate.</p> "> Figure 10
<p>Whole area including Campi Flegrei and Vesuvio: spatial distributions of the first independent component. The spatial distributions are given in centimetres of displacement from the beginning of 1993 to the beginning of 2005. This period corresponds to when the related temporal function underwent its maximum variation. The ground displacement history at each pixel can be obtained by multiplying the temporal function by the displacement shown here. Each panel is divided into two parts by a dashed black line. The colour bars to the left and right of the dashed line differ by a factor of 10 to enhance the visibility of the small displacements in the Vesuvio area. (<b>a</b>) Horizontal displacement <math display="inline"><semantics> <msub> <mi>u</mi> <mi>H</mi> </msub> </semantics></math>. (<b>b</b>) Quasi-vertical displacement <math display="inline"><semantics> <msub> <mi>u</mi> <mi>V</mi> </msub> </semantics></math>.</p> "> Figure 11
<p>Whole area including Campi Flegrei and Vesuvio: spatial distributions of the second independent component. The spatial distributions are given in centimetres of displacement from the end of 1999 to mid-2010. This period corresponds to when the related temporal function underwent its maximum variation. The ground displacement history at each pixel can be obtained by multiplying the temporal function by the displacement shown here. (<b>a</b>) Horizontal displacement <math display="inline"><semantics> <msub> <mi>u</mi> <mi>H</mi> </msub> </semantics></math>. (<b>b</b>) Quasi-vertical displacement <math display="inline"><semantics> <msub> <mi>u</mi> <mi>V</mi> </msub> </semantics></math>.</p> "> Figure 12
<p>Marginal probability density functions (MPDFs) of the parameters of the two pressurised spheroidal sources that satisfy IC1 at Campi Flegrei. MPDFs were estimated using NAB and scaled to a maximum of 1 to facilitate plot interpretation. The red curves pertain to the source responsible for large-scale deformation (S1), while the blue curves relate to the source responsible for Solfatara local deformation (S2). The dashed lines relate to the parameter values listed in <a href="#remotesensing-16-01717-t002" class="html-table">Table 2</a>. (<b>a</b>) Easting position of the source centres. (<b>b</b>) Northing position of the source centres. (<b>c</b>) Depth to the source centres. (<b>d</b>) Volume change of the sources. (<b>e</b>) Polar-to-equatorial radius (i.e., aspect ratio) of the sources. (<b>f</b>) Equatorial radius of S1.</p> "> Figure 13
<p>Modelling of the spatial distribution of the first independent component within the red rectangle in <a href="#remotesensing-16-01717-f001" class="html-fig">Figure 1</a>. The spatial distributions are given in centimetres of displacement from the beginning of 1993 to the beginning of 2005, which corresponds to when the related temporal function underwent its maximum variation. (<b>a</b>,<b>b</b>) Horizontal and quasi-vertical displacements, redrawn from <a href="#remotesensing-16-01717-f010" class="html-fig">Figure 10</a>a,b for clarity. (<b>c</b>,<b>d</b>) Computed cumulative contribution of the sill-shaped expansive source near Rione Terra and the expansive source below Solfatara. The centre of the former is marked by a red circle, while the latter is marked by a yellow square. (<b>e</b>,<b>f</b>) Residuals of the model, i.e., the differences between the spatial distribution of the first independent component and the computed cumulative contribution of the two sources.</p> "> Figure 14
<p>Marginal probability density functions (MPDFs) of the parameters of the three pressurised spheroidal sources that satisfy IC2. MPDFs were estimated using NAB and scaled to a maximum of 1 to facilitate plot interpretation. The red curves pertain to the deep contracting source below the southwestern part of Campi Flegrei. The blue curves relate to the deep expansive source below Rione Terra. The green curves pertain to the deep contracting source below Vesuvio. The dashed lines relate to the parameter values listed in <a href="#remotesensing-16-01717-t003" class="html-table">Table 3</a>. (<b>a</b>) Easting position of the centres of the two sources below Campi Flegrei. (<b>b</b>) Easting position of the centre of the source below Vesuvio. (<b>c</b>) Northing position of the source centres. (<b>d</b>) Depth to the source centres. (<b>e</b>) Volume change of the sources. (<b>f</b>) Polar-to-equatorial radius (i.e., aspect ratio) of the sources.</p> "> Figure 15
<p>Modelling of the spatial distribution of the second independent component. The spatial distributions are given in centimetres of displacement from the end of 1999 to mid-2010, which corresponds to when the related temporal function underwent its maximum variation. (<b>a</b>,<b>b</b>) Horizontal and quasi-vertical displacements, redrawn from <a href="#remotesensing-16-01717-f011" class="html-fig">Figure 11</a>a,b for clarity. (<b>c</b>,<b>d</b>) Computed cumulative contribution of the deep contracting source below the southwestern part of Campi Flegrei, the deep expansive source below Rione Terra, and the deep contracting source below Vesuvio. Based on several tests, the red circle bounds the area where the centre of the first source could be located. The centre of the second source is marked by a blue circle, and the centre of the third source is marked by a yellow square. (<b>e</b>,<b>f</b>) Residuals of the model, i.e., the differences between the spatial distribution of the second independent component and the computed cumulative contribution of the three sources.</p> "> Figure 16
<p>Schematic three-dimensional view of the Campi Flegrei and Vesuvio magmatic systems and their sources during the 2002–2010 period. The bluish regions contracted, while the reddish regions expanded. The sill-shaped deformation source at 3–4 km below Campi Flegrei is labelled as S1. The mini-uplifts of 2000 and 2005 resulted from the expansion of the sole S1, whose contraction had previously caused the subsidence of the caldera. S1 continued to contract slowly until 2005, when it began to expand. The partially molten layer beneath Campi Flegrei and Vesuvio is represented by a light orange parallelepiped and is fed by a deeper reservoir. During 2002–2010, magma was transferred from beneath Vesuvio to beneath Campi Flegrei at a depth of 8–9 km, as indicated by the blue-to-red horizontal arrow in (<b>a</b>,<b>b</b>). The two panels depict two different scenarios. (<b>a</b>) If the spatial pattern of IC2 is not affected by IC1, two volumes located below Campi Flegrei at depths of approximately 9 and 8 km experienced opposite activity: contraction (beneath the southwestern part of the caldera) and expansion (beneath the central part of the caldera). (<b>b</b>) If the spatial pattern of IC2 is affected by contamination from IC1, it is more likely that a region beneath the eastern part of Campi Flegrei has expanded.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. SAR Data and Analysis
2.2. vbICA
2.3. Mathematical Modelling of Deformation Sources
2.4. Inverting Spatial Patterns for Deformation Source Parameters
3. Results
3.1. Pre-Analysis of Displacement Data Using Scatter Plots
3.2. vbICA Results
3.2.1. Campi Flegrei Area
3.2.2. Vesuvio Area
3.2.3. Campi Flegrei and Vesuvio Combined
3.3. Campi Flegrei and Vesuvio Combined: Modelling of the Spatial Distributions of IC1 and IC2
3.3.1. First Independent Component
3.3.2. Second Independent Component
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SAR | synthetic aperture radar |
SBAS | small baseline subset |
DInSAR | differential synthetic aperture radar interferometry |
LOS | line of sight |
DEM | digital elevation model |
GNSS | global navigation satellite system |
NeVoCGPS | Neapolitan Volcanoes Continuous GPS network |
vbICA | variational Bayesian independent component analysis |
IC | independent component |
ARD | automatic relevance determination |
IA | incidence angle |
ESA | European Space Agency |
SNAP | Sentinel Application Platform |
References
- Dzurisin, D. Volcano Deformation, Geodetic Monitoring Techniques; Springer: Berlin, Germany, 2007. [Google Scholar]
- Guidoboni, E.; Ciuccarelli, C. The Campi Flegrei caldera: Historical revision and new data on seismic crises, bradyseisms, the Monte Nuovo eruption and ensuing earthquakes (twelfth century 1582 AD). Bull. Volcanol. 2011, 73, 655–677. [Google Scholar] [CrossRef]
- Trasatti, E.; Magri, C.; Acocella, V.; Del Gaudio, C.; Ricco, C.; Di Vito, M.A. Magma transfer at Campi Flegrei caldera (Italy) after the 1538 AD eruption. Geophys. Res. Lett. 2023, 50, e2022GL102437. [Google Scholar] [CrossRef]
- Del Gaudio, C.; Aquino, I.; Ricciardi, G.P.; Ricco, C.; Scandone, R. Unrest episodes at Campi Flegrei: A reconstruction of vertical ground movements during 1905–2009. J. Volcanol. Geotherm. Res. 2010, 185, 48–56. [Google Scholar] [CrossRef]
- Rosi, M.; Acocella, V.; Cioni, R.; Bianco, F.; Costa, A.; De Martino, P.; Giordano, G.; Inguaggiato, S. Defining the Pre-Eruptive States of Active Volcanoes for Improving Eruption Forecasting. Front. Earth Sci. 2022, 10, 795700. [Google Scholar] [CrossRef]
- Bollettino Mensile Campi Flegrei, February 2024. Available online: https://www.ov.ingv.it/index.php/monitoraggio-e-infrastrutture/bollettini-tutti/bollett-mensili-cf/anno-2024-3/1586-bollettino-mensile-campi-flegrei-2024-02/file (accessed on 18 March 2024).
- Tarquini, S.; Isola, I.; Favalli, M.; Mazzarini, F.; Bisson, M.; Pareschi, M.T.; Boschi, E. TINITALY/01: A new triangular irregular network of Italy. Ann. Geophys. 2007, 50, 407–425. [Google Scholar] [CrossRef]
- Vitale, S.; Isaia, R. Fractures and faults in volcanic rocks (Campi Flegrei, southern Italy): Insight into volcano-tectonic processes. Int. J. Earth Sci. 2014, 103, 801–819. [Google Scholar] [CrossRef]
- Giudicepietro, F.; Ricciolino, P.; Bianco, F.; Caliro, S.; Cubellis, E.; D’Auria, L.; De Cesare, W.; De Martino, P.; Esposito, A.M.; Galluzzo, D.; et al. Campi Flegrei, Vesuvius and Ischia Seismicity in the Context of the Neapolitan Volcanic Area. Front. Earth Sci. 2021, 9, 662113. [Google Scholar] [CrossRef]
- Tramelli, A.; Giudicepietro, F.; Ricciolino, P.; Chiodini, G. The seismicity of Campi Flegrei in the contest of an evolving long term unrest. Sci. Rep. 2022, 12, 2900. [Google Scholar] [CrossRef]
- Danesi, S.; Pino, N.A.; Carlino, S.; Kilburn, C.R.J. Evolution in unrest processes at Campi Flegrei caldera as inferred from local seismicity. Earth Planet. Sci. Lett. 2024, 626, 118530. [Google Scholar] [CrossRef]
- Chiodini, G.; Paonita, A.; Aiuppa, A.; Costa, A.; Caliro, S.; De Martino, P.; Acocella, V.; Vandemeulebrouck, J. Magmas near the critical degassing pressure drive volcanic unrest towards a critical state. Nat. Commun. 2016, 7, 13712. [Google Scholar] [CrossRef]
- De Siena, L.; Chiodini, G.; Vilardo, G.; Del Pezzo, E.; Castellano, M.; Colombelli, S.; Tisato, N.; Ventura, G. Source and dynamics of a volcanic caldera unrest: Campi Flegrei, 1983–84. Sci. Rep. 2017, 7, 8099. [Google Scholar] [CrossRef] [PubMed]
- Moretti, R.; Arienzo, I.; Civetta, L.; Orsi, G.; Papale, P. Multiple magma degassing sources at an explosive volcano. Earth Planet. Sci. Lett. 2013, 367, 95–104. [Google Scholar] [CrossRef]
- Chiodini, G.; Caliro, S.; Avino, R.; Bini, G.; Giudicepietro, F.; De Cesare, W.; Ricciolino, P.; Aiuppa, A.; Cardellini, C.; Petrillo, Z.; et al. Hydrothermal pressure-temperature control on CO2 emissions and seismicity at Campi Flegrei (Italy). J. Volcanol. Geotherm. Res. 2021, 414, 107245. [Google Scholar] [CrossRef]
- Chiodini, G.; Vandemeulebrouck, J.; Caliro, S.; D’Auria, L.; De Martino, P.; Mangiacapra, A.; Petrillo, Z. Evidence of thermal-driven processes triggering the 2005–2014 unrest at Campi Flegrei caldera. Earth Planet. Sci. Lett. 2015, 414, 58–67. [Google Scholar] [CrossRef]
- Buono, G.; Paonita, A.; Pappalardo, L.; Caliro, S.; Tramelli, A.; Chiodini, G. New insights into the recent magma dynamics under Campi Flegrei caldera (Italy) from petrological and geochemical evidence. J. Geophys. Res. Solid Earth 2022, 127, e2021JB023773. [Google Scholar] [CrossRef]
- De Martino, P.; Dolce, M.; Brandi, G.; Scarpato, G. Campi Flegrei cGPS Weekly Positions Time Series [Dataset]; Zenodo: Geneve, Switzerland, 2023. [Google Scholar] [CrossRef]
- Amoruso, A.; Crescentini, L.; Sabbetta, I. Paired deformation sources of the Campi Flegrei caldera (Italy) required by recent (1980–2010) deformation history. J. Geophys. Res. Solid Earth 2014, 119, 858–879. [Google Scholar] [CrossRef]
- D’Auria, L.; Pepe, S.; Castaldo, R.; Giudicepietro, F.; Macedonio, G.; Ricciolino, P.; Tizzani, P.; Casu, F.; Lanari, R.; Manzo, M.; et al. Magma injection beneath the urban area of Naples: A new mechanism for the 2012–2013 volcanic unrest at Campi Flegrei caldera. Sci. Rep. 2015, 5, 13100. [Google Scholar] [CrossRef] [PubMed]
- Castaldo, R.; Tizzani, P.; Solaro, G. Inflating Source Imaging and Stress/Strain Field Analysis at at Campi Flegrei Caldera: The 2009–2013 Unrest Episode. Remote Sens. 2021, 13, 2298. [Google Scholar] [CrossRef]
- De Siena, L.; Amoruso, A.; Pezzo, E.D.; Wakeford, Z.; Castellano, M.; Crescentini, L. Space-weighted seismic attenuation mapping of the aseismic source of Campi Flegrei 1983–1984 unrest. Geophys. Res. Lett. 2017, 44, 1740–1748. [Google Scholar] [CrossRef]
- Zollo, A.; Maercklin, N.; Vassallo, M.; Dello Iacono, D.; Virieux, J.; Gasparini, P. Seismic reflections reveal a massive melt layer feeding Campi Flegrei caldera. Geophys. Res. Lett. 2008, 35, L12306. [Google Scholar] [CrossRef]
- Fournier, N.; Chardot, L. Understanding volcano hydrothermal unrest from geodetic observations: Insights from numerical modeling and application to White Island volcano, New Zealand. J. Geophys. Res. 2012, 117, B11208. [Google Scholar] [CrossRef]
- Amoruso, A.; Crescentini, L.; Scarpa, R.; Bilham, R.; Linde, A.T.; Sacks, I.S. Abrupt magma chamber contraction and microseismicity at Campi Flegrei, Italy: Cause and effect determined from strainmeters and tiltmeters. J. Geophys. Res. Solid Earth 2015, 120, 5467–5478. [Google Scholar] [CrossRef]
- Troise, C.; De Natale, G.; Schiavone, R.; Somma, R.; Moretti, R. The Campi Flegrei caldera unrest: Discriminating magma intrusions from hydrothermal effects and implications for possible evolution. Earth Sci. Rev. 2019, 188, 108–122. [Google Scholar] [CrossRef]
- Cioni, R.; Santacroce, R.; Sbrana, A. Pyroclastic deposits as a guide for reconstructing the multi-stage evolution of the Somma-Vesuvius caldera. Bull. Volcanol. 1999, 60, 207–222. [Google Scholar] [CrossRef]
- Scaillet, B.; Cioni, R.; Pichavant, M. Upward migration of Vesuvius magma chamber over the past 20,000 years. Nature 2008, 455, 216–219. [Google Scholar] [CrossRef]
- Balcone-Boissard, H.; Boudon, G.; Cioni, R.; Webster, J.D.; Zdanowicz, G.; Orsi, G.; Civetta, L. Chlorine as a geobarometer for alkaline magmas: Evidence from a systematic study of the eruptions of Mount Somma-Vesuvius. Sci. Rep. 2016, 6, 21726. [Google Scholar] [CrossRef] [PubMed]
- Di Stefano, R.; Chiarabba, C. Active source tomography at Mt. Vesuvius: Constraints for the magmatic system. J. Geophys. Res. 2002, 107, 2278. [Google Scholar] [CrossRef]
- Auger, E.; Gasparini, P.; Virieux, J.; Zollo, A. Seismic Evidence of an Extended Magmatic Sill under Mt. Vesuvius. Science 2001, 294, 1510–1512. [Google Scholar] [CrossRef]
- Nunziata, C.; Natale, M.; Luongo, G.; Panza, G.F. Magma reservoir at Mt. Vesuvius: Size of the hot, partially molten, crust material detected deeper than 8 km. Earth Planet. Sci. Lett. 2006, 242, 51–57. [Google Scholar] [CrossRef]
- Amoruso, A.; Crescentini, L. DInSAR Data Reveal an Intriguing Contemporaneous Onset of Deep Deflation below Vesuvio and the Ongoing Campi Flegrei Uplift. Remote Sens. 2023, 15, 3038. [Google Scholar] [CrossRef]
- D’Auria, L.; Esposito, A.M.; Lo Bascio, D.; Ricciolino, P.; Giudicepietro, F.; Martini, M.; Caputo, T.; De Cesare, W.; Orazi, M.; Peluso, R.; et al. The recent seismicity of Mt. Vesuvius: Inference on seismogenic processes. Ann. Geophys. 2013, 56, S0442. [Google Scholar] [CrossRef]
- Pappalardo, L.; Buono, G. Insights into Processes and Timescales of Magma Storage and Ascent From Textural and Geochemical Investigations: Case Studies from High-Risk Neapolitan Volcanoes (Italy). In Crustal Magmatic System Evolution: Anatomy, Architecture, and Physico-Chemical Processes; Masotta, M., Beier, C., Mollo, S., Eds.; John Wiley and Sons: New York, NY, USA, 2021; Chapter 10; pp. 213–235. [Google Scholar] [CrossRef]
- Fedi, M.; Cella, F.; D’Antonio, M.; Florio, G.; Paoletti, V.; Morra, V. Gravity modeling finds a large magma body in the deep crust below the Gulf of Naples, Italy. Sci. Rep. 2018, 8, 8229. [Google Scholar] [CrossRef] [PubMed]
- Crescentini, L.; Amoruso, A. Effects of crustal layering on the inversion of deformation and gravity data in volcanic areas: An application to the Campi Flegrei caldera, Italy. Geophys. Res. Lett. 2007, 34, L09303. [Google Scholar] [CrossRef]
- Kilburn, C.R.; De Natale, G.; Carlino, S. Progressive approach to eruption at Campi Flegrei caldera in southern Italy. Nat. Commun. 2017, 8, 15312. [Google Scholar] [CrossRef] [PubMed]
- Ers Mission Description. Available online: https://earth.esa.int/eogateway/missions/ers (accessed on 21 March 2024).
- Envisat Mission Description. Available online: https://earth.esa.int/eogateway/missions/envisat (accessed on 21 March 2024).
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential SAR Interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Amoruso, A.; Crescentini, L. Clues of Ongoing Deep Magma Inflation at Campi Flegrei Caldera (Italy) from Empirical Orthogonal Function Analysis of SAR Data. Remote Sens. 2022, 14, 5698. [Google Scholar] [CrossRef]
- De Matteo, A.; Massa, B.; Castaldo, R.; D’Auria, L.; James, M.R.; Lane, S.J.; Pepe, S.; Tizzani, P. An integrated modeling approach for analyzing the deformation style of active volcanoes: Somma-Vesuvius case study. J. Geophys. Res. Solid Earth 2022, 127, e2021JB022338. [Google Scholar] [CrossRef]
- Casu, F.; Manzo, M.; Lanari, R. A quantitative assessment of the SBAS algorithm performance for surface deformation retrieval from DInSAR data. Remote Sens. Environ. 2006, 102, 195–210. [Google Scholar] [CrossRef]
- Fuhrmann, T.; Garthwaite, M.C. Resolving Three-Dimensional Surface Motion with InSAR: Constraints from Multi-Geometry Data Fusion. Remote Sens. 2019, 11, 241. [Google Scholar] [CrossRef]
- Comon, P. Independent component analysis, A new concept? Signal Process. 1994, 36, 287–314. [Google Scholar] [CrossRef]
- Hyvärinen, A.; Oja, E. A fast fixed-point algorithm for independent component analysis. Neural Comput. 1997, 9, 1483–1492. [Google Scholar] [CrossRef]
- Choudrey, R.; Roberts, S. Variational mixture of Bayesian independent component analyzers. Neural Comput. 2003, 15, 213–252. [Google Scholar] [CrossRef] [PubMed]
- Gualandi, A.; Serpelloni, E.; Belardinelli, M. Blind source separation problem in GPS time series. J. Geod. 2016, 90, 323–341. [Google Scholar] [CrossRef]
- Gualandi, A.; Liu, Z. Variational Bayesian independent component analysis for InSAR displacement time-series with application to central California, USA. J. Geophys. Res. Solid Earth 2021, 126, e2020JB020845. [Google Scholar] [CrossRef]
- Jolliffe, I.T. Principal Component Analysis, 2nd ed.; Springer: New York, NY, USA, 2002. [Google Scholar] [CrossRef]
- MacKay, D.J.C. Bayesian non-linear modelling for the prediction competition. ASHRAE Trans. 1994, 100, 1053–1062. [Google Scholar]
- Amoruso, A.; Crescentini, L.; Fidani, C. Effects of crustal layering on source parameter inversion from coseismic geodetic data. Geophys. J. Int. 2004, 159, 353–364. [Google Scholar] [CrossRef]
- Amoruso, A.; Crescentini, L.; Berrino, G. Simultaneous inversion of deformation and gravity changes in a horizontally layered half-space: Evidences for magma intrusion during the 1982–1984 unrest at Campi Flegrei caldera (Italy). Earth Planet. Sci. Lett. 2008, 272, 181–188. [Google Scholar] [CrossRef]
- Amoruso, A.; Crescentini, L. Modelling deformation due to a pressurized ellipsoidal cavity, with reference to the Campi Flegrei caldera, Italy. Geophys. Res. Lett. 2011, 38, L01303. [Google Scholar] [CrossRef]
- Davis, P.M. Surface deformation due to inflation of an arbitrarily oriented triaxial ellipsoidal cavity in an elastic half-space, with reference to Kilauea Volcano, Hawaii. J. Geophys. Res. 1986, 91, 7429–7438. [Google Scholar] [CrossRef]
- Eshelby, J.D. The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc. R. Soc. Lond. Ser. A 1957, 241, 376–396. [Google Scholar] [CrossRef]
- Mindlin, R.D. Force at a point in the interior of a semi-infinite solid. Physics 1936, 7, 195–202. [Google Scholar] [CrossRef]
- Wang, R.; Lorenzo Martín, F.; Roth, F. PSGRN/PSCMP–A new code for calculating co- and post-seismic deformation, geoid and gravity changes based on the viscoelastic-gravitational dislocation theory. Comput. Geosci. 2006, 32, 527–541. [Google Scholar] [CrossRef]
- Judenherc, S.; Zollo, A. The Bay of Naples (Southern Italy): Constraints on the volcanic structures inferred from a dense seismic survey. J. Geophys. Res. 2004, 109, B10312. [Google Scholar] [CrossRef]
- Ludwig, W.J.; Nafe, J.E.; Drake, C.L. Seismic refraction. In The Sea; Maxwell, A.E., Ed.; Wiley-Interscience: New York, NY, USA, 1970; Volume 4, pp. 53–84. [Google Scholar]
- Ingber, L. Simulated annealing: Practice versus theory. Math. Comput. Model. 1993, 18, 29–57. [Google Scholar] [CrossRef]
- Sambridge, M. Geophysical inversion with a neighbourhood algorithm—I. Searching a parameter space. Geophys. J. Int. 1999, 138, 479–494. [Google Scholar] [CrossRef]
- Sambridge, M. Geophysical inversion with a neighbourhood algorithm—II. Appraising the ensemble. Geophys. J. Int. 1999, 138, 727–746. [Google Scholar] [CrossRef]
- Aki, K.; Richards, P.G. Quantitative Seismology, 2nd ed.; University Science Books: Sausalito, CA, USA, 2002. [Google Scholar]
- Petrelli, M.; López, M.A.; Pisello, A.; Perugini, D. Pre-eruptive dynamics at the Campi Flegrei Caldera: From evidence of magma mixing to timescales estimates. Earth Planets Space 2023, 75, 19. [Google Scholar] [CrossRef]
- Kilburn, C.R.J.; Carlino, S.; Danesi, S.; Pino, N.A. Potential for rupture before eruption at Campi Flegrei caldera, Southern Italy. Commun. Earth Environ. 2023, 4, 190. [Google Scholar] [CrossRef]
- De Siena, L.; Amoruso, A.; Petrosino, S.; Crescentini, L. Geophysical responses to an environmentally-boosted volcanic unrest. Geophys. Res. Lett. 2024, 51, e2023GL104895. [Google Scholar] [CrossRef]
- De Martino, P.; Dolce, M.; Brandi, G.; Scarpato, G.; Tammaro, U. The Ground Deformation History of the Neapolitan Volcanic Area (Campi Flegrei Caldera, Somma–Vesuvius Volcano, and Ischia Island) from 20 Years of Continuous GPS Observations (2000–2019). Remote Sens. 2021, 13, 2725. [Google Scholar] [CrossRef]
- Amoruso, A.; Crescentini, L.; D’Antonio, M.; Acocella, V. Thermally-assisted magma emplacement explains restless calderas. Sci. Rep. 2017, 7, 7948. [Google Scholar] [CrossRef]
- Amoruso, A.; Crescentini, L. An approximate approach to nonisothermal emplacement of kilometer-sized kilometer-deep sills at calderas. J. Geophys. Res. Solid Earth 2019, 124, 1236–1253. [Google Scholar] [CrossRef]
- Larochelle, S.; Gualandi, A.; Chanard, K.; Avouac, J.-P. Identification and Extraction of Seasonal Geodetic Signals Due to Surface Load Variations. J. Geophys. Res. Solid Earth 2018, 123, 11031–11047. [Google Scholar] [CrossRef]
- Amoruso, A.; Crescentini, L.; Linde, A.T.; Sacks, I.S.; Scarpa, R.; Romano, P. A horizontal crack in a layered structure satisfies deformation for the 2004–2006 uplift of Campi Flegrei. Geophys. Res. Lett. 2007, 34, L22313. [Google Scholar] [CrossRef]
- Walter, T.R.; Shirzaei, M.; Manconi, A.; Solaro, G.; Pepe, A.; Manzo, M.; Sansosti, E. Possible coupling of Campi Flegrei and Vesuvius as revealed by InSAR time series, correlation analysis and time dependent modeling. J. Volcanol. Geotherm. Res. 2014, 280, 104–110. [Google Scholar] [CrossRef]
- Biggs, J.; Robertson, E.; Cashman, K. The lateral extent of volcanic interactions during unrest and eruption. Nat. Geosci. 2016, 9, 308–311. [Google Scholar] [CrossRef]
- Gonnermann, H.M.; Foster, J.H.; Pol, M.; Wolfe, C.J.; Brooks, B.A.; Miklius, A. Coupling at Mauna Loa and Kilauea by stress transfer in an asthenospheric melt layer. Nat. Geosci. 2012, 5, 826–829. [Google Scholar] [CrossRef]
- Miklius, A.; Cervelli, P. Interaction between Kilauea and Mauna Loa. Nature 2003, 421, 229. [Google Scholar] [CrossRef]
- Brothelande, E.; Amelung, F.; Yunjun, Z.; Wdowinski, S. Geodetic evidence for interconnectivity between Aira and Kirishima magmatic systems, Japan. Sci. Rep. 2018, 8, 9811. [Google Scholar] [CrossRef]
- Reddin, E.; Ebmeier, S.K.; Rivalta, E.; Bagnardi, M.; Baker, S.; Bell, A.F.; Mothes, P.; Aguaiza, S. Magmatic connectivity among six Galápagos volcanoes revealed by satellite geodesy. Nat. Commun. 2023, 14, 6614. [Google Scholar] [CrossRef]
Depth (km) | Vp (km/s) | Vs (km/s) | Density (kg/m3) |
---|---|---|---|
≥0.00 | 1.60 | 0.92 | 1800 |
≥0.62 | 2.50 | 1.44 | 2100 |
≥1.40 | 3.20 | 1.85 | 2270 |
≥1.55 | 3.90 | 2.25 | 2380 |
≥2.73 | 3.95 | 2.28 | 2400 |
≥3.92 | 5.20 | 3.00 | 2580 |
≥4.03 | 5.92 | 3.42 | 2700 |
Source 1 | Source 2 | |
---|---|---|
Easting (m) | 425,900 | 428,000 |
Northing (m) | 4,519,100 | 4,519,700 |
Depth (m) | 3100 | 1300 |
Volume change ( m3) | 4.9 | 1 |
Polar-to-equatorial radius | 0.01 | 8 |
Equatorial radius (m) | 2400 | – |
f | 0.5 | – |
Source 1 | Source 2 | Source 3 | |
---|---|---|---|
Easting (m) | 421,000 | 426,000 | 453,800 |
Northing (m) | 4,517,000 | 4,519,400 | 4,518,200 |
Depth (m) | 8800 | 7700 | 9200 |
Volume change (107 m3) | −4 | 3.7 | −0.5 |
Polar-to-equatorial radius | 3 | 4 | 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amoruso, A.; Gualandi, A.; Crescentini, L. On the Initial Phase of the Ongoing Unrest at Campi Flegrei and Its Relation with Subsidence at Vesuvio (Italy). Remote Sens. 2024, 16, 1717. https://doi.org/10.3390/rs16101717
Amoruso A, Gualandi A, Crescentini L. On the Initial Phase of the Ongoing Unrest at Campi Flegrei and Its Relation with Subsidence at Vesuvio (Italy). Remote Sensing. 2024; 16(10):1717. https://doi.org/10.3390/rs16101717
Chicago/Turabian StyleAmoruso, Antonella, Adriano Gualandi, and Luca Crescentini. 2024. "On the Initial Phase of the Ongoing Unrest at Campi Flegrei and Its Relation with Subsidence at Vesuvio (Italy)" Remote Sensing 16, no. 10: 1717. https://doi.org/10.3390/rs16101717
APA StyleAmoruso, A., Gualandi, A., & Crescentini, L. (2024). On the Initial Phase of the Ongoing Unrest at Campi Flegrei and Its Relation with Subsidence at Vesuvio (Italy). Remote Sensing, 16(10), 1717. https://doi.org/10.3390/rs16101717