From Polar Day to Polar Night: A Comprehensive Sun and Star Photometer Study of Trends in Arctic Aerosol Properties in Ny-Ålesund, Svalbard
<p>Different relevant processes during polar day (<b>a</b>) and polar night (<b>b</b>). The numbers indicate (1) sea spray formation; (2a–b and 8) (non-)marine secondary aerosol formation; (3) particle processing in fog; (4) Arctic Ice Nucleation Particles (INP) concentrations; (5 and 7) Long-range transport; (6, 10 and 11) cloud formation; (9) blowing snow. Figure is adapted from Schmale et al. [<a href="#B14-remotesensing-16-03725" class="html-bibr">14</a>].</p> "> Figure 2
<p>Map of Ny-Ålesund on Svalbard in the European Arctic (source: Svalbardkartet (<a href="https://geokart.npolar.no/Html5Viewer/index.html?viewer=Svalbardkartet" target="_blank">https://geokart.npolar.no/Html5Viewer/index.html?viewer=Svalbardkartet</a>, accessed on 2 October 2024)); courtesy of Norwegian Polar Institute.</p> "> Figure 3
<p>Relative availability of cloud-screened measurements <math display="inline"><semantics> <mrow> <mo>[</mo> <mo>%</mo> <mo>]</mo> </mrow> </semantics></math> over the course of a year separated between sun and star photometer.</p> "> Figure 4
<p>Overview of combined photometer data. Every point is a daily median AOD.</p> "> Figure 5
<p>The monthly median values for the AOD is shown for each year of 2004–2023 in grey. The blue lines indicate the median (solid) and mean (dashed) of these values.</p> "> Figure 6
<p>Box-and-whisker plots for AOD for every month measured by sun and star photometer. All individual data points after cloud-screening are taken into account. As a reference for the amount of data per month and year, see <a href="#remotesensing-16-03725-t001" class="html-table">Table 1</a>. 25th and 75th percentile are shown by the blue boxes, whiskers indicated 9th and 91th percentile, median is shown by <span style="color: #FF0000">−</span> and mean by <span style="color: #FF0000">+</span>.</p> "> Figure 7
<p>Deviation from monthly mean AOD values in dependency of the year.</p> "> Figure 8
<p>One exemplary day with PSC (9 February 2020), measured by the Raman Lidar KARL in Ny-Ålesund. The PSC is clearly visible in about 20 km altitude throughout the entire day.</p> "> Figure 9
<p>Daily median of Ångström Exponent for sun and star photometer.</p> "> Figure 10
<p>Density plot of AOD and Ångström Exponent (<math display="inline"><semantics> <mrow> <mi>A</mi> <mi>E</mi> </mrow> </semantics></math>) for Sun (<b>left</b>) and star photometer (<b>right</b>) for all individual measurements from 2004 to 2023.</p> "> Figure 11
<p>Monthly median values of the Ångström Exponent is shown in grey for all of the years 2004 to 2023. The median (solid) and mean (dashed) of these annual cycle is given in orange.</p> "> Figure 12
<p>Box-and-whisker plots for Ångström Exponent for every month measured by sun and star photometer. All individual data points after cloud screening are taken into account. As a reference for the amount of data per month and year, see <a href="#remotesensing-16-03725-t001" class="html-table">Table 1</a>. The 25th and 75th percentile are shown by the blue boxes, whiskers indicate the 9th and 91st percentile, and the median is shown by <span style="color: #FF0000">−</span> and mean by <span style="color: #FF0000">+</span>.</p> "> Figure 13
<p>Deviation from monthly <math display="inline"><semantics> <mrow> <mi>A</mi> <mi>E</mi> </mrow> </semantics></math> mean values to long-term median <math display="inline"><semantics> <mrow> <mi>A</mi> <mi>E</mi> </mrow> </semantics></math> values.</p> "> Figure 14
<p>Autocorrelations for each month across the 20-year period (shown in grey) are displayed. The green line represents the median autocorrelation function derived from all individual monthly autocorrelations. Vertical lines indicate key time intervals at 1 h and 1 day. Additionally, black diamonds highlight the vertexes within the data.</p> "> Figure 15
<p>Monthly median AOD values are given in blue. With a multiple linear regression this AOD is reconstructed by using the above-mentioned parameter coefficients.</p> ">
Abstract
:1. Introduction
2. Measurement Site and Instruments
3. New Method for Star Photometer
4. Data Processing of Star and Sun Photometer
4.1. Ozone Correction
4.2. Cloud Screening
- If , the measurement point is rejected for this wavelength;
- A measurement triplet consists of three measurement points for a single wavelength. For the sun photometer, this is equivalent to 3 min, for the star photometer, a triplet has a duration of 15 min due to its coarser time resolution. The variability between maximum and minimum of the triplet shall be smaller than 0.02;
- If the standard deviation of daily averaged , the cloud-screening process is stopped;
- If the Ångström Exponent is smaller than three times standard deviation around the daily mean , the cloud-screening process is stopped;
- The smoothness criterion of the time series is based on limiting the root mean square of the AOD second derivative with time. The second derivative is very sensitive to local oscillations of the cloud optical depth and the threshold of between two adjacent measurement points is applied closely following Smirnov et al. [26]. The value for the threshold is determined analytically and based on measurement data;
- Measurements with are flagged as clouds. This criterion might eliminate some aerosol measurements but due to the remoteness of the location, these cases are rare;
- For sun photometer only: A lower threshold for the measured voltage is set to 10 V;
- If the remaining cloud-free time of measurements is less than 20 min, we discard the entire day in order to have a representative measurement time of the day.
4.3. Data Availability
5. Results
5.1. Overview of the Data
5.2. Monthly Changes of AOD
5.3. Trend Analysis for AOD
5.4. Case Study: Polar Stratospheric Clouds
5.5. Ångström Exponent
5.6. Trend Analysis for Ångström Exponent
5.7. Duration of Events
5.8. Possible Aerosol Sources and Sinks
- PNA- (Pacific-North American teleconnection pattern) and NAO-Index (North Atlantic Oscillation) by the Climate Prediction Center (last accessed on 6 June 2024): The NAO- and PNA-Indices are calculated daily and are based on Rotated Principal Component Analysis and are applied to monthly standardised 500 mbar height anomalies
- Fire Radiative Power (FRP) by MODIS–Moderate Resolution Imaging Spectroradiometer (last accessed on 6 June 2024): MODIS is a NASA satellite-based radiometer. It is designed for Earth observations across 36 different spectral bands, ranging from 0.4 μm to 14.4 μm in wavelength. Depending on the selected specific bands, MODIS offers a spatial resolution of 0.25° × 0.25° and a temporal resolution of approximately two days. MODIS detects wildfires by analysing the 4 μm and 11 μm bands, identifying temperature anomalies relative to the background and absolute temperatures. This study uses the Fire Radiative Power (FRP) from the two satellites Aqua and Terra, with a gridded spatial resolution of 1 km. For more information about MODIS and its data products, visit the official website: MODIS–Moderate Resolution Imaging Spectroradiometer (last accessed on 3 October 2024)
- Arctic Sea Ice Extend by Meereisportal [40] (Data received by authors on 19 January 2024): The sea ice extend is a product of several, homogenised data sets from different passive microwave sensors of satellite observations with horizontal resolutions between 5 km to 50 km. More information can be found at Online Sea-Ice Knowledge and Data Platform (last accessed on 3 October 2024)
- Radiosonde products (temperature (T), pressure (P), wind speed (Wind Speed) and water vapour mixing ration (water vapour)) are described in detail by Maturilli and Kayser [41], Maturilli [42]. At AWIPEV, one radiosonde is launched at 11 UT every day. The altitude, in which the wind is less perturbed by orography is at about 700 m as it is shown by Graßl et al. [43] using Wind Lidar measurements. For taking local weather effects into account, we used these radiosonde observations
- Precipitation observations are taken from Met Norway (last accessed on 3 October 2024). A day with precipitation was chosen, if the daily cumulative amount was ≥1 mm.
6. Discussion
7. Conclusions and Outlook
- A homogenised data set from sun and star photometer is crucial to observe strong inter-annual, seasonal and short-term changes in the aerosol load and properties in high latitudes.
- The AOD dataset from sun and star photometers matches well with in-situ AOD measurements from the same site. It also shows similarities to other American Arctic sites, like Barrow or Alert, pan-Arctic satellite observations and reanalysis data investigations. The data reveals some key features of the Arctic atmosphere, with large particles during the winter, and during the summer, often lower AOD and smaller particles (larger ). These features are not unique to the measurement site, but suits to an Arctic-wide phenomenon. PSC optical depth estimated with the Lidar method is smaller than 0.06. This demonstrates that PSC are not the only reason of the trend of increasing AOD observed with the star photometer during the winter.
- A subtle trend can be found in two decades of sun and star photometer observations with increasing AOD in winter months and a simultaneous decreasing tendency in spring. Therefore, the Arctic Haze is expected to become weaker or rarer in the years to come. Since many aerosol events are recorded by the star photometer, it is definitely necessary to extend the sun photometer data set by star and lunar measurements to obtain a better understanding of the polar atmosphere during the entire year, since winter dimming is expected to be more and more pronounced.
- With several different large-scale oscillations (PNA, NAO), local atmospheric parameters (temperature, wind speed, pressure, precipitation days) and wildfires in Russia and North America, we reconstructed an AOD and compared to the measured AOD. Especially in spring and years without major aerosol events, the result was good. The spring AOD is therefore most dominated by the given parameters. In summer, when local sources become more and more important, the comparison results showed that the simulation was less successfully.
- The AOD observed in Ny-Ålesund and over the Arctic in general is dominated by long-range transported aerosols and having their sources during processes that occur far away from the Arctic region. Hence, pathways into the Arctic as well as possible sinks and additional sources during transportation are important to understand the properties of the aerosols observed at Ny-Ålesund.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Error Estimation of the Star Photometer
AOD | ||||||||
---|---|---|---|---|---|---|---|---|
420.0 nm | 3.0 | 75.4 | 0.1 | 20.6 | <0.1 | 0.0 | 0.0 | 0.14 |
500.4 nm | 2.9 | 66.3 | <0.1 | 11.2 | <0.1 | 19.4 | 0.4 | 0.11 |
1029.5 nm | 6.7 | 91.2 | 0.1 | 1.0 | <0.1 | 0.0 | 0.0 | 0.08 |
420.0 nm | 500.4 nm | 1029.5 nm | |
---|---|---|---|
Sun photometer | 0.02 | 0.01 | 0.01 |
Star Photometer | 0.03 | 0.02 | 0.01 |
Appendix B. Sensitivity of the Star Photometer towards Errors in Raw Signal
References
- Shaw, G.E. The Arctic haze phenomenon. Bull. Am. Meteorol. Soc. 1995, 76, 2403–2414. [Google Scholar] [CrossRef]
- Heintzenberg, J.; Tuch, T.; Wehner, B.; Wiedensohler, A.; Wex, H.; Ansmann, A.; Mattis, I.; Müller, D.; Wendisch, M.; Eckhardt, S.; et al. Arctic haze over central Europe. Tellus B Chem. Phys. Meteorol. 2011, 55, 796–807. [Google Scholar] [CrossRef]
- Hillamo, R.; Kerminen, V.M.; Maenhaut, W.; Jaffrezo, J.L.; Balachandran, S.; Davidson, C. Size distributions of atmospheric trace elements at Dye 3, Greenland—I. Distribution characteristics and dry deposition velocities. Atmos. Environ. Part A. Gen. Top. 1993, 27, 2787–2802. [Google Scholar] [CrossRef]
- Radke, L.F.; Lyons, J.H.; Hegg, D.A.; Hobbs, P.V.; Bailey, I.H. Airborne observations of Arctic aerosols. I: Characteristics of Arctic haze. Geophys. Res. Lett. 1984, 11, 393–396. [Google Scholar] [CrossRef]
- Brock, C.A.; Radke, L.F.; Lyons, J.H.; Hobbs, P.V. Arctic hazes in summer over Greenland and the North American Arctic. I: Incidence and origins. J. Atmos. Chem. 1989, 9, 129–148. [Google Scholar] [CrossRef]
- Quinn, P.K.; Shaw, G.; Andrews, E.; Dutton, E.; Ruoho-Airola, T.; Gong, S. Arctic haze: Current trends and knowledge gaps. Tellus B Chem. Phys. Meteorol. 2007, 59, 99–114. [Google Scholar] [CrossRef]
- Shaw, G.E.; Stamnes, K. Arctic haze: Perturbation of the polar radiation budget. Ann. N. Y. Acad. Sci. 1980, 338, 533–539. [Google Scholar] [CrossRef]
- Maturilli, M.; Herber, A.; König-Langlo, G. Surface radiation climatology for Ny-Ålesund, Svalbard (78.9 N), basic observations for trend detection. Theor. Appl. Climatol. 2015, 120, 331–339. [Google Scholar] [CrossRef]
- Graßl, S.; Ritter, C. Properties of Arctic Aerosol Based on Sun Photometer Long-Term Measurements in Ny-Ålesund, Svalbard. Remote Sens. 2019, 11, 1362. [Google Scholar] [CrossRef]
- Haywood, J.; Donner, L.; Jones, A.; Golaz, J.C. Global Indirect Radiative Forcing Caused by Aerosols: IPCC (2007) and Beyond; MIT Press: Cambridge, MA, USA, 2009. [Google Scholar] [CrossRef]
- Artaxo, P.; Bretherton, C.; Feingold, G.; Forster, P.; Kerminen, V.-M.; Kondo, Y.; Liao, H.; Lohmann, U.; Rasch, P.; Satheesh, S.K.; et al. Climate Change 2013: The Physical Science Basis. In IPCC-Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2014. [Google Scholar]
- Bauer, S.E.; Tsigaridis, K.; Faluvegi, G.; Kelley, M.; Lo, K.K.; Miller, R.L.; Nazarenko, L.; Schmidt, G.A.; Wu, J. Historical (1850–2014) aerosol evolution and role on climate forcing using the GISS ModelE2. 1 contribution to CMIP6. J. Adv. Model. Earth Syst. 2020, 12, e2019MS001978. [Google Scholar] [CrossRef]
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.; et al. (Eds.) Climate Change 2021: The Physical Science Basis; Cambridge University Press: New York, NY, USA, 2021; p. 2391. [Google Scholar] [CrossRef]
- Schmale, J.; Sharma, S.; Decesari, S.; Pernov, J.; Massling, A.; Hansson, H.C.; Von Salzen, K.; Skov, H.; Andrews, E.; Quinn, P.K.; et al. Pan-Arctic seasonal cycles and long-term trends of aerosol properties from ten observatories. Atmos. Chem. Phys. Discuss. 2021, 22, 3067–3096. [Google Scholar] [CrossRef]
- Pernov, J.B.; Beddows, D.; Thomas, D.C.; Dall’ Osto, M.; Harrison, R.M.; Schmale, J.; Skov, H.; Massling, A. Increased aerosol concentrations in the High Arctic attributable to changing atmospheric transport patterns. Npj Clim. Atmos. Sci. 2022, 5, 62. [Google Scholar] [CrossRef]
- Herber, A.; Thomason, L.W.; Gernandt, H.; Leiterer, U.; Nagel, D.; Schulz, K.H.; Kaptur, J.; Albrecht, T.; Notholt, J. Continuous day and night aerosol optical depth observations in the Arctic between 1991 and 1999. J. Geophys. Res. Atmos. 2002, 107, AAC 6-1–AAC 6-13. [Google Scholar] [CrossRef]
- Tomasi, C.; Kokhanovsky, A.A.; Lupi, A.; Ritter, C.; Smirnov, A.; O’Neill, N.T.; Stone, R.S.; Holben, B.N.; Nyeki, S.; Wehrli, C.; et al. Aerosol remote sensing in polar regions. Earth-Sci. Rev. 2015, 140, 108–157. [Google Scholar] [CrossRef]
- Gilardoni, S.; Heslin-Rees, D.; Mazzola, M.; Vitale, V.; Sprenger, M.; Krejci, R. Drivers controlling black carbon temporal variability in the lower troposphere of the European Arctic. Atmos. Chem. Phys. 2023, 23, 15589–15607. [Google Scholar] [CrossRef]
- Pasquier, J.T.; David, R.O.; Freitas, G.; Gierens, R.; Gramlich, Y.; Haslett, S.; Li, G.; Schäfer, B.; Siegel, K.; Wieder, J.; et al. The Ny-Ålesund aerosol cloud experiment (nascent): Overview and first results. Bull. Am. Meteorol. Soc. 2022, 103, E2533–E2558. [Google Scholar] [CrossRef]
- WMO Group. Guide to Meteorological Instruments and Methods of Observation; WMO Library: Geneva, Switzerland, 1996. [Google Scholar]
- Stock, M. Charakterisierung der Troposphärischen Aerosolvariabilität in der Europäischen Arktis. Ph.D. Thesis, Universität Potsdam, Potsdam, Germany, 2010. [Google Scholar]
- Graßl, S.; Ritter, C. Sun Photometer Data (RAW) from Ny-Ålesund, Svalbard (AWIPEV). 2022. Available online: https://doi.pangaea.de/10.1594/PANGAEA.940018 (accessed on 3 October 2024).
- Graßl, S. Properties of Arctic Aerosols based on Photometer Long-Term Measurements in Ny-Ålesund. Ph.D. Thesis, Ludwig-Maximilians-Universität, München, Germany, 2019. [Google Scholar]
- Graßl, S.; Ritter, C. Star Photometer Data (RAW) 2010–2021 from Ny-Ålesund, Svalbard (AWIPEV). 2021. Available online: https://doi.pangaea.de/10.1594/PANGAEA.937903 (accessed on 3 October 2024).
- Inness, A.; Ades, M.; Agustí-Panareda, A.; Barré, J.; Benedictow, A.; Blechschmidt, A.M.; Dominguez, J.J.; Engelen, R.; Eskes, H.; Flemming, J.; et al. The CAMS reanalysis of atmospheric composition. Atmos. Chem. Phys. 2019, 19, 3515–3556. [Google Scholar] [CrossRef]
- Smirnov, A.; Holben, B.; Eck, T.; Dubovik, O.; Slutsker, I. Cloud-screening and quality control algorithms for the AERONET database. Remote Sens. Environ. 2000, 73, 337–349. [Google Scholar] [CrossRef]
- Li, J.; Carlson, B.E.; Lacis, A.A. How well do satellite AOD observations represent the spatial and temporal variability of PM2.5 concentration for the United States? Atmos. Environ. 2015, 102, 260–273. [Google Scholar] [CrossRef]
- Wagner, J.; Ubele, A.A.; Schenzinger, V.; Kreuter, A. Extended Aerosol Optical Depth (AOD) time series analysis in an Alpine Valley: A Comparative Study from 2007 to 2023. Aerosol Res. Discuss. 2024, 2, 153–159. [Google Scholar] [CrossRef]
- Xian, P.; Zhang, J.; O’Neill, N.T.; Reid, J.S.; Toth, T.D.; Sorenson, B.; Hyer, E.J.; Campbell, J.R.; Ranjbar, K. Arctic spring and summertime aerosol optical depth baseline from long-term observations and model reanalyses—Part 2: Statistics of extreme AOD events, and implications for the impact of regional biomass burning processes. Atmos. Chem. Phys. 2022, 22, 9949–9967. [Google Scholar] [CrossRef]
- Tritscher, I.; Pitts, M.C.; Poole, L.R.; Alexander, S.P.; Cairo, F.; Chipperfield, M.P.; Grooß, J.U.; Höpfner, M.; Lambert, A.; Luo, B.; et al. Polar stratospheric clouds: Satellite observations, processes, and role in ozone depletion. Rev. Geophys. 2021, 59, e2020RG000702. [Google Scholar] [CrossRef]
- von der Gathen, P.; Kivi, R.; Wohltmann, I.; Salawitch, R.J.; Rex, M. Climate change favours large seasonal loss of Arctic ozone. Nat. Commun. 2021, 12, 3886. [Google Scholar] [CrossRef]
- Maturilli, M.; Neuber, R.; Massoli, P.; Cairo, F.; Adriani, A.; Moriconi, M.; Di Donfrancesco, G. Differences in Arctic and Antarctic PSC occurrence as observed by lidar in Ny-Ålesund (79 N, 12 E) and McMurdo (78 S, 167 E). Atmos. Chem. Phys. 2005, 5, 2081–2090. [Google Scholar] [CrossRef]
- Massoli, P.; Maturilli, M.; Neuber, R. Climatology of Arctic polar stratospheric clouds as measured by lidar in Ny-Ålesund, Spitsbergen (79° N, 12° E). J. Geophys. Res. Atmos. 2006, 111, D09206. [Google Scholar] [CrossRef]
- Hoffmann, A. Comparative Aerosol Studies Based on Multi-Wavelength Raman LIDAR at Ny-Ålesund, Spitsbergen. Ph.D. Thesis, Universität Potsdam, Potsdam, Germany, 2011. [Google Scholar]
- Herrmann, R.; Ritter, C.; Böckmann, C.; Graßl, S. Improved Method for the Retrieval of Extinction Coefficient Profile by Regularization Techniques. Remote Sens. 2024, in press.
- Ångström, A. On the Atmospheric Transmission of Sun Radiation and on Dust in the Air. Geogr. Ann. 1929, 11, 156–166. [Google Scholar] [CrossRef]
- Gogoi, M.M.; Pandey, S.K.; Arun, B.; Nair, V.S.; Thakur, R.C.; Chaubey, J.P.; Tiwari, A.; Manoj, M.; Kompalli, S.K.; Vaishya, A.; et al. Long-term changes in aerosol radiative properties over Ny-Ålesund: Results from Indian scientific expeditions to the Arctic. Polar Sci. 2021, 30, 100700. [Google Scholar] [CrossRef]
- Dada, L.; Angot, H.; Beck, I.; Baccarini, A.; Quéléver, L.L.; Boyer, M.; Laurila, T.; Brasseur, Z.; Jozef, G.; de Boer, G.; et al. A central arctic extreme aerosol event triggered by a warm air-mass intrusion. Nat. Commun. 2022, 13, 5290. [Google Scholar] [CrossRef]
- Ansmann, A.; Ohneiser, K.; Engelmann, R.; Radenz, M.; Griesche, H.; Hofer, J.; Althausen, D.; Creamean, J.M.; Boyer, M.C.; Knopf, D.A.; et al. Annual cycle of aerosol properties over the central Arctic during MOSAiC 2019–2020–light-extinction, CCN, and INP levels from the boundary layer to the tropopause. Atmos. Chem. Phys. 2023, 23, 12821–12849. [Google Scholar] [CrossRef]
- Grosfeld, K.; Treffeisen, R.; Asseng, J.; Bartsch, A.; Bräuer, B.; Fritzsch, B.; Gerdes, R.; Hendricks, S.; Hiller, W.; Heygster, G.; et al. Online sea-ice knowledge and data platform www.meereisportal.de. Polarforschung 2016, 85, 143–155. [Google Scholar] [CrossRef]
- Maturilli, M.; Kayser, M. Homogenized Radiosonde Record at Station Ny-Ålesund, Spitsbergen, 1993–2014. 2016. Available online: https://doi.pangaea.de/10.1594/PANGAEA.845373 (accessed on 3 October 2024).
- Maturilli, M. High Resolution Radiosonde Measurements from Station Ny-Ålesund (2017-04 et seq). 2020. Available online: https://doi.pangaea.de/10.1594/PANGAEA.914973 (accessed on 3 October 2024).
- Graßl, S.; Ritter, C.; Schulz, A. The Nature of the Ny-Ålesund Wind Field Analysed by High-Resolution Windlidar Data. Remote Sens. 2022, 14, 3771. [Google Scholar] [CrossRef]
- Ansmann, A.; Baars, H.; Chudnovsky, A.; Mattis, I.; Veselovskii, I.; Haarig, M.; Seifert, P.; Engelmann, R.; Wandinger, U. Extreme levels of Canadian wildfire smoke in the stratosphere over central Europe on 21–22 August 2017. Atmos. Chem. Phys. 2018, 18, 11831–11845. [Google Scholar] [CrossRef]
- González, R.; Toledano, C.; Román, R.; Mateos, D.; Asmi, E.; Rodríguez, E.; Lau, I.C.; Ferrara, J.; D’Elia, R.; Antuña-Sánchez, J.C.; et al. Characterization of stratospheric smoke particles over the Antarctica by remote sensing instruments. Remote Sens. 2020, 12, 3769. [Google Scholar] [CrossRef]
- Ohneiser, K.; Ansmann, A.; Chudnovsky, A.; Engelmann, R.; Ritter, C.; Veselovskii, I.; Baars, H.; Gebauer, H.; Griesche, H.; Radenz, M.; et al. The unexpected smoke layer in the High Arctic winter stratosphere during MOSAiC 2019–2020. Atmos. Chem. Phys. 2021, 21, 15783–15808. [Google Scholar] [CrossRef]
- Tunved, P.; Ström, J.; Krejci, R. Arctic aerosol life cycle: Linking aerosol size distributions observed between 2000 and 2010 with air mass transport and precipitation at Zeppelin station, Ny-Ålesund, Svalbard. Atmos. Chem. Phys. 2013, 13, 3643–3660. [Google Scholar] [CrossRef]
- Garrett, T.J.; Brattström, S.; Sharma, S.; Worthy, D.E.; Novelli, P. The role of scavenging in the seasonal transport of black carbon and sulfate to the Arctic. Geophys. Res. Lett. 2011, 38, L16805. [Google Scholar] [CrossRef]
- Garrett, T.; Zhao, C.; Novelli, P. Assessing the relative contributions of transport efficiency and scavenging to seasonal variability in Arctic aerosol. Tellus B Chem. Phys. Meteorol. 2010, 62, 190–196. [Google Scholar] [CrossRef]
- Eckhardt, S.; Stohl, A.; Beirle, S.; Spichtinger, N.; James, P.; Forster, C.; Junker, C.; Wagner, T.; Platt, U.; Jennings, S. The North Atlantic Oscillation controls air pollution transport to the Arctic. Atmos. Chem. Phys. 2003, 3, 1769–1778. [Google Scholar] [CrossRef]
- Rinke, A.; Maturilli, M.; Graham, R.M.; Matthes, H.; Handorf, D.; Cohen, L.; Hudson, S.R.; Moore, J.C. Extreme cyclone events in the Arctic: Wintertime variability and trends. Environ. Res. Lett. 2017, 12, 094006. [Google Scholar] [CrossRef]
- You, C.; Tjernström, M.; Devasthale, A.; Steinfeld, D. The role of atmospheric blocking in regulating arctic warming. Geophys. Res. Lett. 2022, 49, e2022GL097899. [Google Scholar] [CrossRef]
- Yao, W.; Gui, K.; Zheng, Y.; Li, L.; Wang, Y.; Che, H.; Zhang, X. Seasonal cycles and long-term trends of arctic tropospheric aerosols based on CALIPSO lidar observations. Environ. Res. 2023, 216, 114613. [Google Scholar] [CrossRef] [PubMed]
- Omar, A.H.; Winker, D.M.; Vaughan, M.A.; Hu, Y.; Trepte, C.R.; Ferrare, R.A.; Lee, K.P.; Hostetler, C.A.; Kittaka, C.; Rogers, R.R.; et al. The CALIPSO automated aerosol classification and lidar ratio selection algorithm. J. Atmos. Ocean. Technol. 2009, 26, 1994–2014. [Google Scholar] [CrossRef]
- Ivănescu, L.; Baibakov, K.; O’Neill, N.T.; Blanchet, J.P.; Schulz, K.H. Accuracy in starphotometry. Atmos. Meas. Tech. 2021, 14, 6561–6599. [Google Scholar] [CrossRef]
Jan | Feb | Mar | Apr | May | June | Jul | Aug | Sep | Oct | Nov | Dec | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2004 | (8) | (10) | (0) 8 | 11 | 24 | 24 | 26 | 24 | 23 | (0) 2 | (0) | (0) |
2005 | (3) | (9) | (0) 3 | 14 | 23 | 10 | 11 | 11 | 9 | (0) 0 | (0) | (0) |
2006 | (2) | (15) | (20) 14 | 27 | 27 | 24 | 22 | 18 | 22 | (0) 2 | (0) | (9) |
2007 | (11) | (4) | (8) 20 | 23 | 18 | 23 | 26 | 20 | 18 | (2) 0 | (3) | (6) |
2008 | (11) | (1) | (5) 23 | 28 | 21 | 26 | 24 | 25 | 17 | (8) 2 | (6) | (7) |
2009 | (8) | (8) | (7) 16 | 23 | 21 | 17 | 24 | 17 | 20 | (0) 0 | (6) | (4) |
2010 | (5) | (18) | (13) 19 | 26 | 18 | 23 | 25 | 23 | 18 | (0) 0 | (13) | (12) |
2011 | (15) | (9) | (0) 7 | 22 | 20 | 22 | 21 | 18 | 0 | (0) 0 | (4) | (3) |
2012 | (1) | (1) | (1) 9 | 28 | 28 | 25 | 26 | 21 | 15 | (0) 3 | (4) | (0) |
2013 | (0) | (3) | (0) 9 | 26 | 17 | 14 | 20 | 21 | 19 | (8) 1 | (5) | (3) |
2014 | (5) | (0) | (8) 10 | 11 | 7 | 18 | 18 | 27 | 9 | (0) 0 | (0) | (0) |
2015 | (6) | (4) | (5) 8 | 28 | 25 | 23 | 25 | 25 | 22 | (4) 1 | (12) | (8) |
2016 | (10) | (11) | (15) 16 | 24 | 21 | 16 | 19 | 26 | 18 | (0) 1 | (9) | (6) |
2017 | (13) | (4) | (6) 8 | 28 | 26 | 20 | 22 | 17 | 12 | (1) 3 | (18) | (12) |
2018 | (9) | (9) | (11) 19 | 24 | 22 | 16 | 19 | 26 | 21 | (0) 3 | (0) | (0) |
2019 | (11) | (9) | (2) 10 | 17 | 22 | 25 | 3 | 10 | 23 | (0) 1 | (11) | (9) |
2020 | (11) | (19) | (13) 4 | 25 | 26 | 24 | 26 | 25 | 12 | (10) 1 | (7) | (8) |
2021 | (15) | (2) | (0) 12 | 29 | 26 | 24 | 23 | 22 | 18 | (4) 1 | (14) | (9) |
2022 | (4) | (14) | (2) 13 | 29 | 28 | 21 | 21 | 19 | 11 | (10) 0 | (8) | (16) |
2023 | (8) | (3) | (10) 16 | 15 | 23 | 25 | 25 | 19 | 16 | (9) 0 | (15) | (7) |
Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Trend | −4.30 | −4.91 | −0.82 | −0.10 | −1.67 | −0.46 | 0.12 | 5.82 | 2.15 | 10.72 | 9.30 | 3.34 |
Std | 0.08 | 0.09 | 0.05 | 0.03 | 0.04 | 0.02 | 0.03 | 0.14 | 0.03 | 0.08 | 0.08 | 0.06 |
2 interval | 0.15 | 0.17 | 0.12 | 0.06 | 0.06 | 0.04 | 0.06 | 0.27 | 0.06 | 0.11 | 0.10 | 0.13 |
Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Trend | −0.55 | −0.53 | −0.17 | −0.16 | −0.04 | 0.03 | 0.23 | 0.20 | −0.01 | 0.10 | −0.91 | −0.45 |
Std | 0.52 | 0.53 | 0.23 | 0.16 | 0.19 | 0.17 | 0.20 | 0.36 | 0.28 | 0.39 | 0.77 | 0.55 |
2 interval | 1.15 | 1.28 | 0.42 | 0.36 | 0.46 | 0.35 | 0.36 | 0.68 | 0.58 | 0.85 | 1.74 | 1.24 |
Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Lag [h] | 3.67 | 3.77 | 3.67 | 4.34 | 9.70 | 6.65 | 5.71 | 5.26 | 5.93 | 6.22 | 2.38 | 0.79 |
NAO | PNA | P | T | Water Vapour | Wind Speed | Sea Ice Cover | Precip Days | FRP (NA) | FRP (RU) | |
---|---|---|---|---|---|---|---|---|---|---|
−0.04 | −0.18 | −0.39 | 0.19 | −0.20 | 0.38 | 2.73 | −0.72 | 0.34 | 0.04 | |
Mar–Apr | (−0.22) | (−0.34) | (−2.08) | (−5.62) | (−0.46) | (−0.39) | (−0.08) | (−1.32) | (0.00) | (−0.96) |
(0.13) | (−0.01) | (1.30) | (6.01) | (0.06) | (1.15) | (5.54) | (−0.11) | (0.68) | (1.03) | |
−0.09 | 0.07 | 2.29 | −6.28 | 0.07 | −0.38 | −1.03 | −0.15 | −0.11 | −1.02 | |
May–Sep | (−0.23) | (−0.10) | (0.19) | (−13.44) | (−0.04) | (−1.34) | (−2.27) | (−0.67) | (−0.30) | (−2.17) |
(0.05) | (0.25) | (4.38) | (0.88) | (0.17) | (0.57) | (0.21) | (0.36) | (0.08) | (0.13) | |
0.12 | 0.09 | 0.75 | −2.05 | −0.16 | −0.60 | 0.79 | −0.07 | −0.05 | −0.05 | |
Oct–Feb | (−0.14) | (−0.12) | (−2.08) | (−11.85) | (−0.47) | (−2.19) | (−0.30) | (−0.56) | (−0.30) | (−0.47) |
(0.37) | (0.30) | (3.78) | (7.76) | (0.16) | (0.99) | (1.89) | (0.49) | (0.20) | (0.37) | |
0.02 | 0.10 | 1.50 | −5.01 | 0.02 | 0.23 | 0.35 | 0.17 | −0.02 | −0.02 | |
Jan–Dec | (−0.08) | (−0.01) | (0.32) | (−9.00) | (−0.07) | (−0.41) | (−0.22) | (−0.13) | (−0.14) | (−0.37) |
(0.13) | (0.22) | (2.68) | (−1.02) | (0.12) | (0.87) | (0.92) | (0.47) | (0.11) | (0.33) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Graßl, S.; Ritter, C.; Wilsch, J.; Herrmann, R.; Doppler, L.; Román, R. From Polar Day to Polar Night: A Comprehensive Sun and Star Photometer Study of Trends in Arctic Aerosol Properties in Ny-Ålesund, Svalbard. Remote Sens. 2024, 16, 3725. https://doi.org/10.3390/rs16193725
Graßl S, Ritter C, Wilsch J, Herrmann R, Doppler L, Román R. From Polar Day to Polar Night: A Comprehensive Sun and Star Photometer Study of Trends in Arctic Aerosol Properties in Ny-Ålesund, Svalbard. Remote Sensing. 2024; 16(19):3725. https://doi.org/10.3390/rs16193725
Chicago/Turabian StyleGraßl, Sandra, Christoph Ritter, Jonas Wilsch, Richard Herrmann, Lionel Doppler, and Roberto Román. 2024. "From Polar Day to Polar Night: A Comprehensive Sun and Star Photometer Study of Trends in Arctic Aerosol Properties in Ny-Ålesund, Svalbard" Remote Sensing 16, no. 19: 3725. https://doi.org/10.3390/rs16193725
APA StyleGraßl, S., Ritter, C., Wilsch, J., Herrmann, R., Doppler, L., & Román, R. (2024). From Polar Day to Polar Night: A Comprehensive Sun and Star Photometer Study of Trends in Arctic Aerosol Properties in Ny-Ålesund, Svalbard. Remote Sensing, 16(19), 3725. https://doi.org/10.3390/rs16193725