Is Your Training Data Really Ground Truth? A Quality Assessment of Manual Annotation for Individual Tree Crown Delineation
<p>Mapping informal settlements in Nairobi, Kenya with manual annotations. Each colored line indicates a different annotator’s delineation of the same area [<a href="#B16-remotesensing-16-02786" class="html-bibr">16</a>]: (<b>a</b>) boundary deviation due to generalization of informal settlements and (<b>b</b>) deviation resulting from inclusion or exclusion of fringe [<a href="#B26-remotesensing-16-02786" class="html-bibr">26</a>] (adapted from Elemes et al. [<a href="#B16-remotesensing-16-02786" class="html-bibr">16</a>] with permission from Kohli et al. [<a href="#B26-remotesensing-16-02786" class="html-bibr">26</a>]).</p> "> Figure 2
<p>The four validation areas (red outlines) of study site 1.</p> "> Figure 3
<p>Nadir 3D point cloud in RGB color scheme (<b>a</b>) and derived 2D segments (<b>b</b>), which represent the single tree reference data for the validation process of study site 2.</p> "> Figure 4
<p>Example annotation images with 512 × 512 pixel resolution based on the digital orthophoto (<b>a</b>) and the satellite image from WorldView-3 (<b>b</b>).</p> ">
Abstract
:1. Introduction
- The characteristics of the tree crown: Tree crowns have irregular shapes, overlapping canopies and indistinct edges, and shadows appear between crowns [17];
- The skills of the annotators: The subjective recognition of complex crown shapes varies between annotators, whose patience, levels of fatigue and attitude affect the quality of the annotation labeling [18];
- Image Quality: A low ground sampling distance (GSD) in the images and lighting conditions make it difficult to distinguish tree crowns.
Related Work: Training Data Error Using Visual Interpretation
2. Materials and Methods
2.1. Study Sites and Tree Reference Data
2.1.1. Study Site 1
2.1.2. Study Site 2
2.2. Annotation Generation
2.3. Case Distinction and Validation Metrics
3. Validation Results
3.1. Validation Study Site 1
3.2. Validation Study Site 2
4. Discussion
4.1. Influencing Factors on the Validation Result
4.2. Analysis of the Validation Result
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oksuz, K.; Cam, B.C.; Kalkan, S.; Akbas, E. Imbalance Problems in Object Detection: A Review. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 3388–3415. [Google Scholar] [CrossRef]
- Whang, S.E.; Roh, Y.; Song, H.; Lee, J.-G. Data collection and quality challenges in deep learning: A data-centric AI perspective. VLDB J. 2023, 32, 791–813. [Google Scholar] [CrossRef]
- Zhao, H.; Morgenroth, J.; Pearse, G.; Schindler, J. A Systematic Review of Individual Tree Crown Detection and Delineation with Convolutional Neural Networks (CNN). Curr. For. Rep. 2023, 9, 149–170. [Google Scholar] [CrossRef]
- Fujimoto, A.; Haga, C.; Matsui, T.; Machimura, T.; Hayashi, K.; Sugita, S.; Takagi, H. An End to End Process Development for UAV-SfM Based Forest Monitoring: Individual Tree Detection, Species Classification and Carbon Dynamics Simulation. Forests 2019, 10, 680. [Google Scholar] [CrossRef]
- Saarinen, N.; Vastaranta, M.; Näsi, R.; Rosnell, T.; Hakala, T.; Honkavaara, E.; Wulder, M.; Luoma, V.; Tommaselli, A.; Imai, N.; et al. Assessing Biodiversity in Boreal Forests with UAV-Based Photogrammetric Point Clouds and Hyperspectral Imaging. Remote Sens. 2018, 10, 338. [Google Scholar] [CrossRef]
- Shendryk, I.; Broich, M.; Tulbure, M.G.; McGrath, A.; Keith, D.; Alexandrov, S.V. Mapping individual tree health using full-waveform airborne laser scans and imaging spectroscopy: A case study for a floodplain eucalypt forest. Remote Sens. Environ. 2016, 187, 202–217. [Google Scholar] [CrossRef]
- Freudenberg, M.; Magdon, P.; Nölke, N. Individual tree crown delineation in high-resolution remote sensing images based on U-Net. Neural Comput. Appl. 2022, 34, 22197–22207. [Google Scholar] [CrossRef]
- Dalponte, M.; Frizzera, L.; Ørka, H.O.; Gobakken, T.; Næsset, E.; Gianelle, D. Predicting stem diameters and aboveground biomass of individual trees using remote sensing data. Ecol. Indic. 2018, 85, 367–376. [Google Scholar] [CrossRef]
- Wyckoff, P.H.; Clark, J.S. Tree growth prediction using size and exposed crown area. Can. J. For. Res. 2005, 35, 13–20. [Google Scholar] [CrossRef]
- Weinstein, B.G.; Marconi, S.; Bohlman, S.; Zare, A.; White, E. Individual Tree-Crown Detection in RGB Imagery Using Semi-Supervised Deep Learning Neural Networks. Remote Sens. 2019, 11, 1309. [Google Scholar] [CrossRef]
- G. Braga, J.R.; Peripato, V.; Dalagnol, R.; P. Ferreira, M.; Tarabalka, Y.; O. C. Aragão, L.E.; F. de Campos Velho, H.; Shiguemori, E.H.; Wagner, F.H. Tree Crown Delineation Algorithm Based on a Convolutional Neural Network. Remote Sens. 2020, 12, 1288. [Google Scholar] [CrossRef]
- Kattenborn, T.; Leitloff, J.; Schiefer, F.; Hinz, S. Review on Convolutional Neural Networks (CNN) in vegetation remote sensing. ISPRS J. Photogramm. Remote Sens. 2021, 173, 24–49. [Google Scholar] [CrossRef]
- Zimmermann, E.; Szeto, J.; Ratle, F. An Empirical Study of Uncertainty in Polygon Annotation and the Impact of Quality Assurance. 2023. Available online: http://arxiv.org/pdf/2311.02707.pdf (accessed on 14 February 2024).
- Ball, J.G.C.; Hickman, S.H.M.; Jackson, T.D.; Koay, X.J.; Hirst, J.; Jay, W.; Archer, M.; Aubry-Kientz, M.; Vincent, G.; Coomes, D.A. Accurate delineation of individual tree crowns in tropical forests from aerial RGB imagery using Mask R-CNN. Remote Sens. Ecol. Conserv. 2023, 9, 641–655. [Google Scholar] [CrossRef]
- Lassalle, G.; Ferreira, M.P.; La Rosa, L.E.C.; de Souza Filho, C.R. Deep learning-based individual tree crown delineation in mangrove forests using very-high-resolution satellite imagery. ISPRS J. Photogramm. Remote Sens. 2022, 189, 220–235. [Google Scholar] [CrossRef]
- Elmes, A.; Alemohammad, H.; Avery, R.; Caylor, K.; Eastman, J.; Fishgold, L.; Friedl, M.; Jain, M.; Kohli, D.; Laso Bayas, J.; et al. Accounting for Training Data Error in Machine Learning Applied to Earth Observations. Remote Sens. 2020, 12, 1034. [Google Scholar] [CrossRef]
- Stewart, D.; Zare, A.; Marconi, S.; Weinstein, B.G.; White, E.P.; Graves, S.J.; Bohlman, S.A.; Singh, A. RandCrowns: A Quantitative Metric for Imprecisely Labeled Tree Crown Delineation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 11229–11239. [Google Scholar] [CrossRef]
- Mei, Q.; Steier, J.; Iwaszczuk, D. Integrating Crowd-sourced Annotations of Tree Crowns using Markov Random Field and Multispectral Information. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2024, 48, 257–263. [Google Scholar] [CrossRef]
- Sun, Y.; Li, Z.; He, H.; Guo, L.; Zhang, X.; Xin, Q. Counting trees in a subtropical mega city using the instance segmentation method. Int. J. Appl. Earth Obs. Geoinf. 2022, 106, 102662. [Google Scholar] [CrossRef]
- Caughlin, T.T.; Graves, S.J.; Asner, G.P.; Tarbox, B.C.; Bohlman, S.A. High-Resolution Remote Sensing Data as a Boundary Object to Facilitate Interdisciplinary Collaboration. In Collaboration Across Boundaries for Social-Ecological Systems Science; Perz, S.G., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 295–326. ISBN 978-3-030-13826-4. [Google Scholar]
- Wagner, F.H.; Ferreira, M.P.; Sanchez, A.; Hirye, M.C.; Zortea, M.; Gloor, E.; Phillips, O.L.; de Souza Filho, C.R.; Shimabukuro, Y.E.; Aragão, L.E. Individual tree crown delineation in a highly diverse tropical forest using very high resolution satellite images. ISPRS J. Photogramm. Remote Sens. 2018, 145, 362–377. [Google Scholar] [CrossRef]
- Foody, G.; Pal, M.; Rocchini, D.; Garzon-Lopez, C.; Bastin, L. The Sensitivity of Mapping Methods to Reference Data Quality: Training Supervised Image Classifications with Imperfect Reference Data. ISPRS Int. J. Geo-Inf. 2016, 5, 199. [Google Scholar] [CrossRef]
- Copass, C.; Antonova, N.; Kennedy, R. Comparison of Office and Field Techniques for Validating Landscape Change Classification in Pacific Northwest National Parks. Remote Sens. 2019, 11, 3. [Google Scholar] [CrossRef]
- Lepš, J.; Hadincová, V. How reliable are our vegetation analyses? J Veg. Sci. 1992, 3, 119–124. [Google Scholar] [CrossRef]
- Kohli, D.; Sliuzas, R.; Kerle, N.; Stein, A. An ontology of slums for image-based classification. Comput. Environ. Urban Syst. 2012, 36, 154–163. [Google Scholar] [CrossRef]
- Kohli, D.; Stein, A.; Sliuzas, R. Uncertainty analysis for image interpretations of urban slums. Comput. Environ. Urban Syst. 2016, 60, 37–49. [Google Scholar] [CrossRef]
- Meining, S. Waldtzustandsbericht 2020 für den Stadtwald Darmstadt. 2020. Available online: https://www.darmstadtnews.de/wp-content/uploads/2021/01/Waldzustandsbericht_Darmstadt_2020.pdf (accessed on 13 December 2023).
- The MathWorks Inc. 2022, Lidar Toolbox Version: 9.4 (R2022b). Available online: https://www.mathworks.com (accessed on 19 July 2024).
- The MathWorks Inc. Extract Forest Metrics and Individual Tree Attributes from Aerial Lidar Data. Available online: https://www.mathworks.com/help/lidar/ug/extraction-of-forest-metrics-and-individual-tree-attributes.html (accessed on 19 July 2024).
- CloudCompare (Version 2.13.2). 2024. Available online: http://www.cloudcompare.org/ (accessed on 19 July 2024).
- QGIS.org. 2024, QGIS Geographic Information System. QGIS Association, Version 3.28.2. Available online: http://www.qgis.org (accessed on 19 July 2024).
- Thambawita, V.; Strümke, I.; Hicks, S.A.; Halvorsen, P.; Parasa, S.; Riegler, M.A. Impact of Image Resolution on Deep Learning Performance in Endoscopy Image Classification: An Experimental Study Using a Large Dataset of Endoscopic Images. Diagnostics 2021, 11, 2183. [Google Scholar] [CrossRef]
- SuperAnnotate AI, Inc. 2024. Available online: https://www.superannotate.com/ (accessed on 19 July 2024).
- Collmar, D.; Walter, V.; Kölle, M.; Sörgel, U. From Multiple Polygons to Single Geometry: Optimization of Polygon Integration for Crowdsourced Data. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, 10, 159–166. [Google Scholar] [CrossRef]
- Hossain, M. Users’ motivation to participate in online crowdsourcing platforms. In Proceedings of the International Conference on Innovation Management and Technology Research (ICIMTR), Malacca, Malaysia, 21–22 May 2012; IEEE: New York, NY, USA, 2012; pp. 310–315, ISBN 978-1-4673-0654-6. [Google Scholar]
- Zhou, Z.-H. Machine Learning; Springer: Singapore, 2021; ISBN 978-981-15-1966-6. [Google Scholar]
- FRANKFURT.DE-DAS OFFIZIELLE STADTPORTAL. Baumkataster und Baumliste|Stadt Frankfurt am Main. Available online: https://frankfurt.de/themen/umwelt-und-gruen/umwelt-und-gruen-a-z/im-gruenen/baeume/baumkataster (accessed on 30 May 2024).
- Saralioglu, E.; Gungor, O. Crowdsourcing in Remote Sensing: A Review of Applications and Future Directions. IEEE Geosci. Remote Sens. Mag. 2020, 8, 89–110. [Google Scholar] [CrossRef]
Case | Description | Example Illustration |
---|---|---|
True positive (TP) | One annotation captures exactly one tree register point. | |
False negative (FN) | A tree register point is not captured by a single annotation. | |
False positive (FP) | An annotation does not capture a single tree register point. | |
Multiple reference (MR) | One annotation captures multiple tree register points. |
Case | Description | Example Illustration |
---|---|---|
True positive (TP) | At least 50% of the area of a single segment is located within a single annotation. | |
False negative (FN) | Less than 50% of the area of a single segment is located within a single annotation. | |
False positive (FP) | An annotation captures less than 50% of the area of a single segment. | |
Multiple reference (MR) | An annotation contains multiple segments with at least 50% of their area. |
Metric | Universal Definition 1 | Definition for Study Site 1 and 2 |
---|---|---|
Recall, True positive rate | The ratio of all correctly annotated tree reference data among all tree reference data. | |
Miss rate, False negative rate | The ratio of all non-annotated tree reference data points among all tree register data. | |
Multiple reference rate (MRR) | - | The ratio of multiple tree reference data, which are captured in a single annotation among all tree reference data. |
Metric | Universal Definition 1 | Definition for Study Site 1 and 2 |
---|---|---|
Precision, Positive predictive value | The ratio of annotations that capture correctly single tree reference data to all annotations. | |
False Discovery Rate | The ratio of annotations that do not capture single tree reference data to all annotations. | |
Multiple reference rate-annotation (MRR-A) | - | The ratio of single annotations that capture multiple tree reference data to all annotations. |
Annotator 1 | Annotator 2 | Annotator 3 | Mean Value | Standard Deviation | |
---|---|---|---|---|---|
Reference tree count (points) | 817 | ||||
Annotation count | 505 | 518 | 510 | 511 | 5 |
Metrics for acquisition validation of tree reference data | |||||
Recall | 37.2% | 36.2% | 37.6% | 37.0% | 0.6% |
Miss rate | 21.2% | 8.1% | 22.6% | 17.3% | 6.5% |
MRR | 41.6% | 55.7% | 39.8% | 45.7% | 7.1% |
Metrics for quality validation of annotations | |||||
Precision | 60.2% | 57.1% | 60.2% | 59.2% | 1.5% |
False discovery rate | 15.6% | 17.8% | 15.7% | 16.4% | 1.0% |
MRR-A | 24.2% | 25.1% | 24.1% | 24.5% | 0.4% |
Annotator 1 | Annotator 2 | Annotator 3 | Mean Value | Standard Deviation | |
---|---|---|---|---|---|
Reference tree count (segments) | 3572 | ||||
Annotation count | 1465 | 1020 | 1024 | 1170 | 209 |
Metrics for acquisition validation of reference data | |||||
Recall | 11.7% | 9.2% | 8.5% | 9.8% | 1.4% |
Miss rate | 37.8% | 36.1% | 53.6% | 42.5% | 7.9% |
MRR | 50.5% | 54.8% | 38.0% | 47.8% | 7.1% |
Metrics for quality validation of annotations | |||||
Precision | 28.5% | 32.2% | 29.5% | 30.1% | 1.6% |
False discovery rate | 41.4% | 25.8% | 34.7% | 34.0% | 6.4% |
MRR-A | 30.0% | 42.1% | 35.8% | 36.0% | 4.9% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Steier, J.; Goebel, M.; Iwaszczuk, D. Is Your Training Data Really Ground Truth? A Quality Assessment of Manual Annotation for Individual Tree Crown Delineation. Remote Sens. 2024, 16, 2786. https://doi.org/10.3390/rs16152786
Steier J, Goebel M, Iwaszczuk D. Is Your Training Data Really Ground Truth? A Quality Assessment of Manual Annotation for Individual Tree Crown Delineation. Remote Sensing. 2024; 16(15):2786. https://doi.org/10.3390/rs16152786
Chicago/Turabian StyleSteier, Janik, Mona Goebel, and Dorota Iwaszczuk. 2024. "Is Your Training Data Really Ground Truth? A Quality Assessment of Manual Annotation for Individual Tree Crown Delineation" Remote Sensing 16, no. 15: 2786. https://doi.org/10.3390/rs16152786
APA StyleSteier, J., Goebel, M., & Iwaszczuk, D. (2024). Is Your Training Data Really Ground Truth? A Quality Assessment of Manual Annotation for Individual Tree Crown Delineation. Remote Sensing, 16(15), 2786. https://doi.org/10.3390/rs16152786