Improvements to a Crucial Budyko-Fu Parameter and Evapotranspiration Estimates via Vegetation Optical Depth over the Yellow River Basin
<p>Three subwatersheds of the upper Yellow River basin.</p> "> Figure 2
<p>Technology roadmap for the study.</p> "> Figure 3
<p>Trend charts of evapotranspiration (<b>a</b>), potential evapotranspiration (<b>b</b>), and precipitation (<b>c</b>) in the three subwatersheds of the upper Yellow River from 1988 to 2015 as well as the trend chart of parameter <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">ω</mi> </mrow> </semantics></math> (<b>d</b>) after the moving average treatment.</p> "> Figure 4
<p>Distribution of parameter <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">ω</mi> </mrow> </semantics></math> of the three subwatersheds on the Budyko curve.</p> "> Figure 5
<p>The variation trends of underlying surface factors VOD (<b>a</b>) and NDVI (<b>b</b>), as well as climate factors SPEI (<b>c</b>) and TMP (<b>d</b>) in the three subwatersheds from 1988 to 2015.</p> "> Figure 6
<p>Spearman correlation analysis heatmap between parameter <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">ω</mi> </mrow> </semantics></math> and the respective variable factors in the BLG (<b>a</b>), LGL (<b>b</b>), and LHT (<b>c</b>), * represents significant correlation between variables.</p> "> Figure 7
<p>Residual plot of true and predicted values for parameter <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">ω</mi> </mrow> </semantics></math> (<b>a</b>–<b>c</b>) and watershed evapotranspiration (<b>d</b>–<b>f</b>).</p> "> Figure 8
<p>Quantification of the contribution of factors to parameter <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">ω</mi> </mrow> </semantics></math> using the standardized coefficient method (<b>a</b>) and R<sup>2</sup> decomposition method (<b>b</b>).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Evapotranspiration, Potential Evapotranspiration and Temperature Dataset
2.3. Precipitation Dataset
2.4. Vegetation Optical Depth Dataset
2.5. Normalized Difference Vegetation Index Dataset
2.6. Standardized Precipitation Evapotranspiration Index Dataset
2.7. Statistical Analysis Strategy
3. Results
3.1. Time Series Analysis of Parameter
3.2. Dynamic Estimation Model for Parameter
3.3. Model Testing and Analysis of the Contribution of Independent Variables
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jia, Y.-W.; Wang, H.; Qiu, Y.-Q.; Zhou, Z.-H. Generalized water resources assessment based on watershed hydrologic cycle model Ⅰ. Assessment approach. J. Hydraul. Eng. 2006, 37, 1051–1055. [Google Scholar]
- Liang, W.; Bai, D.; Wang, F.; Fu, B.; Yan, J.; Wang, S.; Yang, Y.; Long, D.; Feng, M. Quantifying the impacts of climate change and ecological restoration on streamflow changes based on a Budyko hydrological model in China’s Loess Plateau. Water Resour. Res. 2015, 51, 6500–6519. [Google Scholar] [CrossRef]
- Li, L.; Wang, Q.; Zhang, G.; Fu, Y.; Yan, L. The Influence of Climate Change on Surface Water in the Upper Yellow River. Acta Geogr. Sin. 2004, 59, 716–722. [Google Scholar]
- Zhao, F.; Xu, Z.; Huang, J. Long-Term Trend and Abrupt Change for Major Climate Variables in the Upper Yellow River Basin. J. Meteorol. Res. 2007, 21, 204–214. [Google Scholar]
- Ding, Y.; Xu, J.; Wang, X.; Cai, H.; Zhou, Z.; Sun, Y.; Shi, H. Propagation of meteorological to hydrological drought for different climate regions in China. J. Environ. Manag. 2021, 283, 111980. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Huang, Y.; Li, Y.; Zhang, H.; Fan, J.; Deng, Q.; Wang, X. Spatiotemporal heterogeneity in meteorological and hydrological drought patterns and propagations influenced by climatic variability, LULC change, and human regulations. Sci. Rep. 2024, 14, 5965. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yang, W.; Xing, B.; Luo, Y. A study of influencing factors of spatio-temporal evapotranspiration variation across the Yellow River Basin under the Budyko framework. Hydrogeol. Eng. Geol. 2023, 50, 23–33. [Google Scholar] [CrossRef]
- Liu, B.; Pan, L.; Qi, Y.; Guan, X.; Li, J. Land Use and Land Cover Change in the Yellow River Basin from 1980 to 2015 and Its Impact on the Ecosystem Services. Land 2021, 10, 1080. [Google Scholar] [CrossRef]
- Feng, X.; Fu, B.; Piao, S.; Wang, S.; Ciais, P.; Zeng, Z.; Lü, Y.; Zeng, Y.; Li, Y.; Jiang, X. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Change 2016, 6, 1019–1022. [Google Scholar] [CrossRef]
- Hascoet, T.; Pellet, V.; Aires, F.; Takiguchi, T. Learning Global Evapotranspiration Dataset Corrections from a Water Cycle Closure Supervision. Remote Sens. 2024, 16, 170. [Google Scholar] [CrossRef]
- Liu, C.; Zeng, Y. Changes of Pan Evaporation in the Recent 40 Years in the Yellow River Basin. Water Int. 2004, 29, 510–516. [Google Scholar] [CrossRef]
- Xu, X.; Liu, W.; Scanlon, B.R.; Zhang, L.; Pan, M. Local and global factors controlling water-energy balances within the Budyko framework. Geophys. Res. Lett. 2013, 40, 6123–6129. [Google Scholar] [CrossRef]
- Zhou, G.; Xia, J.; Zhou, P.; Shi, T.; Lin, L.I. Not vegetation itself but mis-revegetation reduces water resources. Sci. China Earth Sci. 2021, 64, 404–411. [Google Scholar] [CrossRef]
- Donohue, R.J.; Roderick, M.L.; Mcvicar, T.R. On the importance of including vegetation dynamics in Budyko’s hydrological model. Hydrol. Earth Syst. Ences Discuss. 2007, 3, 983–995. [Google Scholar] [CrossRef]
- Berghuijs, W.R.; Gnann, S.J.; Woods, R.A. Unanswered questions on the Budyko framework. Hydrol. Process. 2020, 34, 5699–5703. [Google Scholar] [CrossRef]
- Baw-Puh, F. On the calculation of the evaporation from land surface. Chin. J. Atmos. Sci. 1981, 5, 23. [Google Scholar]
- Li, B.; Li, L.; Qin, Y.; Liang, L.; Li, J.; Liu, Y. Impacts of Climate Variability on Streamflow in the Upper and Middle Reaches of the Taoer River Based on the Budyko Hypothesis. Resour. Sci. 2011, 33, 70–76. [Google Scholar]
- Li, D.; Pan, M.; Cong, Z.; Zhang, L.; Wood, E. Vegetation control on water and energy balance within the Budyko framework. Water Resour. Res. 2013, 49, 6550. [Google Scholar] [CrossRef]
- Shao, Q.; Traylen, A.; Zhang, L. Nonparametric method for estimating the effects of climatic and catchment characteristics on mean annual evapotranspiration. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef]
- Cheng, C.; Liu, W.; Mu, Z.; Zhou, H.; Ning, T. Lumped variable representing the integrative effects of climate and underlying surface system: Interpreting Budyko model parameter from earth system science perspective. J. Hydrol. 2023, 620, 129379. [Google Scholar] [CrossRef]
- Ning, T.; Li, Z.; Liu, W. Vegetation dynamics and climate seasonality jointly control the interannual catchment water balance in the Loess Plateau under the Budyko framework. Hydrol. Earth Syst. 2017, 21, 1515–1526. [Google Scholar] [CrossRef]
- Wang, G.-Q.; Zhang, J.-Y.; He, R.-M.; Wang, Y.-Z. Variation and Trends Detection of Precipitation and Temperature in the Upper Reaches of Yellow River. J. Arid. Land Resour. Environ. 2009, 23, 77–81. [Google Scholar]
- Martens, B.; Miralles, D.G.; Lievens, H.; Van Der Schalie, R.; De Jeu, R.A.; Fernández-Prieto, D.; Beck, H.E.; Dorigo, W.A.; Verhoest, N.E.C. GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev. Discuss. 2016, 10, 1903–1925. [Google Scholar] [CrossRef]
- Miralles, D.G.; Holmes, T.R.H.; De Jeu, R.A.M.; Gash, J.H.; Meesters, A.G.C.A.; Dolman, A.J. Global land-surface evaporation estimated from satellite-based observations. Hydrol. Earth Syst. Sci. Discuss. 2010, 7, 453–469. [Google Scholar] [CrossRef]
- Harris, I.; Osborn, T.J.; Jones, P.; Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 2020, 7, 109. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Yang, K.; Tang, W.; Lu, H.; Qin, J.; Chen, Y.; Li, X. The first high-resolution meteorological forcing dataset for land process studies over China. Sci. Data 2020, 7, 25. [Google Scholar] [CrossRef]
- Yang, K.; He, J. China Meteorological Forcing Dataset (1979–2015). 2021. Available online: https://cstr.cn/18406.11.westdc.002.2014.db (accessed on 25 July 2024).
- Beninato, S.; Holzman, M.; Taveira, G.; Rivas, R. Crop monitoring with L-Band Vegetation Optical Depth (VOD): Investigation in southeastern of Argentine Pampas. In Proceedings of the 2023 XX Workshop on Information Processing and Control (RPIC), Oberá, Argentina, 1–3 November 2023; pp. 1–4. [Google Scholar]
- Moesinger, L.; Dorigo, W.; Jeu, R.D.; Schalie, R.V.D.; Scanlon, T.; Teubner, I.; Forkel, M. The global long-term microwave Vegetation Optical Depth Climate Archive (VODCA). Earth Syst. Sci. Data 2020, 12, 177–196. [Google Scholar] [CrossRef]
- Rodríguez-Fernández, N.J.; Mialon, A.; Mermoz, S.; Bouvet, A.; Richaume, P.; Al Bitar, A.; Al-Yaari, A.; Brandt, M.; Kaminski, T.; Le Toan, T.; et al. An evaluation of SMOS L-band vegetation optical depth (L-VOD) data sets: High sensitivity of L-VOD to above-ground biomass in Africa. Biogeosciences 2018, 15, 4627–4645. [Google Scholar] [CrossRef]
- Tucker, C.; Pinzon, J.; Brown, M.; Slayback, D.; Pak, E.; Mahoney, R.; Vermote, E.; El Saleous, N. An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int. J. Remote Sens. 2005, 26, 4485–4498. [Google Scholar] [CrossRef]
- Pinzon, J.E.; Tucker, C.J. A Non-Stationary 1981–2012 AVHRR NDVI3g Time Series. Remote Sens. 2014, 6, 6929–6960. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I.; Angulo, M.; El Kenawy, A. A New Global 0.5° Gridded Dataset (1901–2006) of a Multiscalar Drought Index: Comparison with Current Drought Index Datasets Based on the Palmer Drought Severity Index. J. Hydrometeorol. 2010, 11, 1033–1043. [Google Scholar] [CrossRef]
- Beguera, S.; Serrano, S.; López-Moreno, J.; Angulo-Martínez, M.; Kenawy, A. The SPEIbase: A New Gridded Product for the Analysis of Drought Variability and Drought Impacts; European Meterological Society: Berlin, Germany, 2010. [Google Scholar]
- Li, W.G.; Yi, X.; Hou, M.T.; Chen, H.L.; Chen, Z.L. Standardized precipitation evapotranspiration index shows drought trend in China. Chin. J. Eco-Agric. 2012, 5, 643–649. [Google Scholar] [CrossRef]
- Beguería, S.; Vicente-Serrano, S.M.; Reig, F.; Latorre, B. Standardized precipitation evapotranspiration index (SPEI) revisited: Parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int. J. Climatol. 2014, 34, 3001–3023. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, H.; Yang, D.; Jayawardena, A.W. Quantifying the effect of vegetation change on the regional water balance within the Budyko framework. Geophys. Res. Lett. 2016, 43, 1140–1148. [Google Scholar] [CrossRef]
- Wang, C.; Wang, S.; Fu, B.; Zhang, L. Advances in hydrological modelling with the Budyko framework: A review. Prog. Phys. Geogr. Earth Environ. 2016, 40, 409–430. [Google Scholar] [CrossRef]
- Zhou, S.; Yu, B.; Zhang, L.; Huang, Y.; Pan, M.; Wang, G. A new method to partition climate and catchment effect on the mean annual runoff based on the Budyko complementary relationship. Water Resour. Res. 2016, 52, 7163–7177. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, H.; Chen, Y.; Gang, C. Spatio-temporal dynamics of vegetation optical depth and its driving forces in China from 2000 to 2018. Acta Geogr. Sin. 2023, 78, 729–745. [Google Scholar] [CrossRef]
- Frappart, F.; Wigneron, J.-P.; Li, X.; Liu, X.; Al-Yaari, A.; Fan, L.; Wang, M.; Moisy, C.; Le Masson, E.; Aoulad Lafkih, Z.; et al. Global Monitoring of the Vegetation Dynamics from the Vegetation Optical Depth (VOD): A Review. Remote Sens. 2020, 12, 2915. [Google Scholar] [CrossRef]
- Jones, M.O.; Jones, L.A.; Kimball, J.S.; McDonald, K.C. Satellite passive microwave remote sensing for monitoring global land surface phenology. Remote Sens. Environ. Interdiscip. J. 2011, 115, 1102–1114. [Google Scholar] [CrossRef]
- Stagge, J.H.; Tallaksen, L.M.; Gudmundsson, L.; Van Loon, A.F.; Stahl, K. Candidate Distributions for Climatological Drought Indices (SPI and SPEI). Int. J. Climatol. 2015, 35, 4027–4040. [Google Scholar] [CrossRef]
- Wang, Y.; Tan, D.; Han, L.; Li, D.; Wang, X.; Lu, G.; Lin, J. Review of climate change in the Yellow River Basin. J. Desert Res. 2021, 41, 235–246. [Google Scholar] [CrossRef]
- Shen, M.; Wang, S.; Jiang, N.; Sun, J.; Cao, R.; Ling, X.; Fang, B.; Zhang, L.; Zhang, L.; Xu, X.; et al. Plant phenology changes and drivers on the Qinghai–Tibetan Plateau. Nat. Rev. Earth Environ. 2022, 3, 633–651. [Google Scholar] [CrossRef]
- Liu, X.; Chen, Y.; Li, Z.; Li, Y.; Zhang, Q.; Zan, M. Driving Forces of the Changes in Vegetation Phenology in the Qinghai–Tibet Plateau. Remote Sens. 2021, 13, 4952. [Google Scholar] [CrossRef]
- Li, T.; Xia, J. Analysis of the Influence of Climate and Vegetation Change on Runoff in the Middle and Upper Reaches of the Pearl River Basin Based on Budyko Hypothesis. Adv. Earth Sci. 2018, 33, 1248. [Google Scholar]
- Du, J.; He, Z.; Chen, L.; Lin, P.; Zhu, X.; Tian, Q. Impact of climate change on alpine plant community in Qilian Mountains of China. Int. J. Biometeorol. 2021, 65, 1849–1858. [Google Scholar] [CrossRef]
- Cheng, Y.; Liu, H.; Han, Y.; Hao, Q. Climate sustained the evolution of a stable postglacial woody cover over the Tibetan Plateau. Glob. Planet. Change 2022, 215, 103880. [Google Scholar] [CrossRef]
Subwatershed | Variable | Trends | Sen’s Slope | Significance | Z |
---|---|---|---|---|---|
BLG | Ep | increase | 1.175 | highly significant | 2.825 |
E | increase | 1.275 | highly significant | 3.378 | |
PREC | increase | 6.015 | highly significant | 3.497 | |
decrease | −0.008 | statistically significant | –2.257 | ||
LGL | Ep | increase | 1.430 | highly significant | 3.141 |
E | increase | 2.173 | highly significant | 4.366 | |
PREC | increase | 2.860 | statistically significant | 2.035 | |
increase | 0.052 | highly significant | 3.696 | ||
LHT | Ep | increase | 0.265 | insignificant | 0.968 |
E | increase | 0.883 | insignificant | 1.126 | |
PREC | increase | 0.770 | insignificant | 0.652 | |
increase | 0.038 | highly significant | 2.604 |
Subwatershed | Variable | Trends | Sen’s Slope | Significance | Z |
---|---|---|---|---|---|
BLG | VOD | increase | 0.00021 | insignificant | 0.929 |
NDVI | increase | 0.00026 | insignificant | 1.620 | |
SPEI | decrease | −0.001 | insignificant | −0.020 | |
TMP | increase | 0.015 | marginally significant | 1.798 | |
LGL | VOD | increase | 0.00047 | insignificant | 1.245 |
NDVI | increase | 0.00049 | statistically significant | 2.963 | |
SPEI | decrease | −0.004 | insignificant | −0.533 | |
TMP | increase | 0.015 | marginally significant | 1.798 | |
LHT | VOD | increase | 0.002 | highly significant | 5.235 |
NDVI | increase | 0.000 | highly significant | 3.477 | |
SPEI | decrease | −0.018 | statistically significant | −2.509 | |
TMP | increase | 0.034 | highly significant | 2.904 |
Subwatershed | Independent Variable | p | VIF |
---|---|---|---|
BLG | VOD | 0.005 * | 1.224 |
NDVI | 0.000 * | 1.643 | |
SPEI | 0.001 * | 1.883 | |
LGL | VOD | 0.002 * | 1.301 |
SPEI | 0.000 * | 1.353 | |
TMP | 0.000 * | 1.100 | |
LHT | VOD | 0.001 * | 1.587 |
SPEI | 0.039 * | 1.587 |
Subwatershed | Accuracy Type | MSE | MAE |
---|---|---|---|
BLG | Training Accuracy | 0.007 | 0.054 |
k-fold inspection accuracy | 0.014 | 0.268 | |
LGL | Training Accuracy | 0.055 | 0.166 |
k-fold inspection accuracy | 0.099 | 0.268 | |
LHT | Training Accuracy | 0.132 | 0.281 |
k-fold inspection accuracy | 0.368 | 0.481 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Jin, J. Improvements to a Crucial Budyko-Fu Parameter and Evapotranspiration Estimates via Vegetation Optical Depth over the Yellow River Basin. Remote Sens. 2024, 16, 2777. https://doi.org/10.3390/rs16152777
Wang X, Jin J. Improvements to a Crucial Budyko-Fu Parameter and Evapotranspiration Estimates via Vegetation Optical Depth over the Yellow River Basin. Remote Sensing. 2024; 16(15):2777. https://doi.org/10.3390/rs16152777
Chicago/Turabian StyleWang, Xingyi, and Jiaxin Jin. 2024. "Improvements to a Crucial Budyko-Fu Parameter and Evapotranspiration Estimates via Vegetation Optical Depth over the Yellow River Basin" Remote Sensing 16, no. 15: 2777. https://doi.org/10.3390/rs16152777
APA StyleWang, X., & Jin, J. (2024). Improvements to a Crucial Budyko-Fu Parameter and Evapotranspiration Estimates via Vegetation Optical Depth over the Yellow River Basin. Remote Sensing, 16(15), 2777. https://doi.org/10.3390/rs16152777