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Abstract: SDGSAT-1, the first scientific satellite dedicated to advancing the United Nations 2030
Agenda for Sustainable Development, brings renewed vigor and opportunities to water resource
monitoring and research. This study evaluates the effectiveness of SDGSAT-1 in extracting water
bodies in comparison to Sentinel-2 multi-spectral imager (MSI) data. We applied a confidence
thresholding method to delineate river water from land, utilizing the Normalized Differential Water
Body Index (NDWI), Normalized Difference Water Index (MNDWI), and Shaded Water Body Index
(SWI). It was found that the SWI works best for SDGSAT-1 while the NDWI works best for Sentinel-2.
Specifically, the NDWI demonstrates proficiency in delineating a broader spectrum of water bodies
and the MNDWI effectively mitigates the impact of shadows, while SDGSAT-1’s SWI extraction
of rivers offers high precision, clear outlines, and shadow exclusion. SDGSAT-1’s SWI overall
outperforms Sentinel-2’s NDWI in water extraction accuracy (overall accuracy: 90% vs. 91%, Kappa
coefficient: 0.771 vs. 0.416, and F1 value: 0.844 vs. 0.651), likely due to its deep blue bands. This
study highlights the comprehensive advantages of SDGSAT-1 data in extracting river water bodies,
providing a theoretical basis for future research.

Keywords: SDGSAT-1; water index; river extraction; threshold segmentation

1. Introduction

Remote sensing has been effective in mapping river dynamics and developing hy-
drological models, which significantly reduces the need for resources during data acqui-
sition [1]. Its high-frequency and repeatable observations are crucial for water resource
investigation, planning, protection, disaster management, and modern hydrological sim-
ulation [2,3]. Currently, optical multi-spectral images obtained from satellites such as
Sentinel-2, MODIS, and Landsat are the primary sources of water extraction [4]. On this
foundation, the advent of SDGSAT-1, the first scientific satellite dedicated to advancing
the United Nations 2030 Agenda for Sustainable Development, brings renewed vigor and
opportunities to the field of water resource monitoring and research [5]. Equipped with a
multi-spectral imager specifically designed to contribute to monitoring the Sustainable De-
velopment Goals (SDGs), progress evaluation, and scientific inquiries, SDGSAT-1 stands out
with its two deep blue bands specifically designed to discern water composition in diverse
aquatic environments, encompassing offshore seawater and lakes [6,7]. The SDGSAT-1’s
multi-spectral sensor excels in water body monitoring, accurately inverting key water
parameters by capturing subtle spectral reflections and radiations. This sensor boasts high
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spectral resolution, overcoming challenges posed by the harsh environments of the Tibetan
Plateau, for precise water quality and ecology monitoring. Its dynamic spatiotemporal cap-
ture of hydrological variations is crucial for understanding water cycle mechanisms, while
its remote sensing capabilities enable widespread and continuous monitoring, surpassing
the limitations of ground-based methods.

Various methods and algorithms have been developed to identify river extraction in re-
motely sensed imagery, such as spectral feature threshold, water index [7,8], supervised/non-
supervised classification [9,10], etc. Among these, the water index method stands out due
to its simplicity, efficiency, and reproducibility, rendering it a preferable choice for detailed
analyses [11]. This approach capitalizes on surface reflectance from the visible band to the
shortwave-infrared band, facilitating water extraction with an optimal segmentation thresh-
old that accentuates reflectance disparities between water and non-water surfaces [4,12,13].
McFeeters introduced the normalized water index (NDWI), which utilizes the near-infrared
band (NIR) and green band while mitigating the influence of soil and land vegetation char-
acteristics on water detection [8,14]. Building on the NDWI, Xu proposed the normalized
difference water index (MNDWI) [15] by replacing the NIR band with the shortwave-
infrared band, to minimize disturbances from built-up lands [16]. Furthermore, Li et al. [14]
proposed the shadow water body index (SWI) to distinguish water bodies from mountain
shadows, effectively reducing shadow-related errors and thereby improving the accuracy
of water body extraction. Selecting a suitable water index for SDGSAT-1, however, is
challenging due to its unique sensor characteristics. Careful consideration of satellite data,
geographical conditions, and application needs is necessary to determine the optimal index.
This ensures accurate and efficient water monitoring, enhancing data reliability for scientific
research and practical applications. These three water indices are compatible with the band
setting and resolution of the SDGSAT-1 satellite and are also adaptable to the complex
conditions of the research area. Therefore, they have been selected as the preferred indices
for water extraction in this study.

To evaluate the performance of SDGSAT-1 data in extracting water bodies, a compara-
tive analysis was conducted on the Dang River located on the Qinghai–Tibet Plateau (QTP),
employing the NDWI, MNDWI, and SWI for accurate extraction. The applicability and
accuracy of these indices were systematically evaluated in SDGSAT-1 data, with optimiza-
tion of the water body threshold segmentation method. By comparing the results from
SDGSAT-1 with those from Sentinel-2 in river extraction, the effectiveness of SDGSAT-1
in monitoring rivers on the QTP under complex conditions was validated. This research
deepened our understanding of SDGSAT-1 and supported water resource management
and ecological protection efforts.

2. Study Area and Materials
2.1. Study Area

The Dang River basin and its vicinity waters (93◦58′–97◦30′E, 38◦25′–40◦26′N), situ-
ated in Northwest China’s inland Dunhuang City on the QTP, were selected as the study
area. Originating from the Qilian Mountains, the Dang River traverses a distance of 390 km,
covering an area of approximately 17,381.33 km2, with an annual runoff of 2.89 × 108 m3.
The rivers primarily receive water from atmospheric precipitation, groundwater, and glacier
meltwater. The Dang River, a pivotal watercourse on the QTP, holds a unique position
as China’s only south-to-north infiltrating river. Its distinctive flow pattern is intricately
intertwined with the region’s terrain, topography, and climatic factors. Given its strate-
gic geographical locale and vast watershed, the Dang River aptly embodies the natural
geographical essence of the QTP. Through rigorous investigation of its hydrological char-
acteristics, we can gain a profound understanding of the plateau’s natural environmental
shifts and the ramifications of human activities.

This study designated three river sections in the Dang River Basin as test areas for
water extraction (Figure 1). Area A is located in the north of the Dang River basin and
features the Dang River reservoir, the largest in Dun Huang, covering an area of 1.66 km2
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with an average runoff of 2.93 × 108 m3, and a total capacity of 4.64 × 107 m3. The river
in Area A is narrow, with minimal obstacles in its vicinity, and its southern tributary
exhibits a slender riverbed and narrowed width. Area B, in the middle reaches, is marked
by fragmented water bodies and a winding course due to the surrounding Kurodaban
Mountains, posing challenges for water index extraction. Area C, located in the south,
encompasses the Yema River as a primary tributary of the Dang River. Despite mountainous
terrain, Area C exhibits improved river continuity and a clearer demarcation between the
river and its surrounding areas.
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Figure 1. Schematic illustration of study area: (a) location of the Dang River; (b–d) three test sites
corresponding to A, B, and C in (a).

2.2. Data
2.2.1. SDGSAT-1 Data

The SDGSAT-1 satellite carries three payloads: a multi-spectral imager (MSI); a Glim-
mer Imager (GLI); and a Thermal Infrared Spectrometer (TIS), designed for continuous
Earth observation during day and night. The MSI, equipped with two deep blue bands,
provides multi-spectral data on inland water and terrestrial surfaces. The GLI and TIS cap-
ture night and thermal infrared data, respectively [5]. Orbiting in a sun-synchronous path
near the poles, the MSI boasts a 300 km swath width at 505 km altitude, with 10 m spatial
resolution across all bands [17]. Considering cloud cover, data quality, and the availability
of SDGSAT-1, this study selected an L4-classified SDGSAT-1 image from November 5, 2022,
sourced from the International Research Center for Sustainable Development (CBAS). The
image underwent radiometric and atmospheric correction, along with mosaicking [18]. See
Table 1 for data source details.
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Table 1. The band spectral information of SDGSAT-1 and Sentinel-2 images.

SDGSAT-1 MSI Sentinel-2 MSI

Description Center
Wavelength (nm) Resolution (m) Description Center

Wavelength (nm) Resolution (m)

B1 (Deep Blue1) 400.63 10 B1 (Coastal) 443 60
B2 (Deep Blue2) 438.47 10 B2 (Blue) 490 10

B3 (Blue) 495.10 10 B3 (Green) 560 10
B4 (Green) 553.23 10 B4 (Red) 665 10
B5 (Red) 656.75 10 B5/B6/B7 (Red Edge) 705/740/783 20
B6 (NIR) 776.12 10 B8 (NIR) 842 10

B7 (SWIR) 854.02 10 B8A (Red Edge) 865 20
B9 (Water vapor) 945 60

B10 (SWIR-Cirrus) 1375 60
B11 (SWIR-1) 1610 20
B12 (SWIR-2) 2190 20

2.2.2. Sentinel-2 Data

Sentinel-2 data, part of the Copernicus program launched by the European Commis-
sion and ESA, is used for comparing SDGSAT-1 results. This satellite mission provides
high-resolution imagery for land and coastal areas [19]. Consisting of Sentinel-2A and
Sentinel-2B, the satellites orbit at 786 km and are equipped with MSI, featuring 13 spec-
tral bands ranging from visible to short-wave infrared. Spatial resolution ranges from
10 m to 60 m, with a 290 km field of view [20]. For analysis, this study employs ESA’s
Sen2cor model from SNAP software (version 9.0) for radiometric calibration, atmospheric
correction, and spatial resolution resampling to 10 m on downloaded Level-1C data.

3. Methodology

This study presents a comparison among three indices on SDGSAT-1, regarding
their ability for river water extraction (Figure 2). The methodology consists of four steps:
(1) preprocessing of remote sensing image from SDGSAT-1 and Sentinel-2; (2) extracting
river networks; (3) applying determined thresholds for accurately classifying water bodies;
and (4) assessing the accuracy of water extraction.
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3.1. Preprocessing

After radiometric and atmospheric corrections, Sentinel-2 and SDGSAT imagery are
used to calculate water body indices. Water bodies, crucial natural features, exhibit distinct
spectral responses across various wavelengths, vital for extracting water information from
remote sensing images [21]. Leveraging reflectance differences between target objects across
bands, this study enhances the brightness of water bodies while suppressing background
brightness. Consequently, three water indices were chosen for analysis (Table 2).

Table 2. Three water indices used to extract water bodies.

Name of the Features Calculation Formulas

Normalized Differential Water Body Index [8]
(NDWI) NDWI =

(
GREEN−NIR
GREEN+NIR

)
Normalized Difference Water Index [15]
(MNDWI) MNDWI =

(
GREEN−SWIR
GREEN+SWIR

)
Shaded Water Body Index [14]
(SWI) SWI = BLUE + GREEN − NIR

3.2. River ROI

In this study, the Region of Interest (ROI) was meticulously delineated to establish a
precise scope for subsequent water body extraction, effectively mitigating potential inter-
ference from unrelated regions. The FABDEM was employed, leveraging its exceptional
ability to delineate river networks [17], to ensure that the ROI accurately encompassed the
Dang River and its vital tributaries. Additionally, the Height Above the Nearest Drainage
(HAND) index was utilized as an auxiliary analysis tool to precisely extract the river’s
centerline [19]. Based on this, a 1 km buffer zone was established, defining the boundaries
of the ROI. This meticulously designed and delineated ROI provides a solid foundation
for subsequent water body extraction, enabling the extraction of water body information
from the Dang River and its surrounding areas with greater accuracy and efficiency. This,
in turn, provides robust data support for subsequent hydrological analysis, water quality
monitoring, and river ecosystem studies.

3.3. Determination of the Optimal Segmentation Threshold

As an important factor in determining the drainage network, the threshold directly
determines the spatial form of the river. Given the tediousness of manually thresholding
multiple images, this study considered the confidence interval of the distribution histogram
of the NDWI to obtain threshold values. Thresholds were divided into different confidence
intervals and iteratively adjusted to ensure comprehensive water body extraction for the
Dang River, minimizing false positives and optimizing the segmentation quality. Employ-
ing confidence-based thresholding for water body extraction offers speed and reliability,
surpassing manual interpretation and iterative experiments. Furthermore, its broad applica-
bility makes it suitable for water extraction tasks across diverse environments. To evaluate
the effectiveness of the confidence thresholding method, based on the extraction results
from SDGSAT-1, the differences between the confidence thresholding and Otsu method,
manual visual interpretation, and single threshold method for water body extraction will
be discussed in Section 5.2.

3.4. Accuracy Assessment

To quantify the accuracy of water extraction, a confusion matrix is constructed to
calculate the overall accuracy and Kappa coefficient. The matrix classifies results into four
categories: false negative (FN) refers to the not extracted water element, false positive
(FP) refers to the wrong extracted water element, true negative (TN) refers to the correct
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extraction of the water element, and true positive (TP) refers to the correctly extracted water
element [22]. The equations are as follows:

FP =
FP

FP + TN
(1)

FN =
FN

TP + FN
(2)

T represents the total number of samples.

PO =
TP + TN

T
(3)

F1 value (F1score) is a comprehensive measure of the precision rate and recall rate of
the model and provides a balanced evaluation of the model’s ability to distinguish between
water and non-water. The F1 value is calculated as:

F1score =
2 ∗ TP

T + TP − TN
(4)

The Kappa coefficient is an indicator that reflects the consistency between the classi-
fication result and the real result based on the confusion matrix, taking into account the
influence of random factors.

Kappa =
T ∗ (TP + TN)− S

T ∗ T − S
(5)

The S is calculated as follows:

S = (TP + FP) ∗ (TP + FN) + (FN + TN) ∗ (FP + TN) (6)

4. Results
4.1. River Water Mapping of SDGSAT-1

The performance comparison of three water indices on SDGSAT-1 imagery covering
Areas A-C has been conducted (Figure 3), with the calculated optimal thresholds (Table 3)
and extracted areas summarized (Table 4). Correctly classified areas are highlighted in red
circles, while misclassified areas are indicated by blue markings. The analysis reveals that
SDGSAT-1 imagery can effectively extract river bodies. In Area A, the narrow river water
bodies, including the prominent Dang River Reservoir, are captured. However, despite
the high resolution and rich spectral information of SDGSAT-1 imagery, some non-river
pixels were erroneously classified as river pixels. This area of NDWI reached an excessively
high 67.78 km2, which could be attributed to the spectral similarity between these regions
and rivers. The NDWI and MNDWI exhibit good river segmentation in the middle region,
while the SWI performs well in the north. In Area B, where the water bodies are ice-covered
and surrounded by complex terrain, the extraction task becomes significantly challenging.
Nevertheless, the SWI exhibits remarkable performance in this region, demonstrating
clear edge contours and detailing river expression, effectively segmenting the target. The
extracted water area measures 31.64 km2, only slightly exceeding the actual area by 2.9 km2.
The NDWI and MNDWI tend to misclassify mountain pixels as river pixels, with the NDWI
exhibiting particularly low discrimination between the two, resulting in an extracted area
that is four times larger than the actual water body area. Area C, characterized by relatively
open water bodies with fragmented sections, poses challenges for extraction. Despite these
difficulties, the SWI maintains superior segmentation capabilities, with clear river edges
and details. For instance, while the NDWI and MNDWI demonstrate effective extraction in
certain areas, their limitations in handling complex water conditions are also evident.
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Table 3. River water extraction threshold.

Image Index Value

NDWI −0.0513
Sentinel-2 MNDWI 0.1576

SWI 3500.9000
NDWI 0.2349

SDGSAT-1 MNDWI 0.1589
SWI 4494.3200

Table 4. Dang River extraction area in three areas of SDGSAT-1 image.

Index Area A Area B Area C

Actual (km2) 9.4369 28.7418 22.5541
NDWI (km2) 67.7812 114.5599 51.1401

MNDWI (km2) 50.6923 68.4500 21.6155
SWI (km2) 65.9701 31.6403 17.4584

Through analysis, similarities between the NDWI and MNDWI in identifying river
waterbodies were observed. Compared to the NDWI, the MNDWI excels in eliminating
mountain shadows. Notably, the SWI method demonstrates superior performance on
SDGSAT-1 imagery, continuously and accurately extracting rivers. This superiority lies in
its ability to reduce erroneous and redundant water body information by suppressing classi-
fication noise from mountain shadows, and other irrelevant features. Given the presence of
two deep blue bands in SDGSAT-1 imagery, the SWI exhibited greater flexibility in utilizing
this information, making it a superior method for processing such imagery [16]. Overall,
the SWI demonstrates superior segmentation performance across all areas, particularly in
terms of edge definition and detail expression. The NDWI and MNDWI, while useful in
certain contexts, require further refinement to improve mountain-river discrimination.

4.2. Accuracy Assessment

Utilizing the confusion matrix verification method, a thorough analysis was conducted
on the relative accuracy of the Dang River information extraction results, with a comparative
evaluation of three water indices (Figure 4). In Area A, the SDGSAT-1 image exhibits a
high FN value of 0.65, passively indicating a significant issue: a substantial number of
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non-water pixels were erroneously classified as water. In Area B, the overall accuracy was
superior to Area A, with all methods achieving a PO of 40%. It is noteworthy that the
MNDWI exhibited superior accuracy in Area B with a low FN, suggesting its suitability for
mountainous water areas and ability to mitigate the impact of mountain shadows. In Area
C, the highest F1 and Kappa coefficients among the three areas underscore the importance
of distinct water body characteristics for accurate extraction. Using the SWI to extract
SDGSAT-1 image water bodies yielded optimal results, with an overall accuracy of 0.9,
an F1 score of 0.844, and a Kappa coefficient of 0.771. This is attributed to the increase in
river width as the stream order increased, facilitating satellite water detection. Overall, the
distribution of extracted water bodies closely aligns with the actual water bodies, indicating
a high level of consistency. SDGSAT-1 exhibits a lower omission error in river extraction.
Among the various water indices, the SWI emerges as the most effective for identifying
water bodies with SDGSAT-1. In terms of spectral features, SDGSAT-1’s deep blue bands
(Band 1 and Band 2) hold the first and third rankings, respectively, in their ability to enhance
water body extraction. The subsequent analysis underscores the pivotal role played by
SDGSAT-1’s deep blue bands, spanning 374–427 nm and 410–467 nm, in enhancing water
body extraction capabilities [21], crucial for precise water body identification. Therefore,
future research should further explore and leverage the potential of these bands to enhance
the accuracy and efficiency of water body extraction.
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5. Discussion
5.1. Performance Comparison of Four Threshold Methods

The various threshold selection methods have different impacts on the hydrolog-
ical analysis, with studies demonstrating that regions with varying river complexities
may benefit from specific threshold selection methods, enhancing the understanding and
management of river systems [23]. This study, based on SDGSAT-1 satellite imagery, com-
paratively analyzed four thresholding methods: the visual interpretation method (visual),
the Otsu method (Otsu), the single threshold method (0.200), and the confidence threshold-
ing method (Confidence). Both visual processing and statistical analysis are employed to
present local results of the mentioned methods across three distinct areas of the SDGSAT-1
image (Figure 5), with the distribution characteristics of results (Figure 6). After a thorough
analysis of the application effects of threshold segmentation methods in different regions
of the SDGSAT-1 imagery, it has been found that their performances are significantly
influenced by a series of intricate and interconnected geographical, environmental, and
image characteristics. In Area A, similar spectral characteristics between water and other
surfaces hinder precise threshold setting, leading to suboptimal performance across various
methods. The confidence thresholding method somewhat enhances accuracy by integrating
feature data but still struggles to fully capture water bodies due to environmental complex-
ity. In Area B, mountain shadows significantly disrupt threshold segmentation, causing the
misidentification of water bodies. Despite this, the visual interpretation method and confi-
dence thresholding method partially mitigate shadow effects by leveraging image features
and knowledge, yielding more precise water edge detection, though some disturbances
may persist. In Area C, the single threshold method and confidence thresholding method
exhibit relatively superior performance, extracting water body information more distinctly
and with more significant results. This indicates that the application effects of threshold
segmentation methods vary across regions [24]. Tailoring methods to specific scenarios and
enhancing them with additional techniques like manual interpretation and the confidence
thresholding method is crucial.
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Upon an in-depth comparative analysis of various method distributions, it has been
recognized that the confidence thresholding method offers significant advantages. Specif-
ically, Sentinel-2 satellite data exhibits greater dispersion in water body index values,
whereas SDGSAT-1 satellite data demonstrates a more concentrated and stable distribution
(Figure 6). The distinct distribution characteristics significantly influence the application
of the confidence interval method, revealing that SDGSAT-1 data is more suitable for
this approach. For the three water extraction methods—NDWI, MNDWI, and SWI—the
thresholds derived from SDGSAT-1 are 0.2349, 0.1589, and 4494.32 (Table 3), respectively,
all located near the median line of boxplots, indicating high stability. This revelation not
only corroborates the efficacy of the confidence threshold approach for SDGSAT-1 data
but also furnishes a solid foundation for ensuing endeavors in water body extraction. In
comparison, significant variations in box-plot distributions for Sentinel-2 satellite data
are evident across three different regions. Area A, despite its concentrated distribution,
is plagued by numerous omissions, complicating threshold settings. Meanwhile, areas B
and C suffer from elongated boxplot distributions due to mountain shadow effects, hinder-
ing the confidence interval method’s ability to uniformly satisfy precision requirements
across all three regions. In conclusion, the confidence threshold method proves to be an
efficient and precise technique for extracting water bodies from SDGSAT-1 satellite data,
showing extensive applicability. With complex datasets such as those from Sentinel-2, it
becomes necessary to incorporate additional techniques to improve extraction accuracy
and efficiency. Future research is anticipated to further refine the application of this method,
seeking optimized strategies across varied data sources and scenarios, thereby contributing
substantially to the field of remote sensing image processing.
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5.2. Performance Comparison of SDGSAT-1 and Sentinel-2

The Sentinel-2 satellite, armed with high-performance hyperspectral capabilities,
stands as a globally accessible platform, offering a broadened spectral range that sig-
nificantly enhances spectral discrimination. The inherent spectral attributes of surface
features serve as robust markers across diverse land cover types, pivotal for large-scale
land cover identification. Extracting water body information across vast spatial scales often
necessitates sophisticated background modeling. Consequently, the Sentinel-2 satellite
unequivocally excels in extracting water body information due to its spectral capabili-
ties [25]. However, in Area A, Sentinel-2 images reveal a notable degree of omission, with
the extracted water area being significantly smaller than the actual water area (Table 5).
Comparative analysis reveals minimal differences in extraction performance among three
water indices using Sentinel-2 images [26]. Accuracy assessments pinpoint the NDWI as
the optimal index for Sentinel-2 imagery, with overall accuracies of 0.77, 0.74, and 0.91, and
Kappa coefficients of 0.203, 0.244, and 0.461 across three areas, respectively. The extraction
accuracy of the NDWI and MNDWI surpasses that of the SWI, with kappa in Area A being
only 0.105. It is notable that in Sentinel-2’s spectral features, the first and third rankings are
also occupied by the short-wave infrared bands (Band 11 and Band 12). When it comes to
the visual interpretation of water bodies, the near-infrared (NIR) band is typically preferred
due to its strong absorption by water and its pronounced reflection by terrestrial vegetation
and dry soil. This highlights the substantial impact that the distinctive bands of these two
satellites have on the classification results [22].

Table 5. Dang River extraction area in three areas of Sentinel-2 image.

Index Area A Area B Area C

Actual (km2) 9.4369 28.7418 22.5541
NDWI (km2) 3.2688 19.6092 46.1160

MNDWI (km2) 2.2536 33.5376 38.1852
SWI (km2) 1.3968 18.9504 30.1068

To comprehensively assess the performance of SDGSAT-1 imagery in river extraction, a
comparative analysis was conducted between the SWI of SDGSAT-1 and the NDWI results
of Sentinel-2 (Figure 7). Notably, in terms of extraction accuracy and detail depiction,
SDGSAT-1’s SWI excelled, particularly in regions B and C. It not only extracted water
body areas more precisely but also delineated water contours and internal details with
greater finesse. This advantage mainly stems from the high resolution and advanced
image processing algorithms of SDGSAT-1 imagery, enabling it to better capture subtle
surface changes and complex water features. However, in Area A, the SWI demonstrated a
limited capacity to distinguish water bodies from adjacent land, resulting in the extraction
area far exceeding the actual extraction area. This was primarily due to the complexity
of the area’s specific terrain, lighting conditions, and surface cover types. These factors
resulted in significant spectral similarities between water bodies and the surrounding land,
increasing the difficulty of extraction. To address this issue, further optimization of the SWI
algorithm or the integration of other auxiliary data and information may be necessary to
improve extraction accuracy. Contrastingly, Sentinel-2’s NDWI exhibited greater volatility
and instability in extraction results. In areas A and B, only a portion of the water is
extracted, while in Area C, the extraction is significantly impacted by mountain shadows.
While Sentinel-2 also possesses widespread application value, it may be more suitable
for large-scale water body monitoring and mapping, with relatively limited application
in small-scale or complex terrain conditions. Furthermore, combining information from
Figure 6 reveals a flat box in Area A, indicating a relatively isolated distribution of water
bodies in this region due to the narrow main river channel and distinct characteristics of
the Dang River Reservoir. This underscores the potential of SDGSAT-1 satellite images in
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extracting narrow river channels, offering superior delineation of water body contours and
details compared to Sentinel-2.
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The study delved into SDGSAT-1’s performance in extracting river features, revealing
substantial accuracy declines in the Dang River’s complex terrain despite its high-resolution
imagery and efficient water body indices. The Dang River Basin predominantly resides in
the transition zone between the Qinghai–Tibet and Mongolian Plateaus, inheriting their
distinct natural attributes and being characterized by intricate terrain. The study’s focal
area traverses mountainous regions, where mountain shadows pose a pivotal constraint
on water extraction accuracy. Despite demonstrating a level of precision in water body de-
tection, the employed confidence thresholding method encounters limitations in precisely
delineating river boundaries within the complex and dynamic hydrological environment of
the Dang River, underscoring the challenges of technological applications in such contexts.
Advanced algorithms such as machine learning or set thresholds for different regions of
the river can be used to improve the confidence threshold in the future [27]. The study also
suggests optimizing current water body indices by incorporating factors such as turbidity
impacts or proposing improved water indices based on satellite band settings. Moreover,
integrating SDGSAT-1’s data with other sources, such as radar, LiDAR, and ground obser-
vations, can offer a more comprehensive and accurate view of the river’s characteristics [28].
Dedicated preprocessing steps to mitigate the effects of mountain shadows, vegetation
cover, and other spectral interferences are also recommended. Ultimately, implement-
ing a continual monitoring and updating framework ensures river extraction aligns with
dynamic environmental shifts, vital for water management and environmental protection.

6. Conclusions

The launch of SDGSAT-1 in 2021 represents a notable technological advancement, as it
features multiple sensors and boasts a high resolution of 10 m. This satellite serves as an
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advanced technological instrument for studying human activities and water resource envi-
ronments [18]. Utilizing Sentinel-2 data, this study evaluates the capabilities of SDGSAT-1
data in extracting water resources, using the Dang River on the QTP, which has a complex
environmental setting, as the study area. This leads to the following conclusions:

(1) SDGSAT-1 and Sentinel-2 images exhibit strengths and weaknesses in extracting the
Dang River. Equipped with two blue bands, the multi-spectral imager of SDGSAT-1
can accurately depict water characteristics vital to SDGSAT-1 studies. When paired
with SWI, it effectively negated the influence of mountain shadows, highlighting the
unique features of the Dang River. Conversely, Sentinel-2 excels in extracting water
bodies within narrow areas, which is particularly evident in Area A.

(2) The NDWI and MNDWI show similar accuracy in extracting the Dang River. NDWI
demonstrates proficiency in delineating a broader spectrum of water bodies, whereas
the MNDWI minimized shadow interference. Although the SWI’s performance in
delineating water bodies on Sentinel-2 is satisfactory, the river extracted from SDGSAT-
1 exhibits superior precision, with a clear outline and minimal shadow interference.

(3) Different thresholding methods are tailored to specific river characteristics. In regions
where rivers are prominently featured, water bodies were accurately delineated using
the single threshold method and Otsu methods. For narrow river widths, the visual
interpretation method was employed to advantage, while areas affected by mountain
shadows were effectively managed utilizing the confidence thresholding method. The
confidence thresholding method has proven effective for extracting water bodies from
SDGSAT-1 data. With complex datasets such as those from Sentinel-2, it is imperative
to integrate additional techniques to enhance accuracy and efficiency.

The NDWI excels in river extraction in open areas, while the MNDWI and SWI
demonstrate strengths in mountainous rivers and shadow removal, respectively. Integrat-
ing high-resolution SDGSAT-1 satellite imagery enhances water extraction accuracy and
coverage, offering a viable solution for water resource management and environmental
monitoring. This efficient and practical solution not only provides accurate and reliable
water body information but also offers robust support for relevant decision-making, driving
the in-depth development of water resource management and environmental monitoring
efforts. In summary, SDGSAT-1 satellite imagery has demonstrated significant advantages
and potential in river extraction. However, we also recognize that any extraction algorithm
has certain limitations and applicable conditions. It is necessary to delve deeper into
the optimal application strategies and methods of SDGSAT-1 imagery in river extraction,
aiming to further enhance extraction accuracy and efficiency.
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