Landslide Hazard Prediction Based on Small Baseline Subset–Interferometric Synthetic-Aperture Radar Technology Combined with Land-Use Dynamic Change and Hydrological Conditions (Sichuan, China)
<p>Digital elevation model of the study area.</p> "> Figure 2
<p>Satellite map of the study area.</p> "> Figure 3
<p>Geological map of the study area.</p> "> Figure 4
<p>Influence factors of slope and slope direction.</p> "> Figure 5
<p>Flow-accumulation map of the study area.</p> "> Figure 6
<p>Density of river network.</p> "> Figure 7
<p>Drainage basin characteristics.</p> "> Figure 8
<p>Technique flow chart.</p> "> Figure 9
<p>SBAS-InSAR space-time baseline diagram. (<b>a</b>) Connection graph; (<b>b</b>) Baseline graph.</p> "> Figure 10
<p>The pattern of interference fringes after flattening.</p> "> Figure 11
<p>Phase unwinding diagram.</p> "> Figure 12
<p>Land-use pattern in the study area in 2016.</p> "> Figure 13
<p>Land-use pattern in the study area in 2024.</p> "> Figure 14
<p>The temporal deformation of typical points in different parts of the landslide (a–l represent 12 deformation target areas).</p> "> Figure 15
<p>The analysis of deformation target areas (<b>a</b>–<b>l</b> represent 12 deformation target areas).</p> "> Figure 16
<p>Temporal deformation of landslides in the study area.</p> "> Figure 17
<p>Landslide-susceptibility area in the study area.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Preprocessing
2.3. Research Method
3. Results
4. Discussion
- Obtain finer details of terrain changes, soil moisture, extent of rock exposure, and other key information beneath surface vegetation cover. Utilize deep learning algorithms to automatically identify and classify remote sensing imagery, enhancing the accuracy and efficiency of identifying geological disaster risks.
- Use GIS and three-dimensional geological modeling techniques to construct a three-dimensional geological structure model of the study area. Simulate geological responses under various external factors such as different rainfall intensities and seismic activities. Through simulation analysis, predict potential types, scales, and impact ranges of geological disasters in areas covered by dense vegetation.
- Establish long-term monitoring stations, collect real-time data, strengthen on-site surveys and monitoring efforts. Validate remote sensing interpretations and model predictions through field investigations, continuously adjusting and optimizing predictive models.
5. Conclusions
- When the elevation is below 1160 m, the susceptibility sensitivity of landslides gradually increases with elevation. Subsequently, as the elevation continues to increase, the susceptibility sensitivity of landslides begins to decrease gradually.
- When the slope is less than 38°, the susceptibility sensitivity of landslides gradually increases with the slope. Once the slope exceeds 50°, the susceptibility sensitivity of landslides begins to decrease with increasing slope.
- With the acceleration of urbanization and changes in agricultural activities, factors such as land-cover types, vegetation conditions, and terrain have all had a significant impact on the susceptibility of landslides. In particular, human activities such as deforestation, slope cultivation, and urban construction have significantly increased the risk of landslides. The northeast and eastern regions have become concentrated areas of high susceptibility. The central region, on the other hand, is mainly distributed in low-susceptibility areas.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guo, J.; Yang, Z.; Yang, Z.; Shi, Z.; Huang, G.; Yang, Z.; Yang, D. Landslide hazard susceptibility evaluation based on SBAS-InSAR technology and SSA-BP neural network algorithm: A case study of Baihetan Reservoir Area. J. Mt. Sci. 2024, 21, 594–614. [Google Scholar] [CrossRef]
- Yang, Z.; Du, G.; Zhang, Y.; Xu, C.; Yu, P.; Shao, W.; Mai, X. Seismic landslide hazard assessment using improved seismic motion parameters of the 2017 Ms 7.0 Jiuzhaigou earthquake, Tibetan Plateau. Front. Earth Sci. 2024, 12, 1302553. [Google Scholar] [CrossRef]
- Wistuba, M.; Malik, I.; Tie, Y.; Gorczyca, E.; Zhang, X.; Wang, J.; Lu, T. Indicating landslide hazard from tree rings—Ecosystem service provided by an alder forest in the hengduan Mts, Sichuan, China. Ecosyst. Serv. 2024, 67, 101619. [Google Scholar] [CrossRef]
- Singh, M.; Khajuria, V.; Singh, S.; Singh, K. Landslide susceptibility evaluation in the Beas River Basin of North-Western Himalaya: A geospatial analysis employing the Analytical Hierarchy Process (AHP) method. Quat. Sci. Adv. 2024, 14, 100180. [Google Scholar] [CrossRef]
- Sreejith, M.K.; Jasir, M.C.M.; Sunil, S.P.; Rose, M.S.; Saji, A.P.; Agrawal, R.; Bushair, M.T.; Kumar, K.V.; Desai, N.M. Geodetic Evidence for Cascading Landslide Motion Triggered by Extreme Rain Events at Joshimath, NW Himalaya. Geophys. Res. Lett. 2024, 51, e2023GL106427. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Y.; Xu, P.; Zeng, Y.; Xiang, C.; Fu, H.; Yu, H.; He, Y. Predictive Displacement Models Considering the Probability of Pulse-Like Ground Motions for Earthquake-Induced Landslides Hazard Assessment. J. Earthq. Eng. 2024, 28, 1793–1817. [Google Scholar] [CrossRef]
- Harp, L.E.; Reid, E.M.; McKenna, P.J.; Michael, J.A. Mapping of hazard from rainfall-triggered landslides in developing countries: Examples from Honduras and Micronesia. Eng. Geol. 2008, 104, 295–311. [Google Scholar] [CrossRef]
- Verma, K.A.; Mushtaq, R. Landslides: An environmental hazard in the Pir-Panjal Himalayan range in Poonch district of J&K state, India. Indian J. Sci. Res. 2013, 4, 143–148. [Google Scholar]
- Pattukandan, G.G.; Rajawat, A.S. Use of hazard and vulnerability maps for landslide planning scenarios: A case study of the Nilgiris, India. Nat. Hazards 2015, 77, 305–316. [Google Scholar]
- Heidarzadeh, M.; Miyazaki, H.; Ishibe, T.; Takagi, H.; Sabeti, R. Field surveys of September 2018 landslide-generated waves in the Apporo dam reservoir, Japan: Combined hazard from the concurrent occurrences of a typhoon and an earthquake. Landslides 2022, 20, 143–156. [Google Scholar] [CrossRef]
- Glade, S.; Schmitz, C.; Barron, B.N.; Dashti, S.; Roudbari, S.; Liel, A.B.; Pezzullo, P.C.; Miller, S.L. Hazards and Incarceration Facilities: Evaluating Facility-Level Exposure to Floods, Wildfires, Extreme Heat, and Landslides in Colorado. Nat. Hazards Rev. 2024, 25, 04023047. [Google Scholar] [CrossRef]
- Wahba, M.; Rawy, E.M.; Arifi, A.N.; Mansour, M.M. A Novel Estimation of the Composite Hazard of Landslides and Flash Floods Utilizing an Artificial Intelligence Approach. Water 2023, 15, 4138. [Google Scholar] [CrossRef]
- Wei, J.; Zhao, Z.; Xu, C.; Wen, Q. Numerical investigation of landslide kinetics for the recent Mabian landslide (Sichuan, China). Landslides 2019, 16, 2287–2298. [Google Scholar] [CrossRef]
- Li, C.; Su, L. Influence of critical acceleration model on assessments of potential earthquake–induced landslide hazards in Shimian County, Sichuan Province, China. Landslides 2021, 18, 1659–1674. [Google Scholar] [CrossRef]
- Song, D.; Wu, R.; Ma, D.; Guo, C.; Wang, Y.; Ni, J.; Li, X. Simulation and Analysis of the Movement Process of Landslide Disasters in the Xigeda Formation, Luding, Sichuan. Geol. Bull. China 2023, 42, 2185–2197. [Google Scholar]
- Valencia Ortiz, J.A.; Martínez-Graña, A.M.; Cabero, T. DInSAR MultiTemporal Analysis for the Characterization of Ground Deformations Related to Tectonic Processes in the Region of Bucaramanga, Colombia. Remote Sens. 2024, 16, 449. [Google Scholar] [CrossRef]
- Liu, R.; Yang, X.; Xu, C.; Wei, L.; Zeng, X. Comparative Study of Convolutional Neural Network and Conventional Machine Learning Methods for Landslide Susceptibility Mapping. Remote Sens. 2022, 14, 321. [Google Scholar] [CrossRef]
- Liu, Q.; Wu, T.; Deng, Y.; Liu, Z. Intelligent identification of landslides in loess areas based on the improved YOLO algorithm: A case study of loess landslides in Baoji City. J. Mt. Sci. 2023, 20, 3343–3359. [Google Scholar] [CrossRef]
- Li, X.; Nishio, M.; Sugawara, K.; Iwanaga, S.; Shimada, T.; Kanasaki, H.; Kanai, H.; Zheng, S.; Chun, P.-J. Enhancing prediction of landslide dam stability through AI models: A comparative study with traditional approaches. Geomorphology 2024, 454, 109120. [Google Scholar] [CrossRef]
- Wang, T.; Luo, R.; Ma, T.; Chen, H.; Zhang, K.; Wang, X.; Chu, Z.; Sun, H. Study and verification on an improved comprehensive prediction model of landslide displacement. Bull. Eng. Geol. Environ. 2024, 83, 90. [Google Scholar] [CrossRef]
- Zhang, L.; Dai, K.; Deng, J.; Ge, D.; Liang, R.; Li, W.; Xu, Q. Identifying Potential Landslides by Stacking-InSAR in Southwestern China and Its Performance Comparison with SBAS-InSAR. Remote Sens. 2021, 13, 3662. [Google Scholar] [CrossRef]
- Chang, M.; Sun, W.; Xu, H.; Tang, L. Identification and deformation analysis of potential landslides after the Jiuzhaigou earthquake by SBAS-InSAR. Environ. Sci. Pollut. Res. Int. 2023, 30, 39093–39106. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Feng, X.; Li, Y.; Jiang, W.; Yu, W. Detection and analysis of potential landslides based on SBAS-InSAR technology in alpine canyon region. Environ. Sci. Pollut. Res. Int. 2024, 31, 6492–6510. [Google Scholar] [CrossRef]
- Zhu, Z.; Yuan, X.; Gan, S.; Zhang, J.; Zhang, X. A research on a new mapping method for landslide susceptibility based on SBAS-InSAR technology. Egypt. J. Remote Sens. Space Sci. 2023, 26, 1046–1056. [Google Scholar] [CrossRef]
- Guo, H.; Martínez-Graña, A.M. Susceptibility of Landslide Debris Flow in Yanghe Township Based on Multi-Source Remote Sensing Information Extraction Technology (Sichuan, China). Land 2024, 13, 206. [Google Scholar] [CrossRef]
- Qin, X.; Huang, Y.; Wang, C.; Jiang, K.; Xie, L.; Liu, R.; Shi, X.; Chen, X.; Zhang, B. A temporary soil dump settlement and landslide risk analysis using the improved small baseline subset-InSAR and continuous medium model. Int. J. Appl. Earth Obs. Geoinf. 2024, 128, 103760. [Google Scholar] [CrossRef]
- Hao, L.; van Westen, C.; Rajaneesh, A.; Sajinkumar, K.S.; Martha, T.R.; Jaiswal, P. Evaluating the relation between land use changes and the 2018 landslide disaster in Kerala, India. Catena 2022, 216, 106363. [Google Scholar] [CrossRef]
- Ya, R.; Wu, J.; Tang, R.; Zhou, Q. Increased flood susceptibility in the Tibetan Plateau with climate and land use changes. Ecol. Indic. 2023, 156, 111086. [Google Scholar] [CrossRef]
- Suci, S.; Wiwandari, H.; Atik, S. Spatio-Temporal Analysis on Land Use/Land Cover Change in Banda Aceh: A Preliminary Study of Disaster Resilience. IOP Conf. Ser. Earth Environ. Sci. 2023, 1264, 012011. [Google Scholar]
- Zhang, X.; Zeng, X.; Luo, H.; Zhou, C.; Shu, Z.; Jiang, L.; Wang, Z.; Fei, Z.; Yu, J.; Yang, X.; et al. The relationship between geological disasters with land use change, meteorological and hydrological factors: A case study of Neijiang City in Sichuan Province. Ecol. Indic. 2023, 154, 110840. [Google Scholar]
- Niu, H.; Xiu, Z.; Xiao, D. Impact of land-use change on ecological vulnerability in the Yellow River Basin based on a complex network model. Ecol. Indic. 2024, 166, 112212. [Google Scholar] [CrossRef]
- Li, Z.; Zhu, J.; Tian, Y. Impact of Land-Use–Land Cover Changes on the Service Value of Urban Ecosystems: Evidence from Chengdu, China. J. Urban Plan. Dev. 2024, 150, 05024028. [Google Scholar] [CrossRef]
- Gandharum, L.; Hartono, M.D.; Karsidi, A.; Ahmad, M.; Prihanto, Y.; Mulyono, S.; Sadmono, H.; Sanjaya, H.; Sumargana, L.; Alhasanah, F. Past and future land use change dynamics: Assessing the impact of urban development on agricultural land in the Pantura Jabar region, Indonesia. Environ. Monit. Assess. 2024, 196, 645. [Google Scholar] [CrossRef] [PubMed]
- Pozo, D.A.; Aguilera, C.G.; Gallo, A.B. Consequences of Land Use Changes on Native Forest and Agricultural Areas in Central-Southern Chile during the Last Fifty Years. Land 2024, 13, 610. [Google Scholar] [CrossRef]
- Raza, A.; Shahid, A.M.; Safdar, M.; Zaman, M.; Sabir, R.M.; Muzammal, H.; Ahmed, M.M. Impact of Land Use and Land Cover Change on Agricultural Production in District Bahawalnagar, Pakistan. Environ. Sci. Proc. 2024, 29, 46. [Google Scholar] [CrossRef]
- Meshesha, M.T.; Tsunekawa, A.; Haregeweyn, N.; Tsubo, M.; Fenta, A.A.; Berihun, M.L.; Mulu, A.; Belay, A.S.; Sultan, D.; Ebabu, K.; et al. Alterations in Hydrological Responses under Changing Climate and Land Use/Land Cover across Contrasting Agroecological Environments: A Case Study on the Chemoga Watershed in the Upper Blue Nile Basin, Ethiopia. Water 2024, 16, 1037. [Google Scholar] [CrossRef]
- Anand, V.; Oinam, B.; Wieprecht, S. Synergistic impact of climate and land use land cover change dynamics on the hydrological regime of Loktak Lake catchment under CMIP6 scenarios. J. Hydrol. Reg. Stud. 2024, 53, 101851. [Google Scholar] [CrossRef]
- Godwin, E.; Anthony, G.; Yazidhi, B.; Egeru, A.; Kabenge, I. Spatiotemporal Analysis of the Hydrological Responses to Land-Use Land-Cover Changes in the Manafwa Catchment, Eastern Uganda. Prof. Geogr. 2024, 76, 259–276. [Google Scholar]
- Mandah, P.V.; Tematio, P.; Onana, A.A.; Fiaboe, K.K.M.; Arthur, E.; Giweta, M.H.; Ndango, R.; Silatsa, F.B.T.; Voulemo, D.D.I.; Biloa, J.B.; et al. Variability of soil organic carbon and nutrient content across land uses and agriculturally induced land use changes in the forest-savanna transition zone of Cameroon. Geoderma Reg. 2024, 37, e00808. [Google Scholar] [CrossRef]
- Zhou, J.; Luo, J.; Ma, X. Spatiotemporal Evolution of Land Use and Ecosystem Service Value and Its Driving Factors in the Lhasa River Basin. Arid Zone Res. 2024, 21, 2059–2074. [Google Scholar]
- Wu, C.; Wang, Z. Multi-scenario simulation and evaluation of the impacts of land use change on ecosystem service values in the Chishui River Basin of Guizhou Province, China. Ecol. Indic. 2024, 163, 112078. [Google Scholar] [CrossRef]
- Jing, X.; Tian, G.; He, Y.; Wang, M. Spatial and temporal differentiation and coupling analysis of land use change and ecosystem service value in Jiangsu Province. Ecol. Indic. 2024, 163, 112076. [Google Scholar] [CrossRef]
- Rees, G.; Baidy, H.L.; Belenok, V. Temporal Variations in Land Surface Temperature within an Urban Ecosystem: A Comprehensive Assessment of Land Use and Land Cover Change in Kharkiv, Ukraine. Remote Sens. 2024, 16, 1637. [Google Scholar] [CrossRef]
- Juan, Y.X.; Jian, Z.; Qiang, C.; Zhang, L.; Zou, F. Instantaneous Frequency Extraction Using the EMD-Based Wavelet Ridge to Reveal Geological Features. Front. Earth Sci. 2018, 6, 65. [Google Scholar]
- Huang, C.; Cao, Y.; Zhou, L. Application of optimized GM (1,1) model based on EMD in landslide deformation prediction. Comput. Appl. Math. 2021, 40, 261. [Google Scholar] [CrossRef]
- Meng, Y.; Qin, Y.; Cai, Z.; Tian, B.; Yuan, C.; Zhang, X.; Zuo, Q. Dynamic forecast model for landslide displacement with step-like deformation by applying GRU with EMD and error correction. Bull. Eng. Geol. Environ. 2023, 82, 211, Correction in Bull. Eng. Geol. Environ. 2023, 82, 237. [Google Scholar] [CrossRef]
- Cai, H.; Shi, H.; Liu, S.; Babovic, V. Impacts of regional characteristics on improving the accuracy of groundwater level prediction using machine learning: The case of central eastern continental United States. J. Hydrol. Reg. Stud. 2021, 37, 100930. [Google Scholar] [CrossRef]
- Chen, Y.; Chang, J.; Li, Z.; Ming, L.; Li, C. Influence of land use change on habitat quality: A case study of coal mining subsidence areas. Environ. Monit. Assess. 2024, 196, 535. [Google Scholar] [CrossRef]
- Uddin, M.M.; Mia, B.M.; Gazi, Y.; Kamal, A.M. Quantification of landuse changes driven by the dynamics of the Jamuna River, a giant tropical river of Bangladesh. Egypt. J. Remote Sens. Space Sci. 2024, 27, 392–402. [Google Scholar] [CrossRef]
- Tang, J.; Liu, D.; Shang, C.; Niu, J. Impacts of land use change on surface infiltration capacity and urban flood risk in a representative karst mountain city over the last two decades. J. Clean. Prod. 2024, 454, 142196. [Google Scholar] [CrossRef]
- Sun, X.; Wang, Y.; Wang, H.; Zhang, C.; Wang, Z. Digital soil mapping based on empirical mode decomposition components of environmental covariates. Eur. J. Soil Sci. 2019, 70, 1109–1127. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, H.; Zhu, G.; Zhao, D.; Duan, B. A new groundwater depth prediction model based on EMD-LSTM. Water Supply 2022, 22, 5974–5988. [Google Scholar] [CrossRef]
- Hua, A.G.; Fei, P.L.; Dan, D.W.; Wu, J.-Z.; Xiao, C.; Peng, H.-Y.; Jiang, S.-H. Improving the resolution of poststack seismic data based on UNet+GRU deep learning method. Appl. Geophys. 2023, 20, 176–185. [Google Scholar]
- Nan, T.; Cao, W.; Wang, Z.; Gao, Y.; Zhao, L.; Sun, X.; Na, J. Evaluation of shallow groundwater dynamics after water supplement in North China Plain based on attention-GRU model. J. Hydrol. 2023, 625, 130085. [Google Scholar] [CrossRef]
- Chen, T.; Gao, G.; Liu, H.; Li, Y.; Gui, Z.; Yu, Z.; Zhai, X. Rock brittleness index inversion method with constraints of seismic and well logs via a CNN-GRU fusion network based on the spatiotemporal attention mechanism. Geoenergy Sci. Eng. 2023, 225, 211646. [Google Scholar] [CrossRef]
- Nisar, A.; Xu, Y.; Muhammad, T. Water resource management and flood mitigation: Hybrid decomposition EMD-ANN model study under climate change. Sustain. Water Resour. Manag. 2024, 10, 71. [Google Scholar]
- Wu, Q.; Jia, C.; Chen, S.; Li, H. SBAS-InSAR based deformation detection of urban land, created from mega-scale mountain excavating and valley filling in the loess plateau: The case study of Yan’an city. Remote Sens. 2019, 11, 1673. [Google Scholar] [CrossRef]
- Seong, H.L.; Hong, J.O. Correcting Digital Elevation Models (DEM) from Unmanned Aerial Vehicles (UAV): A New Method Using Polynomial Model Matching Techniques. J. Coast. Res. 2021, 114, 434–438. [Google Scholar]
- El Hage, M.; Villard, L.; Huang, Y.; Ferro-Famil, L.; Koleck, T.; Le Toan, T.; Polidori, L. Multicriteria Accuracy Assessment of Digital Elevation Models (DEMs) Produced by Airborne P-Band Polarimetric SAR Tomography in Tropical Rainforests. Remote Sens. 2022, 14, 4173. [Google Scholar] [CrossRef]
- Thanh-Nhan-Duc, T.; Quang, B.N.; Duong, N.V.; Le, M.-H.; Nguyen, Q.-D.; Lakshmi, V.; Bolten, J.D. Quantification of global Digital Elevation Model (DEM)—A case study of the newly released NASADEM for a river basin in Central Vietnam. J. Hydrol. Reg. Stud. 2023, 45, 101282. [Google Scholar]
- Krdžalić, D.; Ćatić, J.; Vrce, E.; Omićević, D. Evaluating the accuracy of the digital elevation models (DEMs) within the territory of Bosnia and Herzegovina. Remote Sens. Appl. Soc. Environ. 2024, 34, 101187. [Google Scholar] [CrossRef]
- He, Y. Monitoring and Analysis of Surface Settlement in Lingxin Coal Mine Based on SBAS-InSAR Technology. J. Res. Sci. Eng. 2022, 4, 3711–3721. [Google Scholar]
- Valencia Ortiz, J.A.; Martínez-Graña, A.; Mejía Mendez, L. Evaluation of Susceptibility by Mass Movements through Stochastic and Statistical Methods for a Region of Bucaramanga, Colombia. Remote Sens. 2023, 15, 4567. [Google Scholar] [CrossRef]
- Omid, S.M.; Mohammad, K.; Suraparb, K. Landslides monitoring with SBAS-InSAR and GNSS. Phys. Chem. Earth 2023, 132, 103486–103499. [Google Scholar]
- Zhou, S.; Guo, Z.; Huang, G.; Liu, K. Improving the Understanding of Landslide Development in Alpine Forest Regions Using the InSAR Technique: A Case Study in Xiaojin County China. Appl. Sci. 2023, 13, 11851. [Google Scholar] [CrossRef]
- Valencia Ortiz, J.A.; Nieto, C.E.; Martínez-Graña, A.M. Evaluation of Mass Movement Hazard in the Shoreline of the Intertidal Complex of El Grove (Pontevedra, Galicia). Remote Sens. 2024, 16, 2478. [Google Scholar] [CrossRef]
- Merchán, L.; Martínez-Graña, A.; Nieto, C.; Criado, M.; Cabero, T. Geospatial Characterization of Gravitational and Erosion Risks to Establish Conservation Practices in Vineyards in the Arribes del Duero Natural Park (Spain). Agronomy 2023, 13, 2102. [Google Scholar] [CrossRef]
- Cavalieri, F.; Franchin, P.; Giovinazzi, S. Earthquake-altered flooding hazard induced by damage to storm water systems. Sustain. Resilient Infrastruct. 2016, 1, 14–31. [Google Scholar] [CrossRef]
- Valencia Ortiz, J.A.; Martínez-Graña, A. Calculation of precipitation and seismicity thresholds as triggers for mass movements in the region of Bucaramanga, Colombia. Ecol. Indic. 2023, 152, 110355. [Google Scholar] [CrossRef]
- Zhao, S.; Qi, J.; Li, D.; Wang, X. Land use change and its influencing factors along railways in Africa: A case study of the Ethiopian section of the Addis Ababa–Djibouti Railway. J. Geogr. Sci. 2024, 34, 1128–1156. [Google Scholar] [CrossRef]
- Mashiyi, S.; Weesakul, S.; Vojinovic, Z.; Torres, A.S.; Babel, M.S.; Ditthabumrung, S.; Ruangpan, L. Designing and evaluating robust nature-based solutions for hydro-meteorological risk reduction. Int. J. Disaster Risk Reduc. 2024, 93, 103787, Corrigendum in Int. J. Disaster Risk Reduc. 2024, 109, 104579. [Google Scholar] [CrossRef]
- Marengo, J.A.; Cunha, A.P.; Seluchi, M.E.; Camarinha, P.I.; Dolif, G.; Sperling, V.B.; Alcântara, E.H.; Ramos, A.M.; Andrade, M.M.; Stabile, R.A. Heavy rains and hydrogeological disasters on February 18th–19th, 2023, in the city of São Sebastião, São Paulo, Brazil: From meteorological causes to early warnings. Nat. Hazards 2024, 120, 7997–8024. [Google Scholar] [CrossRef]
River Name | Length (km) | Drainage Area (sq.km) |
---|---|---|
Qingjiang River | 50 | 350 |
Bailong River | 30 | 15,400 |
Jialing River | 15 | 160,000 |
Orbital Direction | Wave Band | Imaging Mode | Polarization Mode | Revisiting Period (d) | Image Date |
---|---|---|---|---|---|
Ascent orbit | C | IW | VV | 12 | 2016.01.08–2024.03.26 |
Serial Number | Imaging Time | Relative Position/m | Normal Baseline/m |
---|---|---|---|
1 | 2016.01 | 117.308 | 53.0866 |
2 | 2017.01 | 26.9236 | −37.2981 |
3 | 2018.01 | 45.8953 | −25.7557 |
4 | 2019.01 | 111.663 | 31.3793 |
5 | 2020.02 | 70.4776 | −9.80567 |
6 | 2021.01 | 58.9843 | 11.4932 |
7 | 2022.01 | 37.5797 | 54.6557 |
8 | 2023.01 | 116.414 | −78.834 |
9 | 2024.03 | 151.796 | 81.7667 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, H.; Martínez-Graña, A.M. Landslide Hazard Prediction Based on Small Baseline Subset–Interferometric Synthetic-Aperture Radar Technology Combined with Land-Use Dynamic Change and Hydrological Conditions (Sichuan, China). Remote Sens. 2024, 16, 2715. https://doi.org/10.3390/rs16152715
Guo H, Martínez-Graña AM. Landslide Hazard Prediction Based on Small Baseline Subset–Interferometric Synthetic-Aperture Radar Technology Combined with Land-Use Dynamic Change and Hydrological Conditions (Sichuan, China). Remote Sensing. 2024; 16(15):2715. https://doi.org/10.3390/rs16152715
Chicago/Turabian StyleGuo, Hongyi, and A. M. Martínez-Graña. 2024. "Landslide Hazard Prediction Based on Small Baseline Subset–Interferometric Synthetic-Aperture Radar Technology Combined with Land-Use Dynamic Change and Hydrological Conditions (Sichuan, China)" Remote Sensing 16, no. 15: 2715. https://doi.org/10.3390/rs16152715
APA StyleGuo, H., & Martínez-Graña, A. M. (2024). Landslide Hazard Prediction Based on Small Baseline Subset–Interferometric Synthetic-Aperture Radar Technology Combined with Land-Use Dynamic Change and Hydrological Conditions (Sichuan, China). Remote Sensing, 16(15), 2715. https://doi.org/10.3390/rs16152715