JointNet: Multitask Learning Framework for Denoising and Detecting Anomalies in Hyperspectral Remote Sensing
<p>Anomaly targets and noise morphological and distribution characteristics.</p> "> Figure 1 Cont.
<p>Anomaly targets and noise morphological and distribution characteristics.</p> "> Figure 2
<p>General flow of the multitask-based anomaly detection method for noisy hyperspectral images.</p> "> Figure 3
<p>Schematic diagram of the MNF computation flow.</p> "> Figure 4
<p>Effect of the loss function regularization parameters <math display="inline"><semantics> <mi>α</mi> </semantics></math> and <math display="inline"><semantics> <mi>β</mi> </semantics></math> on the AUC.</p> "> Figure 5
<p>Plot of experimental results on the robustness of the JointNet model to noise types.</p> "> Figure 6
<p>Graph of the results of the denoising algorithm on the HYDICE dataset.</p> "> Figure 7
<p>Residual image of pixel spectral features on the HYDICE dataset.</p> "> Figure 8
<p>Residual image of pixel spectral features on the San Diego dataset.</p> "> Figure 9
<p>Results of the anomaly detection algorithms on the HYDICE dataset.</p> "> Figure 10
<p>Results of the anomaly detection algorithms on the San Diego dataset.</p> "> Figure 11
<p>Box plot of the anomaly detection results.</p> "> Figure 11 Cont.
<p>Box plot of the anomaly detection results.</p> ">
Abstract
:1. Introduction
- (1)
- Deep spectral information is extracted by integrating denoising algorithms and a deep learning model. To address the complex nonlinear relationship in noisy HSIs, this method integrates a traditional denoising method, the minimum noise fraction rotation (MNF), into an autoencoder. This allows the model to extract hidden features from the HSI layer by layer, while retaining complete anomaly target pixels during the denoising process, thereby minimizing the risk of losing the anomaly targets in anomaly detection.
- (2)
- We contributed methods for estimating the anomaly level of pixels. We developed a noise score evaluation metric to calculate the probability that a pixel belongs to an anomaly target. Traditional anomaly detection methods often rely on reconstruction errors to predict the pixel labels, effectively treating this as a binary classification problem. In contrast, the noise score evaluation metric considers three components—the anomaly target, the noise, and the background pixels—to predict pixel labels probabilistically. This approach helps address the overlap between the noise and the anomaly pixels, which otherwise makes it difficult to use reconstruction errors to predict pixel labels.
- (3)
- We designed information flow methods between multiple subtasks. The proposed method aims to optimize the anomaly detection performance by incorporating noise information. By combining denoising and anomaly detection, the anomaly detection subtask can access more comprehensive hidden layer information from the HSI, enhancing the data for model learning and improving the anomaly detection performance. This work addresses the underutilization of image information caused by separate denoising and anomaly detection through a well-designed loss function, ensuring that the original HSI information flows into the detection stage without significant loss.
2. Related Work
2.1. Statistically Based Anomaly Detection
2.2. Deep-Learning-Based Anomaly Detection
3. Methodology
3.1. Multitask-Learning-Based Noise Information Sharing
3.2. JointNet Model
- (1)
- Encoder: The encoder contains 12 convolution layers, and each layer consists of 3 × 3 convolutional operators, followed by batch normalization and a LeakyReLU activation function, and the outputs of the odd-numbered layers are simultaneously concatenated with the feature maps of the next odd-numbered layer through skip connections (except for layer #11). The first six layers implement the noise whitening, and the last six layers implement the feature mapping.
- (2)
- Decoder: The decoder contains 10 convolution layers consisting of 3 × 3 convolutional operators, which perform upsampling using nearest-neighbor interpolation.
- (1)
- Noise-Whitening Phase
- (2)
- Feature Mapping Phase
- (1)
- Noisy HSI Data Sampling
- (2)
- Convolutional Kernel Initialization
- (3)
- Convolution Calculation
3.3. Noise Scores
3.4. Loss Function
4. Experiments
4.1. Experimental Datasets
- (1)
- HYDICE Datasets: This dataset, widely used in remote sensing and earth science research, was captured by the Hyperspectral Digital Image Collection Experiment Airborne Sensor (HYDICE) aboard the ER-2 High-Altitude Vehicle (HAV) aircraft, flying at high altitudes to photograph the ground over urban areas in California. Subimages with a size of 80 × 100 pixels were selected for the experiment, excluding bands with high water vapor absorption and damage, to obtain 175 bands for the anomaly detection experiments. The wavelengths ranged from 400 to 2500 nm, covering the visible and infrared spectral ranges. The spatial resolution was 3 m/pixel. The background components included vegetation, highways, and parking lots, while 21 pixels representing artificial vehicles were considered anomaly targets.
- (2)
- San Diego Dataset: This dataset was collected by the AVIRIS sensor in the San Diego Airport area in California, USA. This dataset has an image size of , the spatial resolution was 3.5 m, and a spectral resolution of 10 nm, covering wavelengths from 370 to 2510 nm. After excluding 35 absorption bands and channels heavily affected by the atmosphere, experiments were conducted on 189 spectral bands. The background components included airplane hangars, aprons, and soil, while three airplanes with 58 pixels were considered anomaly target pixels.
4.2. Parameter Settings
- (1)
- Regularization parameter for the loss function
- (2)
- Number of convolutional kernels for JointNet models
4.3. Noise Robustness Analysis
- = rand (10): randomly selecting 10% of all pixels and adding salt and pepper noise, setting these pixel values to 0;
- = rand (20): randomly selecting 20% of all pixels and adding salt and pepper noise, setting these pixel values to 0;
- = Gau (0,0.01): randomly adding Gaussian noise with a mean of 0 and variance of 0.01 to all pixels;
- = Gau (0,0.02): randomly adding Gaussian noise with a mean of 0 and variance of 0.02 to all pixels.
4.4. Ablation Study
4.4.1. Performance Analysis of JointNet
4.4.2. Effectiveness of Multitask Learning
4.5. Comparison Experiments
4.5.1. Denoising
4.5.2. Anomaly Detection
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Su, H.; Du, Q.; Chen, G.; Du, P. Optimized Hyperspectral Band Selection Using Particle Swarm Optimization. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2659–2670. [Google Scholar] [CrossRef]
- Plaza, A.J.; Benediktsson, J.A.; Boardman, J.W.; Brazile, J.; Bruzzone, L.; Camps-Valls, G.; Chanussot, J.; Fauvel, M.; Gamba, P.; Gualtieri, A.J.; et al. Recent Advances in Techniques for Hyperspectral Image Processing. Remote Sens. Environ. 2009, 113, S110–S122. [Google Scholar] [CrossRef]
- Lu, X.; Wang, Y.; Yuan, Y. Graph-Regularized Low-Rank Representation for Destriping of Hyperspectral Images. IEEE Trans. Geosci. Remote Sens. 2013, 51, 4009–4018. [Google Scholar] [CrossRef]
- Lu, M.; Hu, L.; Yue, T.; Chen, Z.; Chen, B.; Lu, X.; Xu, B. Penalized Linear Discriminant Analysis of Hyperspectral Imagery for Noise Removal. IEEE Geosci. Remote Sens. Lett. 2017, 14, 359–363. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, L.; Yang, H.; Wu, T.; Cen, Y.; Guo, Y. Enhancement of Spectral Resolution for Remotely Sensed Multispectral Image. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2198–2211. [Google Scholar] [CrossRef]
- Peng, J.; Wang, H.; Cao, X.; Liu, X.; Rui, X.; Meng, D. Fast Noise Removal in Hyperspectral Images via Representative Coefficient Total Variation. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5546017. [Google Scholar] [CrossRef]
- Chen, S.E. Denoising of Hyperspectral Imagery Using Principal Component Analysis and Wavelet Shrinkage. IEEE Trans. Geosci. Remote Sens. 2011, 49, 973–980. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, T.Z.; He, W.; Zhao, X.L.; Zhang, H.; Zeng, J. Hyperspectral Image Denoising Using Factor Group Sparsity-Regularized Nonconvex Low-Rank Approximation. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5515916. [Google Scholar] [CrossRef]
- Wu, W.H.; Huang, T.Z.; Zhao, X.L.; Wang, J.L.; Zheng, Y.B. Hyperspectral Image Denoising via Tensor Low-Rank Prior and Unsupervised Deep Spatial–Spectral Prior. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5545514. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, T.Z.; Zhao, X.L.; He, W.; Choi, J.K.; Zheng, Y.B. Hyperspectral Image Denoising: Reconciling Sparse and Low-Tensor-Ring-Rank Priors in the Transformed Domain. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5502313. [Google Scholar] [CrossRef]
- Lin, J.T.; Lin, C.H. Real-Time Hyperspectral Anomaly Detection using Collaborative Superpixel Representation with Boundary Refinement. In Proceedings of the IGARSS 2022—2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 1752–1755. [Google Scholar]
- Ren, L.; Zhao, L.; Wang, Y. A Superpixel-Based Dual Window RX for Hyperspectral Anomaly Detection. IEEE Geosci. Remote Sens. Lett. 2020, 17, 1233–1237. [Google Scholar] [CrossRef]
- Liu, Y.; Lin, C.H.; Kuo, Y.C. Low-Rank Representation With Morphological-Attribute-Filter Based Regularization For Hyperspectral Anomaly Detection. In Proceedings of the 2022 12th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS), Rome, Italy, 13–16 September 2022; pp. 1–5. [Google Scholar]
- Cheng, X.; Xu, Y.; Zhang, J.; Zeng, D. Hyperspectral Anomaly Detection via Low-Rank Decomposition and Morphological Filtering. IEEE Geosci. Remote Sens. Lett. 2022, 19, 5511905. [Google Scholar] [CrossRef]
- Wang, M.; Hong, D.; Zhang, B.; Ren, L.; Yao, J.; Chanussot, J. Learning Double Subspace Representation for Joint Hyperspectral Anomaly Detection and Noise Removal. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5507517. [Google Scholar] [CrossRef]
- Li, L.; Song, M.; Zhang, Q.; Dong, Y. Hyperspectral Denoising via Global Variation and Local Structure Low-Rank Model. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5525513. [Google Scholar] [CrossRef]
- Chen, Y.; Cao, W.; Pang, L.; Cao, X. Hyperspectral Image Denoising With Weighted Nonlocal Low-Rank Model and Adaptive Total Variation Regularization. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5544115. [Google Scholar] [CrossRef]
- Cheng, X.; Zhang, M.; Lin, S.; Li, Y.; Wang, H. Deep Self-Representation Learning Framework for Hyperspectral Anomaly Detection. IEEE Trans. Instrum. Meas. 2024, 73, 5002016. [Google Scholar] [CrossRef]
- Cheng, T.; Wang, B. Graph and Total Variation Regularized Low-Rank Representation for Hyperspectral Anomaly Detection. IEEE Trans. Geosci. Remote Sens. 2020, 58, 391–406. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Y.; Li, Z.; Wu, C.; Xu, M.; Shao, M. Eliminating Spatial Correlations of Anomaly: Corner-Visible Network for Unsupervised Hyperspectral Anomaly Detection. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5529114. [Google Scholar] [CrossRef]
- Chen, S.; Li, X.; Zhao, L. Hyperspectral Anomaly Detection with Data Sphering and Unsupervised Target Detection. In Proceedings of the IGARSS 2022—2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 1975–1978. [Google Scholar]
- Liu, J.; Hou, Z.; Li, W.; Tao, R.; Orlando, D.; Li, H. Multipixel Anomaly Detection With Unknown Patterns for Hyperspectral Imagery. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 5557–5567. [Google Scholar] [CrossRef]
- Reed, I.S.; Yu, X. Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution. IEEE Trans. Acoust. Speech Signal Process. 1990, 38, 1760–1770. [Google Scholar] [CrossRef]
- Song, Y.; Shi, S.; Chen, J. Deep-RX for Hyperspectral Anomaly Detection. In Proceedings of the IGARSS 2023—2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 16–21 July 2023; pp. 7348–7351. [Google Scholar]
- Guo, Q.; Zhang, B.; Ran, Q.; Gao, L.; Li, J.; Plaza, A. Weighted-RXD and Linear Filter-Based RXD: Improving Background Statistics Estimation for Anomaly Detection in Hyperspectral Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2351–2366. [Google Scholar] [CrossRef]
- Kwon, H.; Nasrabadi, N.M. Kernel RX-algorithm: A nonlinear anomaly detector for hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 2005, 43, 388–397. [Google Scholar] [CrossRef]
- Schaum, A.P. Hyperspectral anomaly detection beyond RX. In Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XIII; International Society for Optics and Photonics—SPIE: Bellingham, WA, USA, 2007; Volume 6565, p. 656502. [Google Scholar]
- Lin, S.; Zhang, M.; Cheng, X.; Zhou, K.; Zhao, S.; Wang, H. Hyperspectral Anomaly Detection via Sparse Representation and Collaborative Representation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 946–961. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, B. Kernel-Based Decomposition Model With Total Variation and Sparsity Regularizations via Union Dictionary for Nonlinear Hyperspectral Anomaly Detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5542916. [Google Scholar] [CrossRef]
- Xiong, F.; Ye, M.; Zhou, J.; Qian, Y.T. Spatial-Spectral Convolutional Sparse Neural Network for Hyperspectral Image Denoising. In Proceedings of the IGARSS 2022—2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 1225–1228. [Google Scholar]
- Jiang, T.; Li, Y.; Xie, W.; Du, Q. Discriminative Reconstruction Constrained Generative Adversarial Network for Hyperspectral Anomaly Detection. IEEE Trans. Geosci. Remote Sens. 2020, 58, 4666–4679. [Google Scholar] [CrossRef]
- Ouyang, T.; Wang, J.; Zhao, X.; Wu, S. LSTM-Adversarial Autoencoder for Spectral Feature Learning in Hyperspectral Anomaly Detection. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 2162–2165. [Google Scholar]
- Zhang, J.; Xu, Y.; Zhan, T.; Wu, Z.; Wei, Z. Anomaly Detection in Hyperspectral Image Using 3D-Convolutional Variational Autoencoder. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 2512–2515. [Google Scholar]
- Fu, X.; Jia, S.; Zhuang, L.; Xu, M.; Zhou, J.; Li, Q. Hyperspectral Anomaly Detection via Deep Plug-and-Play Denoising CNN Regularization. IEEE Trans. Geosci. Remote Sens. 2021, 59, 9553–9568. [Google Scholar] [CrossRef]
- Wang, S.; Wang, X.; Zhang, L.; Zhong, Y. Auto-AD: Autonomous Hyperspectral Anomaly Detection Network Based on Fully Convolutional Autoencoder. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5503314. [Google Scholar] [CrossRef]
- Huang, R.; Li, X.; Fang, Y.; Cao, Z.; Xia, C. Robust Hyperspectral Unmixing with Practical Learning-Based Hyperspectral Image Denoising. Remote Sens. 2023, 15, 1058. [Google Scholar] [CrossRef]
- Li, N.; Zhou, D.; Shi, J.; Zheng, X.; Wu, T.; Yang, Z. Graph-Based Deep Multitask Few-Shot Learning for Hyperspectral Image Classification. Remote Sens. 2022, 14, 2246. [Google Scholar] [CrossRef]
- Ou, X.; Zhang, Y.; Wang, H.; Tu, B.; Guo, L.; Zhang, G.; Xu, Z. Hyperspectral Image Target Detection via Weighted Joint K-Nearest Neighbor and Multitask Learning Sparse Representation. IEEE Access 2020, 8, 11503–11511. [Google Scholar] [CrossRef]
- Jize, X.; Yongqiang, Z.; Wenzhi, L.; Chan, J.C.-W. Nonlocal Low-Rank Regularized Tensor Decomposition for Hyperspectral Image Denoising. IEEE Trans. Geosci. Remote. Sens. 2019, 57, 5174–5189. [Google Scholar]
- Li, S.; Zhang, K.; Hao, Q.; Duan, P.; Kang, X. Hyperspectral Anomaly Detection With Multiscale Attribute and Edge-Preserving Filters. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1605–1609. [Google Scholar] [CrossRef]
- Xue, T.; Jia, J.; Xie, H.; Zhang, C.; Deng, X.; Wang, Y. Kernel Minimum Noise Fraction Transformation-Based Background Separation Model for Hyperspectral Anomaly Detection. Remote Sens. 2022, 14, 5157. [Google Scholar] [CrossRef]
- Dabov, K.; Foi, A.; Katkovnik, V.; Egiazarian, K.O. Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering. IEEE Trans. Image Process. 2007, 16, 2080–2095. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.I.; Chen, J. Hyperspectral Anomaly Detection by Data Sphering and Sparsity Density Peaks. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5526321. [Google Scholar] [CrossRef]
- Zhao, C.; Li, X.Y.; Zhu, H.F. Hyperspectral anomaly detection based on stacked denoising autoencoders. J. Appl. Remote Sens. 2021, 11, 042605. [Google Scholar] [CrossRef]
PSNR | SSIM | SAM | Time(s) | |
---|---|---|---|---|
1 | 41.24 | 0.89 | 4.37 | 136.49 |
2 | 42.71 | 0.91 | 4.12 | 138.50 |
3 | 42.36 | 0.87 | 4.91 | 139.35 |
Noise | PSNR | SSIM | SAM |
---|---|---|---|
= rand (10) | 39.845 | 0.623 | 4.439 |
= rand (20) | 37.486 | 0.678 | 4.592 |
= Gau (0,0.01) | 43.516 | 0.913 | 3.697 |
= Gau (0,0.02) | 41.967 | 0.843 | 3.796 |
MSE | PSNR | SSIM | SAM | Time(s) | |
---|---|---|---|---|---|
Case 1 | 38.271 | 0.902 | 3.949 | 128.674 | |
Case 2 | 43.971 | 0.913 | 3.763 | 159.321 |
Loss | Time (s) | AUC |
---|---|---|
Loss I | 260.384 | 0.873 |
Loss II | 348.382 | 0.883 |
Loss III | 361.359 | 0.902 |
Loss IV | 366.325 | 0.916 |
PSNR | SSIM | SAM | AUC | ||
---|---|---|---|---|---|
HYDICE | PCA | 31.36 | 0.79 | 8.930 | 0.796 |
Wavelet transform | 35.90 | 0.75 | 7.926 | 0.782 | |
Fourier transform | 42.14 | 0.86 | 6.774 | 0.849 | |
BM3D | 39.41 | 0.83 | 12.717 | 0.896 | |
DeCNN-AD | 39.67 | 0.89 | 6.499 | 0.903 | |
JointNet | 41.79 | 0.91 | 4.350 | 0.916 | |
San Diego | PCA | 26.72 | 0.67 | 3.876 | 0.886 |
Wavelet transform | 31.37 | 0.74 | 4.791 | 0.916 | |
Fourier transform | 36.75 | 0.84 | 5.779 | 0.812 | |
BM3D | 34.53 | 0.82 | 6.003 | 0.850 | |
DeCNN-AD | 41.74 | 0.87 | 9.646 | 0.901 | |
JointNet | 42.83 | 0.93 | 3.558 | 0.920 |
GRX | CRD | LRASR | DeCNN-AD | HADSDA | STGF | DSR-ADNR | JointNet | |
---|---|---|---|---|---|---|---|---|
AUC | 0.901 | 0.925 | 0.915 | 0.920 | 0.939 | 0.863 | 0.932 | 0.943 |
Time (s) | 0.26 | 60.34 | 74.90 | 54.73 | 33.58 | 35.20 | 29.40 | 162.39 |
GRX | CRD | LRASR | DeCNN-AD | HADSDA | STGF | DSR-ADNR | JointNet | |
---|---|---|---|---|---|---|---|---|
AUC | 0.870 | 0.887 | 0.923 | 0.892 | 0.914 | 0.948 | 0.906 | 0.959 |
Time (s) | 0.45 | 65.10 | 85.61 | 70.09 | 48.50 | 25.83 | 16.91 | 126.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, Y.; Li, S.; Yang, P.; Cheng, F.; Ding, Y.; Sun, J. JointNet: Multitask Learning Framework for Denoising and Detecting Anomalies in Hyperspectral Remote Sensing. Remote Sens. 2024, 16, 2619. https://doi.org/10.3390/rs16142619
Shao Y, Li S, Yang P, Cheng F, Ding Y, Sun J. JointNet: Multitask Learning Framework for Denoising and Detecting Anomalies in Hyperspectral Remote Sensing. Remote Sensing. 2024; 16(14):2619. https://doi.org/10.3390/rs16142619
Chicago/Turabian StyleShao, Yingzhao, Shuhan Li, Pengfei Yang, Fei Cheng, Yueli Ding, and Jianguo Sun. 2024. "JointNet: Multitask Learning Framework for Denoising and Detecting Anomalies in Hyperspectral Remote Sensing" Remote Sensing 16, no. 14: 2619. https://doi.org/10.3390/rs16142619
APA StyleShao, Y., Li, S., Yang, P., Cheng, F., Ding, Y., & Sun, J. (2024). JointNet: Multitask Learning Framework for Denoising and Detecting Anomalies in Hyperspectral Remote Sensing. Remote Sensing, 16(14), 2619. https://doi.org/10.3390/rs16142619