QMRNet: Quality Metric Regression for EO Image Quality Assessment and Super-Resolution
<p>Architecture of QMRNet. Single-parameter QMRNet for using modified/annotated data from a unique parameter/modifier (in this case, from blur-modified images).</p> "> Figure 2
<p>Multiparameter architectures to simultaneously predict several distortions in one run. (<b>a</b>) Multibranch QMRNet (QMRNet-MB), example with 3 stacked QMRNets (3 encoders with 1 head each). (<b>b</b>) Multihead QMRNet (QMRNet-MH), example with 3 heads.</p> "> Figure 3
<p>Super-resolution model pipeline (encoder–decoder for autoencoders and generator–discriminator for GANs) with ad hoc QMRNet loss optimization. Note that all losses (i.e., <span style="color: #7FA5DF"><math display="inline"><semantics> <msubsup> <mi mathvariant="script">L</mi> <mi>D</mi> <mrow> <mi>A</mi> <mi>d</mi> <mi>v</mi> </mrow> </msubsup> </semantics></math></span>, <span style="color: #E2C97C"><math display="inline"><semantics> <msubsup> <mi mathvariant="script">L</mi> <mi>G</mi> <mrow> <mi>P</mi> <mi>e</mi> <mi>r</mi> <mi>c</mi> </mrow> </msubsup> </semantics></math></span> and <span style="color: #00FF00"><math display="inline"><semantics> <msubsup> <mi mathvariant="script">L</mi> <mi>G</mi> <mrow> <mi>Q</mi> <mi>M</mi> <mi>R</mi> </mrow> </msubsup> </semantics></math></span>) are considered for the case of MSRN optimization with QMRNet; see <a href="#sec4dot4-remotesensing-15-02451" class="html-sec">Section 4.4</a>.</p> "> Figure 4
<p><span style="color: #00FF00">Correct</span> and <span style="color: #FF0000">incorrect</span> prediction examples of QMRNet on Inria-AILD-180 validation (crop resolution, i.e., R = 128 × 128) given interval rank error (classification label distance between GT and prediction, maximum is N for each net, i.e., 50 for blur, 10 for sharpness and 40 for snr and rer). medR is the overall median rank (err).</p> "> Figure 5
<p>Examples of super-resolving original UCMerced images (with a crop zoom, i.e., 128 × 128) and each SR algorithm output. Inputs (<span class="html-italic">Original</span> <math display="inline"><semantics> <msub> <mi>I</mi> <mrow> <mi>H</mi> <mi>R</mi> </mrow> </msub> </semantics></math>) without downsampling (i.e., super-resolving x3). In rows 6–10 are colormaps of the sum of differences (<math display="inline"><semantics> <mo>Δ</mo> </semantics></math>R + <math display="inline"><semantics> <mo>Δ</mo> </semantics></math>G + <math display="inline"><semantics> <mo>Δ</mo> </semantics></math>B) with respect to <span class="html-italic">Original</span> <math display="inline"><semantics> <msub> <mi>I</mi> <mrow> <mi>H</mi> <mi>R</mi> </mrow> </msub> </semantics></math>.</p> "> Figure 6
<p>Examples of super-resolving original XView images (with a crop zoom, i.e., 128 × 128) and each SR algorithm output. Inputs (<span class="html-italic">Original</span> <math display="inline"><semantics> <msub> <mi>I</mi> <mrow> <mi>H</mi> <mi>R</mi> </mrow> </msub> </semantics></math>) without downsampling (i.e., super-resolving x4). In rows 6–10 are colormaps of the sum of differences (<math display="inline"><semantics> <mo>Δ</mo> </semantics></math>R + <math display="inline"><semantics> <mo>Δ</mo> </semantics></math>G + <math display="inline"><semantics> <mo>Δ</mo> </semantics></math>B) with respect to <span class="html-italic">Original</span> <math display="inline"><semantics> <msub> <mi>I</mi> <mrow> <mi>H</mi> <mi>R</mi> </mrow> </msub> </semantics></math>.</p> "> Figure 7
<p>Low-resolution examples of Inria-AILD-180-val images (crops of 256 × 256) and each SR algorithm output. <span class="html-italic">LR</span> (corresponding to input on algorithms <math display="inline"><semantics> <msub> <mi>I</mi> <mrow> <mi>L</mi> <mi>R</mi> </mrow> </msub> </semantics></math>) is the downsampling x3 of <math display="inline"><semantics> <msub> <mi>I</mi> <mrow> <mi>H</mi> <mi>R</mi> </mrow> </msub> </semantics></math>. In rows 6–10 are colormaps of the sum of differences (<math display="inline"><semantics> <mo>Δ</mo> </semantics></math>R + <math display="inline"><semantics> <mo>Δ</mo> </semantics></math>G + <math display="inline"><semantics> <mo>Δ</mo> </semantics></math>B) with respect to <span class="html-italic">Original</span> <math display="inline"><semantics> <msub> <mi>I</mi> <mrow> <mi>H</mi> <mi>R</mi> </mrow> </msub> </semantics></math>.</p> "> Figure 8
<p>Scatter plots of metric comparison on super-resolving (x4) UCMerced dataset.</p> "> Figure 9
<p>Validation of QMRLoss optimizing MSRN in super-resolution of Inria-AILD-180. Note that the training/validation regime was conducted over Inria-AILD-180 with 100-20 image splits and crops set to 64 × 64, 128 × 128, 256 × 256 and 512 × 512.</p> "> Figure 10
<p>Examples of Inria-AILD-180-test images (with a crop zoom of 256 × 256) and each QMRNet algorithm output (QMRLoss<math display="inline"><semantics> <msub> <mrow/> <mrow> <mi>L</mi> <mn>1</mn> </mrow> </msub> </semantics></math>). Inputs (<span class="html-italic">Original</span> <math display="inline"><semantics> <msub> <mi>I</mi> <mrow> <mi>H</mi> <mi>R</mi> </mrow> </msub> </semantics></math>) without downsampling (i.e., super-resolving x3). In rows 6–10 are colormaps of the sum of differences (<math display="inline"><semantics> <mo>Δ</mo> </semantics></math>R + <math display="inline"><semantics> <mo>Δ</mo> </semantics></math>G + <math display="inline"><semantics> <mo>Δ</mo> </semantics></math>B) with respect to <span class="html-italic">Original</span> <math display="inline"><semantics> <msub> <mi>I</mi> <mrow> <mi>H</mi> <mi>R</mi> </mrow> </msub> </semantics></math>.</p> "> Figure 11
<p>Examples of UCMerced images (with a crop zoom of 96 × 96) and each QMRNet algorithm output (QMRLoss<math display="inline"><semantics> <msub> <mrow/> <mrow> <mi>L</mi> <mn>1</mn> </mrow> </msub> </semantics></math>). Inputs (<span class="html-italic">Original</span> <math display="inline"><semantics> <msub> <mi>I</mi> <mrow> <mi>H</mi> <mi>R</mi> </mrow> </msub> </semantics></math>) without downsampling (i.e., super-resolving x4). In rows 6–10 are colormaps of the sum of differences (<math display="inline"><semantics> <mo>Δ</mo> </semantics></math>R + <math display="inline"><semantics> <mo>Δ</mo> </semantics></math>G + <math display="inline"><semantics> <mo>Δ</mo> </semantics></math>B) with respect to <span class="html-italic">Original</span> <math display="inline"><semantics> <msub> <mi>I</mi> <mrow> <mi>H</mi> <mi>R</mi> </mrow> </msub> </semantics></math>.</p> "> Figure 12
<p>Examples of UCMerced images (with a crop zoom of 96 × 96) and each QMRNet algorithm output (QMRLoss<math display="inline"><semantics> <msub> <mrow/> <mrow> <mi>L</mi> <mn>1</mn> </mrow> </msub> </semantics></math>). Inputs (<span class="html-italic">Original</span> <math display="inline"><semantics> <msub> <mi>I</mi> <mrow> <mi>H</mi> <mi>R</mi> </mrow> </msub> </semantics></math>) without downsampling (i.e., super-resolving x4). In rows 6–10 are colormaps of the sum of differences (<math display="inline"><semantics> <mo>Δ</mo> </semantics></math>R + <math display="inline"><semantics> <mo>Δ</mo> </semantics></math>G + <math display="inline"><semantics> <mo>Δ</mo> </semantics></math>B) with respect to <span class="html-italic">Original</span> <math display="inline"><semantics> <msub> <mi>I</mi> <mrow> <mi>H</mi> <mi>R</mi> </mrow> </msub> </semantics></math>.</p> ">
Abstract
:1. Introduction
- We train and validate a novel network (QMRNet) for EO imagery that is able to predict any type of image based on its quality and distortion
- (Case 1) We benchmark distinct super-resolution models with QMRNet and compare the results with full-reference, no-reference and feature-based metrics
- (Case 2) We benchmark distinct EO datasets with QMRNet scores
- (Case 3) We propose to use QMRNet as a loss for optimizing the quality of super-resolution models
2. Datasets and Related Work
3. Proposed Method
3.1. Iquaflow Modifiers and Metrics
3.2. QMRNet: Classifier of Modifier Metric Parameters
3.3. QMRLoss: Learning Quality Metric Regression as Loss in SR
4. Experiments
4.1. Experimental Setup
4.1.1. Evaluation Metrics
4.1.2. Training and Validation
4.2. Results on QMRNet for IQA: Benchmarking Image Datasets
4.3. Results on QMRNet for IQA: Benchmarking Image Super-Resolution
4.4. Results on QMRloss: Optimizing Image Super-Resolution
5. Conclusions
Author Contributions
Funding
Data Availability Statement
- IQUAFLOW https://github.com/satellogic/iquaflow (accessed on 2 April 2023);
- IQUAFLOW-QMRNet https://github.com/satellogic/iquaflow/tree/main/iquaflow/quality_metrics (accessed on 2 April 2023);
- IQUAFLOW-Modifiers https://github.com/satellogic/iquaflow/tree/main/iquaflow/datasets (accessed on 2 April 2023);
- Case 1: Benchmark Datasets https://github.com/dberga/iquaflow-qmr-eo (accessed on 2 April 2023);
- Case 2: Benchmark Super-Resolution https://github.com/dberga/iquaflow-qmr-sisr (accessed on 2 April 2023);
- Case 3: Benchmark QMRLoss https://github.com/dberga/iquaflow-qmr-loss (accessed on 2 April 2023).
Conflicts of Interest
Abbreviations
SR| | Super-Resolution|SR image |
HR| | High-Resolution|HR image |
LR| | Low-Resolution|LR image |
EO | Earth Observation |
IQA | Image Quality Assessment |
GSD | Ground Sampling Distance |
GAN | Generative Adversarial Networks |
SNR | Signal-to-Noise |
RER | Relative Edge Response |
MTF | Modulation Transfer Function |
LSF | Line Spread Function |
PSF | Point Sparsity Function |
FWHM | Full Width at Half Maximum |
PSNR | Peak Signal-to-Noise Ratio |
SSIM | Structural Similarity |
MSSIM | Mean Structural Similarity |
HAARPSI | Haar Wavelet Perceptual Similarity Index |
GMSD | Gradient Magnitude Similarity Deviation |
MDSI | Mean Deviation Similarity Index |
SWD | Sliced Wasserstein Distance |
FID | Fréchet Inception Distance |
References
- Leachtenauer, J.C.; Driggers, R.G. Surveillance and Reconnaissance Imaging Systems: Modeling and Performance Prediction; Artech House Optoelectronics Library: Norwood, MA, USA, 2001. [Google Scholar]
- Dong, C.; Loy, C.C.; He, K.; Tang, X. Image Super-Resolution Using Deep Convolutional Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 295–307. [Google Scholar] [CrossRef]
- Yamanaka, J.; Kuwashima, S.; Kurita, T. Fast and Accurate Image Super Resolution by Deep CNN with Skip Connection and Network in Network. In Neural Information Processing; Springer International Publishing: Long Beach, CA, USA, 2017; pp. 217–225. [Google Scholar] [CrossRef]
- Müller, M.U.; Ekhtiari, N.; Almeida, R.M.; Rieke, C. Super-resolution of multispectral satellite images using convolutional neural networks. arXiv 2020, arXiv:2002.00580. [Google Scholar] [CrossRef]
- Li, J.; Fang, F.; Mei, K.; Zhang, G. Multi-scale Residual Network for Image Super-Resolution. In Proceedings of the European Conference on Computer Vision (ECCV); Springer International Publishing: Munich, Germany, 2018; pp. 527–542. [Google Scholar] [CrossRef]
- Ledig, C.; Theis, L.; Huszar, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z.; et al. Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017. [Google Scholar] [CrossRef]
- Wang, X.; Yu, K.; Wu, S.; Gu, J.; Liu, Y.; Dong, C.; Qiao, Y.; Loy, C.C. ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks. In Workshop of the European Conference on Computer Vision (ECCV); Springer International Publishing: Munich, Germany, 2019; pp. 63–79. [Google Scholar] [CrossRef]
- Jiang, Y.; Gong, X.; Liu, D.; Cheng, Y.; Fang, C.; Shen, X.; Yang, J.; Zhou, P.; Wang, Z. EnlightenGAN: Deep Light Enhancement Without Paired Supervision. IEEE Trans. Image Process. 2021, 30, 2340–2349. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lee, J.K.; Lee, K.M. Accurate Image Super-Resolution Using Very Deep Convolutional Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR Oral), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Sun, W.; Chen, Z. Learned image downscaling for upscaling using content adaptive resampler. IEEE Trans. Image Process. 2020, 29, 4027–4040. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Liu, S.; Wang, X. Learning Continuous Image Representation with Local Implicit Image Function. arXiv 2020, arXiv:2012.09161. [Google Scholar]
- Pradham, P.; Younan, N.H.; King, R.L. Concepts of image fusion in remote sensing applications. In Image Fusion; Elsevier: Amsterdam, The Netherlands, 2008; pp. 393–428. [Google Scholar] [CrossRef]
- Huynh-Thu, Q.; Ghanbari, M. Scope of validity of PSNR in image/video quality assessment. Electron. Lett. 2008, 44, 800. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.; Sheikh, H.; Simoncelli, E. Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed]
- Reisenhofer, R.; Bosse, S.; Kutyniok, G.; Wiegand, T. A Haar wavelet-based perceptual similarity index for image quality assessment. Signal Process. Image Commun. 2018, 61, 33–43. [Google Scholar] [CrossRef]
- Xue, W.; Zhang, L.; Mou, X.; Bovik, A.C. Gradient Magnitude Similarity Deviation: A Highly Efficient Perceptual Image Quality Index. IEEE Trans. Image Process. 2014, 23, 684–695. [Google Scholar] [CrossRef]
- Nafchi, H.Z.; Shahkolaei, A.; Hedjam, R.; Cheriet, M. Mean Deviation Similarity Index: Efficient and Reliable Full-Reference Image Quality Evaluator. IEEE Access 2016, 4, 5579–5590. [Google Scholar] [CrossRef]
- Varga, D. Full-Reference Image Quality Assessment Based on an Optimal Linear Combination of Quality Measures Selected by Simulated Annealing. J. Imaging 2022, 8, 224. [Google Scholar] [CrossRef] [PubMed]
- Lim, P.C.; Kim, T.; Na, S.I.; Lee, K.D.; Ahn, H.Y.; Hong, J. Analysis of UAV image quality using edge analysis. Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 2018, 42, 359–364. [Google Scholar] [CrossRef]
- Mittal, A.; Soundararajan, R.; Bovik, A.C. Making a “Completely Blind” Image Quality Analyzer. IEEE Signal Process. Lett. 2013, 20, 209–212. [Google Scholar] [CrossRef]
- Venkatanath, N.; Praneeth, D.; Bh, M.C.; Channappayya, S.S.; Medasani, S.S. Blind image quality evaluation using perception based features. In Proceedings of the 2015 Twenty First National Conference on Communications (NCC), Mumbai, India, 27 February–1 March 2015. [Google Scholar] [CrossRef]
- Leachtenauer, J.C.; Malila, W.; Irvine, J.; Colburn, L.; Salvaggio, N. General Image-Quality Equation: GIQE. Appl. Opt. 1997, 36, 8322. [Google Scholar] [CrossRef]
- Thurman, S.T.; Fienup, J.R. Analysis of the general image quality equation. In Visual Information Processing XVII; ur Rahman, Z., Reichenbach, S.E., Neifeld, M.A., Eds.; SPIE: Bellingham, WA, USA, 2008. [Google Scholar] [CrossRef]
- Kim, T.; Kim, H.; Kim, H.D. Image-based Estimation and Validation of Niirs for High-resolution Satellite Images. Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 2008, 37, 1–4. [Google Scholar]
- Li, L.; Luo, H.; Zhu, H. Estimation of the Image Interpretability of ZY-3 Sensor Corrected Panchromatic Nadir Data. Remote Sens. 2014, 6, 4409–4429. [Google Scholar] [CrossRef]
- Benecki, P.; Kawulok, M.; Kostrzewa, D.; Skonieczny, L. Evaluating super-resolution reconstruction of satellite images. Acta Astronaut. 2018, 153, 15–25. [Google Scholar] [CrossRef]
- Johnson, J.; Alahi, A.; Fei-Fei, L. Perceptual Losses for Real-Time Style Transfer and Super-Resolution. In Computer Vision–ECCV 2016; Springer International Publishing: Amsterdam, The Netherlands, 2016; pp. 694–711. [Google Scholar] [CrossRef]
- Zhang, R.; Isola, P.; Efros, A.A.; Shechtman, E.; Wang, O. The Unreasonable Effectiveness of Deep Features as a Perceptual Metric. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018. [Google Scholar] [CrossRef]
- Kolouri, S.; Nadjahi, K.; Simsekli, U.; Badeau, R.; Rohde, G. Generalized Sliced Wasserstein Distances. In Proceedings of the Advances in Neural Information Processing Systems; Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R., Eds.; Curran Associates, Inc.: Knoxville, TN, USA, 2019; Volume 32. [Google Scholar]
- Salimans, T.; Goodfellow, I.; Zaremba, W.; Cheung, V.; Radford, A.; Chen, X.; Chen, X. Improved Techniques for Training GANs. In Proceedings of the Advances in Neural Information Processing Systems; Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., Garnett, R., Eds.; Curran Associates, Inc.: Knoxville, TN, USA, 2016; Volume 29. [Google Scholar]
- Liu, J.; Zhou, W.; Li, X.; Xu, J.; Chen, Z. LIQA: Lifelong Blind Image Quality Assessment. IEEE Trans. Multimed. 2022; Early Access. [Google Scholar] [CrossRef]
- Chen, L.H.; Bampis, C.G.; Li, Z.; Norkin, A.; Bovik, A.C. ProxIQA: A Proxy Approach to Perceptual Optimization of Learned Image Compression. IEEE Trans. Image Process. 2021, 30, 360–373. [Google Scholar] [CrossRef]
- Saad, M.A.; Bovik, A.C.; Charrier, C. Blind Image Quality Assessment: A Natural Scene Statistics Approach in the DCT Domain. IEEE Trans. Image Process. 2012, 21, 3339–3352. [Google Scholar] [CrossRef]
- Mittal, A.; Moorthy, A.K.; Bovik, A.C. No-reference image quality assessment in the spatial domain. IEEE Trans. Image Process. 2012, 21, 4695–4708. [Google Scholar] [CrossRef] [PubMed]
- Ye, P.; Kumar, J.; Kang, L.; Doermann, D. Unsupervised feature learning framework for no-reference image quality assessment. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 1098–1105. [Google Scholar] [CrossRef]
- Xu, J.; Ye, P.; Li, Q.; Du, H.; Liu, Y.; Doermann, D. Blind Image Quality Assessment Based on High Order Statistics Aggregation. IEEE Trans. Image Process. 2016, 25, 4444–4457. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; van de Weijer, J.; Bagdanov, A.D. RankIQA: Learning From Rankings for No-Reference Image Quality Assessment. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017. [Google Scholar]
- Bosse, S.; Maniry, D.; Muller, K.R.; Wiegand, T.; Samek, W. Deep Neural Networks for No-Reference and Full-Reference Image Quality Assessment. IEEE Trans. Image Process. 2018, 27, 206–219. [Google Scholar] [CrossRef]
- Fan, C.; Zhang, Y.; Feng, L.; Jiang, Q. No Reference Image Quality Assessment based on Multi-Expert Convolutional Neural Networks. IEEE Access 2018, 6, 8934–8943. [Google Scholar] [CrossRef]
- Zhu, H.; Li, L.; Wu, J.; Dong, W.; Shi, G. MetaIQA: Deep Meta-Learning for No-Reference Image Quality Assessment. In Proceedings of the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 14143–14152. [Google Scholar]
- Sun, S.; Yu, T.; Xu, J.; Zhou, W.; Chen, Z. Graphiqa: Learning distortion graph representations for blind image quality assessment. IEEE Trans. Multimed. 2022; Early Access. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, Z. Quality Assessment of Image Super-Resolution: Balancing Deterministic and Statistical Fidelity. arXiv 2022, arXiv:2207.08689. [Google Scholar]
- Jiang, Q.; Liu, Z.; Gu, K.; Shao, F.; Zhang, X.; Liu, H.; Lin, W. Single Image Super-Resolution Quality Assessment: A Real-World Dataset, Subjective Studies, and an Objective Metric. IEEE Trans. Image Process. 2022, 31, 2279–2294. [Google Scholar] [CrossRef]
- Zhou, W.; Jiang, Q.; Wang, Y.; Chen, Z.; Li, W. Blind quality assessment for image superresolution using deep two-stream convolutional networks. Inf. Sci. 2020, 528, 205–218. [Google Scholar] [CrossRef]
- Maggiori, E.; Tarabalka, Y.; Charpiat, G.; Alliez, P. Can semantic labeling methods generalize to any city? the inria aerial image labeling benchmark. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 3226–3229. [Google Scholar] [CrossRef]
- Dalponte, M.; Frizzera, L.; Gianelle, D. Individual tree crown delineation and tree species classification with hyperspectral and LiDAR data. PeerJ 2019, 6, e6227. [Google Scholar] [CrossRef]
- Gallés, P.; Takáts, K.; Hernández-Cabronero, M.; Berga, D.; Pega, L.; Riordan-Chen, L.; Garcia-Moll, C.; Becker, G.; Garriga, A.; Bukva, A.; et al. iquaflow: A new framework to measure image quality. arXiv 2022, arXiv:2210.13269. [Google Scholar]
- Gallés, P.; Takáts, K.; Marín, J. Object Detection Performance Variation on Compressed Satellite Image Datasets with Iquaflow. arXiv 2023, arXiv:2301.05892. [Google Scholar]
- Carvalho, M.; Cadène, R.; Picard, D.; Soulier, L.; Thome, N.; Cord, M. Cross-Modal Retrieval in the Cooking Context. In Proceedings of the The 41st International ACM SIGIR Conference on Research Development in Information Retrieval, Ann Arbor, MI, USA, 8–12 July 2018. [Google Scholar] [CrossRef]
- Salvador, A.; Hynes, N.; Aytar, Y.; Marin, J.; Ofli, F.; Weber, I.; Torralba, A. Learning Cross-Modal Embeddings for Cooking Recipes and Food Images. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017. [Google Scholar] [CrossRef]
Dataset-Subset | #Set/#Total | GSD | Resolution | Spatial Coverage | Year | Provider |
---|---|---|---|---|---|---|
USGS | 279/279 | 30 cm/px | 5000 × 5000 | 349 km (US regions) | 2000 | USGS (LandSat) |
UCMerced-380 | 380/2100 | 30 cm/px | 256 × 256 | 1022/5652 (US regions) | 2010 | USGS (LandSat) |
UCMerced-2100 | 2100/2100 | 30 cm/px | 232 × 232 | 5652 km (US regions) | 2010 | USGS (LandSat) |
Inria-AILD-180-train | 100/360 | 30 cm/px | 5000 × 5000 | 405/810 km (US and Austria) | 2017 | arcGIS |
Inria-AILD-180-val | 20/360 | 30 cm/px | 5000 × 5000 | 405/810 km (US and Austria) | 2017 | arcGIS |
Inria-AILD-180-test | 180/360 | 30 cm/px | 5000 × 5000 | 405/810 km (US and Austria) | 2017 | arcGIS |
ECODSE-hs (C = 426) | 43/129 | ∼60 cm/px | 80 × 80 | 37/37 km (Florida, US) | 2018 | OSBS |
Shipsnet-Scenes | 7/7 | 3 m/px | 3000 × 1500 | 28 km (San Francisco Bay) | 2018 | Open California |
Shipsnet-Ships | 4000/4000 | 3 m/px | 80 × 80 | 28 km (San Francisco Bay) | 2018 | (Planetscope) |
DeepGlobe | 469/1146 | 31 cm/px | 2448 × 2448 | 703/1.717 km (Germany) | 2018 | Worldview-3 |
Xview-train | 846/1127 | 30 cm/px | 5000 × 5000 | 1050/1.400 km (Global) | 2018 | WorldView-3 |
Xview-validation | 281/1127 | 30 cm/px | 5000 × 5000 | 349/1.400 km (Global) | 2017 | WorldView-3 |
Algorithm | Acronym | Parameters | #Intervals (N) | Range | Properties |
---|---|---|---|---|---|
Gaussian Blur | Blur Sigma () | 50 | 0.0 to 2.5 | ||
Gaussian Sharpness | F | Sharpness Factor (F) | 9 | 1.0 to 10.0 | |
Ground Sampling Distance | GSD | GSD or scaling | 10 | 0.30 to 0.60 (×1…×2) | |
Relative Edge Response | RER (MTF-Sharpness) | 40 | 0.15 to 0.55 | ||
Signal-to-Noise Ratio | Noise (Gaussian) Ratio | 40 | 15 to 30 |
Original | Lower | Distortion | Higher | |
---|---|---|---|---|
Blur () | ||||
Sharpness (F) | ||||
GSD | 30 zoom (×800) | zoom (×720) | 50 zoom (×506) | 60 zoom (×400) |
RER | ||||
SNR | 30 | 25 | 20 | 15 |
Parameter | R (H × W) | medR | R@1 | R@5 | R@10 | F-Score | AUC |
---|---|---|---|---|---|---|---|
blur | 64 × 64 | 2.170 | 38.37% | 88.51% | 97.96% | 16.55% | 59.03% |
(N = 50) | 128 × 128 | 1.021 | 64.42% | 98.44% | 99.85% | 25.82% | 62.20% |
256 × 256 | 0.936 | 73.05% | 99.35% | 99.91% | 33.40% | 66.04% | |
512 × 512 | 0.989 | 70.27% | 99.32% | 100.0% | 36.11% | 72.18% | |
1024 × 1024 | 0.788 | 83.04% | 99.65% | 100.0% | 42.56% | 72.83% | |
F | 64 × 64 | 1.131 | 60.01% | 99.25% | 100.0% | 31.30% | 62.22% |
(N = 9) | 128 × 128 | 1.002 | 64.78% | 99.92% | 100.0% | 33.73% | 63.60% |
256 × 256 | 1.021 | 63.66% | 99.54% | 100.0% | 35.22% | 64.62% | |
512 × 512 | 0.849 | 72.59% | 99.76% | 100.0% | 40.56% | 68.65% | |
1024 × 1024 | 0.643 | 80.28% | 99.85% | 100.0% | 50.96% | 75.45% | |
GSD | 64 × 64 | 0.000 | 100.0% | 100.0% | 100.0% | 100.0% | 100.0% |
(N = 10) | 128 × 128 | 0.000 | 100.0% | 100.0% | 100.0% | 100.0% | 100.0% |
256 × 256 | 0.000 | 100.0% | 100.0% | 100.0% | 100.0% | 100.0% | |
512 × 512 | 0.000 | 100.0% | 100.0% | 100.0% | 100.0% | 100.0% | |
1024 × 1024 | 0.000 | 100.0% | 100.0% | 100.0% | 100.0% | 100.0% | |
snr | 64 × 64 | 1.374 | 51.44% | 84.92% | 97.97% | 25.57% | 63.06% |
(N = 40) | 128 × 128 | 1.396 | 52.97% | 87.82% | 98.35% | 27.66% | 64.75% |
256 × 256 | 1.113 | 62.65% | 90.12% | 97.25% | 35.60% | 68.93% | |
512 × 512 | 1.073 | 68.30% | 99.43% | 100.0% | 33.29% | 67.50% | |
1024 × 1024 | 0.924 | 75.69% | 99.95% | 100.0% | 35.93% | 70.52% | |
rer | 64 × 64 | 1.512 | 49.90% | 89.33% | 98.84% | 22.95% | 62.06% |
(N = 40) | 128 × 128 | 5.319 | 18.79% | 53.78% | 77.79% | 6.95% | 52.28% |
256 × 256 | 1.328 | 52.91% | 93.92% | 99.64% | 24.97% | 63.68% | |
512 × 512 | 1.268 | 57.71% | 94.83% | 99.76% | 28.71% | 68.06% | |
1024 × 1024 | 1.130 | 63.06% | 96.53% | 99.98% | 28.88% | 65.00% |
Parameter | R (H × W) | medR | R@1 | R@5 | R@10 | F-Score | AUC | |
---|---|---|---|---|---|---|---|---|
QMRNet-MH | blur + rer | 128 × 128 | 1.849 | 45.56% | 89.64% | 98.72% | 20.35% | 60.97% |
(N = 50 + 40) | 256 × 256 | 1.427 | 53.63% | 95.69% | 99.71% | 25.49% | 64.61% | |
512 × 512 | 1.365 | 57.70% | 93.52% | 95.65% | 28.80% | 65.33% | ||
F + GSD | 128 × 128 | 0.055 | 98.39% | 100.0% | 100.0% | 88.61% | 95.47% | |
(N = 9 + 10) | 256 × 256 | 0.521 | 82.75% | 99.93% | 100.0% | 66.17% | 81.32% | |
512 × 512 | 0.674 | 78.93% | 99.42% | 100.0% | 64.28% | 80.23% | ||
snr + rer | 128 × 128 | 1.998 | 44.24% | 86.56% | 97.60% | 20.90% | 61.10% | |
(N = 40 + 40) | 256 × 256 | 2.109 | 44.37% | 85.33% | 96.96% | 20.88% | 60.87% | |
512 × 512 | 1.588 | 52.55% | 92.18% | 98.85% | 26.67% | 65.17% | ||
QMRNet-MB | blur + rer | 128 × 128 | 3.170 | 41.61% | 76.11% | 88.82% | 16.39% | 57.24% |
(N = 50 + 40) | 256 × 256 | 1.132 | 62.98% | 96.64% | 99.78% | 29.19% | 64.86% | |
512 × 512 | 1.128 | 63.99% | 97.08% | 99.88% | 32.41% | 70.12% | ||
F + GSD | 128 × 128 | 0.501 | 82.39% | 99.96% | 100.0% | 66.87% | 81.8% | |
(N = 9 + 10) | 256 × 256 | 0.510 | 81.83% | 99.77% | 100.0% | 67.61% | 82.31% | |
512 × 512 | 0.424 | 86.30% | 99.88% | 100.0% | 70.28% | 84.33% | ||
snr + rer | 128 × 128 | 3.357 | 35.88% | 70.80% | 88.07% | 17.31% | 58.52% | |
(N = 40 + 40) | 256 × 256 | 1.220 | 57.78% | 92.02% | 98.45% | 30.29% | 66.30% | |
512 × 512 | 1.170 | 63.01% | 97.13% | 99.88% | 31.0% | 67.78% |
Parameter | R (H × W) | medR | R@1 | R@5 | R@10 | F-Score | AUC | |
---|---|---|---|---|---|---|---|---|
hs (C = 426) | rer (N = 40) | 80 × 80 | 5.45 | 16.75% | 51.69% | 73.94% | 6.41% | 52.00% |
snr (N = 40) | 80 × 80 | 4.70 | 18.75% | 57.81% | 89.45% | 6.48% | 52.04% |
Dataset | blur↓ | snr | rer | F | GSD↓ | Score↑ |
---|---|---|---|---|---|---|
USGS | 1.019 | 26.111 | 0.467 | 1.000 | 0.300 | 0.896 |
UCMerced-380 | 1.000 | 28.121 | 0.470 | 1.563 | 0.300 | 0.878 |
UCMerced-2100 | 1.000 | 24.994 | 0.459 | 1.194 | 0.300 | 0.896 |
Inria-AILD-180-test | 1.021 | 30.0 | 0.488 | 1.000 | 0.300 | 0.887 |
Inria-AILD-180-train | 1.000 | 30.0 | 0.515 | 1.000 | 0.300 | 0.904 |
Shipsnet-Ships | 1.000 | 27.516 | 0.483 | 1.281 | 0.300 | 0.881 |
shipsnet-Scenes | 1.000 | 30.00 | 0.499 | 3.250 | 0.300 | 0.846 |
DeepGlobe | 1.000 | 30.0 | 0.505 | 1.281 | 0.300 | 0.892 |
XView-train | 1.000 | 30.0 | 0.507 | 1.000 | 0.300 | 0.899 |
XView-validation | 1.000 | 30.0 | 0.503 | 1.000 | 0.300 | 0.898 |
Algorithm | blur↓ | snr | rer | F | GSD↓ | Score↑ | |
---|---|---|---|---|---|---|---|
HR | 1.000 | 28.121 | 0.470 | 1.563 | 0.300 | 0.878 | |
x2 | LR | 1.103 | 28.997 | 0.366 | 1.000 | 0.300 | 0.820 |
FSRCNN | 1.000 | 30.0 | 0.490 | 2.699 | 0.300 | 0.853 | |
SRGAN | 1.000 | 30.0 | 0.411 | 1.160 | 0.300 | 0.848 | |
1.141 | 29.12 | 0.344 | 1.000 | 0.300 | 0.804 | ||
1.036 | 28.69 | 0.431 | 1.018 | 0.300 | 0.863 | ||
1.109 | 30.0 | 0.341 | 1.000 | 0.300 | 0.802 | ||
ESRGAN | 1.084 | 28.874 | 0.358 | 1.000 | 0.300 | 0.820 | |
CAR | 1.000 | 26.061 | 0.499 | 2.776 | 0.300 | 0.876 | |
LIIF | 1.089 | 29.558 | 0.348 | 1.000 | 0.300 | 0.810 | |
x3 | LR | 1.149 | 29.937 | 0.274 | 1.000 | 0.300 | 0.763 |
FSRCNN | 1.114 | 29.937 | 0.323 | 1.000 | 0.300 | 0.793 | |
SRGAN | 1.074 | 30.0 | 0.347 | 1.000 | 0.300 | 0.809 | |
1.142 | 30.0 | 0.277 | 1.000 | 0.300 | 0.765 | ||
1.025 | 30.0 | 0.310 | 1.000 | 0.300 | 0.798 | ||
1.034 | 30.0 | 0.310 | 1.000 | 0.300 | 0.796 | ||
ESRGAN | 1.332 | 29.561 | 0.309 | 1.030 | 0.300 | 0.758 | |
CAR | 1.000 | 28.145 | 0.420 | 1.071 | 0.300 | 0.864 | |
LIIF | 1.089 | 29.558 | 0.348 | 1.000 | 0.300 | 0.810 | |
x4 | LR | 1.620 | 30.0 | 0.202 | 1.000 | 0.300 | 0.664 |
FSRCNN | 1.563 | 29.937 | 0.287 | 1.000 | 0.300 | 0.715 | |
SRGAN | 1.368 | 30.0 | 0.290 | 1.000 | 0.300 | 0.741 | |
1.582 | 30.0 | 0.206 | 1.000 | 0.300 | 0.672 | ||
1.505 | 30.0 | 0.185 | 1.000 | 0.300 | 0.671 | ||
1.484 | 30.0 | 0.231 | 1.000 | 0.300 | 0.697 | ||
ESRGAN | 1.332 | 29.561 | 0.309 | 1.030 | 0.300 | 0.758 | |
CAR | 1.039 | 30.0 | 0.371 | 1.000 | 0.300 | 0.826 | |
LIIF | 1.467 | 29.495 | 0.293 | 1.000 | 0.300 | 0.733 | |
Algorithm | blur↓ | snr | rer | F | GSD↓ | Score↑ | |
HR | 1.000 | 28.121 | 0.470 | 1.563 | 0.300 | 0.878 | |
x2 + blur | LR | 1.444 | 29.684 | 0.285 | 1.000 | 0.300 | 0.731 |
FSRCNN | 1.002 | 30.0 | 0.479 | 1.524 | 0.300 | 0.873 | |
SRGAN | 1.076 | 30.0 | 0.338 | 1.000 | 0.300 | 0.805 | |
1.473 | 29.75 | 0.274 | 1.000 | 0.300 | 0.721 | ||
1.434 | 29.62 | 0.286 | 1.000 | 0.300 | 0.733 | ||
1.434 | 30.0 | 0.279 | 1.000 | 0.300 | 0.728 | ||
ESRGAN | 1.208 | 30.0 | 0.282 | 1.000 | 0.300 | 0.759 | |
CAR | 1.013 | 28.750 | 0.382 | 1.071 | 0.300 | 0.840 | |
LIIF | 1.568 | 30.0 | 0.237 | 1.000 | 0.300 | 0.689 | |
x3 + blur | LR | 2.420 | 30.0 | 0.198 | 1.000 | 0.300 | 0.556 |
FSRCNN | 1.649 | 30.0 | 0.229 | 1.000 | 0.300 | 0.674 | |
SRGAN | 1.273 | 30.0 | 0.243 | 1.000 | 0.300 | 0.731 | |
2.339 | 30.0 | 0.198 | 1.000 | 0.300 | 0.566 | ||
2.324 | 30.0 | 0.178 | 1.000 | 0.300 | 0.559 | ||
2.244 | 30.0 | 0.210 | 1.000 | 0.300 | 0.586 | ||
ESRGAN | 1.559 | 30.0 | 0.242 | 1.000 | 0.300 | 0.692 | |
CAR | 1.116 | 29.937 | 0.312 | 1.000 | 0.300 | 0.787 | |
LIIF | 1.725 | 30.0 | 0.228 | 1.000 | 0.300 | 0.663 | |
x4 + blur | LR | 1.840 | 30.0 | 0.159 | 1.000 | 0.300 | 0.613 |
FSRCNN | 1.649 | 30.0 | 0.229 | 1.000 | 0.300 | 0.674 | |
SRGAN | 1.625 | 30.0 | 0.175 | 1.000 | 0.300 | 0.650 | |
1.696 | 30.0 | 0.161 | 1.000 | 0.300 | 0.633 | ||
1.606 | 30.0 | 0.155 | 1.000 | 0.300 | 0.642 | ||
1.630 | 30.0 | 0.168 | 1.000 | 0.300 | 0.645 | ||
ESRGAN | 1.559 | 30.0 | 0.242 | 1.000 | 0.300 | 0.692 | |
CAR | 1.329 | 30.0 | 0.258 | 1.000 | 0.300 | 0.731 | |
LIIF | 1.725 | 30.0 | 0.228 | 1.000 | 0.300 | 0.663 |
Algorithm | ssim↑ | psnr↑ | swd↓ | fid↓ | mssim↑ | haarpsi↑ | gmsd↓ | mdsi↑ | |
---|---|---|---|---|---|---|---|---|---|
HR | 1.00 | 80.000 | - | - | 1.00 | 1.00 | - | - | |
x2 | LR | 0.901 | 30.628 | 1125 | 0.211 | 0.990 | 0.954 | 0.014 | 0.330 |
FSRCNN | 0.438 | 16.682 | 2316 | 4.47 | 0.718 | 0.552 | 0.155 | 0.427 | |
SRGAN | 0.919 | 31.534 | 1010 | 0.177 | 0.991 | 0.925 | 0.015 | 0.308 | |
0.901 | 30.178 | 1103 | 0.222 | 0.990 | 0.950 | 0.014 | 0.329 | ||
0.917 | 31.750 | 1017 | 0.174 | 0.991 | 0.951 | 0.013 | 0.315 | ||
0.892 | 30.417 | 1167 | 0.217 | 0.987 | 0.934 | 0.016 | 0.339 | ||
ESRGAN | 0.793 | 26.693 | 1462 | 0.353 | 0.959 | 0.737 | 0.073 | 0.370 | |
CAR | 0.827 | 26.285 | 1282 | 0.422 | 0.968 | 0.831 | 0.064 | 0.354 | |
LIIF | 0.860 | 29.645 | 1236 | 0.220 | 0.978 | 0.892 | 0.036 | 0.360 | |
x3 | LR | 0.778 | 27.004 | 1619 | 0.386 | 0.956 | 0.801 | 0.072 | 0.401 |
FSRCNN | 0.839 | 28.982 | 1328 | 0.243 | 0.973 | 0.865 | 0.042 | 0.367 | |
SRGAN | 0.811 | 27.633 | 1456 | 0.332 | 0.961 | 0.796 | 0.053 | 0.386 | |
0.700 | 24.368 | 1864 | 0.502 | 0.918 | 0.666 | 0.128 | 0.420 | ||
0.699 | 24.169 | 1800 | 0.513 | 0.918 | 0.663 | 0.128 | 0.415 | ||
0.701 | 24.261 | 1838 | 0.488 | 0.918 | 0.662 | 0.128 | 0.418 | ||
ESRGAN | 0.825 | 28.387 | 1371 | 0.262 | 0.970 | 0.848 | 0.049 | 0.366 | |
CAR | 0.721 | 23.273 | 1678 | 0.708 | 0.925 | 0.700 | 0.111 | 0.394 | |
LIIF | 0.860 | 29.645 | 1245 | 0.220 | 0.978 | 0.892 | 0.036 | 0.360 | |
x4 | LR | 0.683 | 25.031 | 1973 | 0.569 | 0.925 | 0.703 | 0.121 | 0.440 |
FSRCNN | 0.819 | 28.223 | 1401 | 0.278 | 0.969 | 0.843 | 0.050 | 0.372 | |
SRGAN | 0.721 | 25.844 | 1750 | 0.468 | 0.936 | 0.716 | 0.096 | 0.428 | |
0.600 | 22.691 | 2142 | 0.743 | 0.869 | 0.573 | 0.164 | 0.453 | ||
0.599 | 22.582 | 2094 | 0.752 | 0.870 | 0.570 | 0.164 | 0.451 | ||
0.602 | 22.651 | 2156 | 0.726 | 0.871 | 0.569 | 0.165 | 0.454 | ||
ESRGAN | 0.825 | 28.387 | 1349 | 0.262 | 0.970 | 0.848 | 0.049 | 0.366 | |
CAR | 0.624 | 21.825 | 1953 | 0.910 | 0.887 | 0.620 | 0.150 | 0.421 | |
LIIF | 0.841 | 28.708 | 1316 | 0.254 | 0.974 | 0.866 | 0.043 | 0.367 | |
Algorithm | ssim↑ | psnr↑ | swd↓ | fid↓ | mssim↑ | haarpsi↑ | gmsd↓ | mdsi↑ | |
HR | 1.00 | 80.000 | - | - | 1.00 | 1.00 | - | - | |
x2 + blur | LR | 0.822 | 27.876 | 1504 | 0.356 | 0.968 | 0.854 | 0.051 | 0.385 |
FSRCNN | 0.372 | 16.425 | 2495 | 4.89 | 0.662 | 0.502 | 0.184 | 0.447 | |
SRGAN | 0.836 | 28.135 | 1398 | 0.349 | 0.966 | 0.826 | 0.052 | 0.376 | |
0.825 | 27.574 | 1485 | 0.377 | 0.968 | 0.855 | 0.049 | 0.383 | ||
0.846 | 28.637 | 1409 | 0.307 | 0.972 | 0.867 | 0.045 | 0.372 | ||
0.817 | 27.852 | 1529 | 0.355 | 0.965 | 0.840 | 0.053 | 0.389 | ||
ESRGAN | 0.774 | 26.754 | 1657 | 0.401 | 0.955 | 0.738 | 0.075 | 0.404 | |
CAR | 0.903 | 30.716 | 1156 | 0.197 | 0.984 | 0.915 | 0.034 | 0.326 | |
LIIF | 0.748 | 26.312 | 1769 | 0.508 | 0.939 | 0.774 | 0.088 | 0.422 | |
x3 + blur | LR | 0.691 | 25.054 | 2003 | 0.614 | 0.918 | 0.716 | 0.115 | 0.444 |
FSCNN | 0.741 | 26.107 | 1804 | 0.513 | 0.938 | 0.764 | 0.088 | 0.423 | |
SRGAN | 0.705 | 25.089 | 1911 | 0.637 | 0.915 | 0.703 | 0.107 | 0.443 | |
0.645 | 23.803 | 2131 | 0.706 | 0.892 | 0.639 | 0.143 | 0.455 | ||
0.649 | 23.731 | 2050 | 0.714 | 0.895 | 0.641 | 0.141 | 0.450 | ||
0.649 | 23.832 | 2113 | 0.681 | 0.894 | 0.639 | 0.142 | 0.454 | ||
ESRGAN | 0.752 | 26.314 | 1770 | 0.488 | 0.941 | 0.770 | 0.085 | 0.419 | |
CAR | 0.783 | 26.909 | 1616 | 0.378 | 0.955 | 0.801 | 0.070 | 0.405 | |
LIIF | 0.748 | 26.337 | 1798 | 0.500 | 0.939 | 0.777 | 0.086 | 0.421 | |
x4 + blur | 0.972 | 38.599 | 897 | 0.046 | 0.992 | 0.940 | 0.031 | 0.248 | |
FSRCNN | 0.977 | 37.210 | 834 | 0.062 | 0.992 | 0.950 | 0.022 | 0.226 | |
SRGAN | 0.962 | 34.761 | 1050 | 0.083 | 0.986 | 0.867 | 0.033 | 0.265 | |
0.909 | 30.115 | 1277 | 0.112 | 0.955 | 0.756 | 0.095 | 0.316 | ||
0.901 | 29.513 | 1350 | 0.150 | 0.955 | 0.750 | 0.096 | 0.317 | ||
0.909 | 29.888 | 1281 | 0.120 | 0.955 | 0.749 | 0.096 | 0.319 | ||
ESRGAN | 0.973 | 37.202 | 876 | 0.062 | 0.992 | 0.945 | 0.024 | 0.236 | |
CAR | 0.916 | 30.067 | 1371 | 0.213 | 0.964 | 0.831 | 0.074 | 0.309 | |
LIIF | 0.994 | 47.317 | 420 | 0.032 | 0.999 | 0.993 | 0.003 | 0.166 |
Algorithm | SNR | SNR | RER | MTF | FWHM | |
---|---|---|---|---|---|---|
HR | 20.788 | 28.814 | 503.5 | 124.5 | 1692 | |
x2 | LR | 31.361 | 43.217 | 367.5 | 30 | 2379.5 |
FSRCNN | 10.830 | 11.016 | 471.5 | 437 | 3038.5 | |
SRGAN | 28.699 | 35.223 | 497 | 119.5 | 1730 | |
33.188 | 45.941 | 356 | 24.5 | 2450 | ||
30.114 | 40.626 | 376 | 35 | 2329.5 | ||
34.217 | 43.851 | 367.5 | 29.5 | 2374 | ||
ESRGAN | 23.916 | 31.614 | 382 | 35 | 2269 | |
CAR | 15.660 | 26.506 | 553 | 166 | 1484 | |
LIIF | 44.273 | 56.133 | 459.5 | 92 | 1909 | |
x3 | LR | 45.33 | 54.317 | 317.5 | 93 | 2754 |
FSRCNN | 39.72 | 45.69 | 222.5 | 191 | 2132 | |
SRGAN | 43.75 | 49.17 | 432.5 | 187 | 2015.5 | |
43.882 | 52.050 | 321.5 | 15.5 | 2743.5 | ||
37.707 | 46.747 | 340.5 | 19 | 2571 | ||
44.579 | 52.747 | 345.5 | 20.5 | 2532.5 | ||
ESRGAN | 28.58 | 39.97 | 340 | 115 | 2562.5 | |
CAR | 25.20 | 39.45 | 522.5 | 261.5 | 1617 | |
LIIF | 44.27 | 56.13 | 460.5 | 252 | 1903.5 | |
x4 | LR | 49.183 | 57.351 | 279 | 6 | 3150 |
FSRCNN | 30.797 | 41.584 | 325.5 | 14 | 2678 | |
SRGAN | 50.258 | 55.282 | 366 | 28.5 | 2385.5 | |
51.875 | 60.043 | 281 | 6.5 | 3113 | ||
45.084 | 52.373 | 293 | 8 | 2987 | ||
53.523 | 61.691 | 298 | 8 | 2936 | ||
ESRGAN | 28.584 | 39.974 | 340 | 18.5 | 2560 | |
CAR | 30.193 | 47.106 | 485.5 | 113.5 | 1793 | |
LIIF | 35.375 | 49.543 | 342 | 10 | 2546 | |
Algorithm | SNR | SNR | RER | MTF | FWHM | |
HR | 20.788 | 28.814 | 503.5 | 124.5 | 1692 | |
x2 + blur | LR | 40.864 | 49 | 299 | 13 | 2804.5 |
FSRCNN | 11.314 | 11.529 | 289.5 | 8.5 | 3046.5 | |
SRGAN | 41.630 | 49.499 | 400 | 56 | 2258 | |
43.346 | 53.858 | 306 | 10.5 | 2865.5 | ||
39.287 | 52.993 | 317.5 | 14 | 2766 | ||
44.007 | 53.984 | 314.5 | 12.5 | 2791 | ||
ESRGAN | 42.656 | 55.710 | 318 | 13 | 2770.5 | |
CAR | 33.737 | 47.754 | 446.5 | 76.5 | 1939 | |
LIIF | 58.289 | 73.030 | 298 | 11.5 | 2975 | |
x3 + blur | LR | 57.193 | 65.361 | 287.5 | 5 | 3107.5 |
FSRCNN | 52.598 | 66.357 | 285.5 | 8 | 3083.5 | |
SRGAN | 55.658 | 64.598 | 354.5 | 27.5 | 2515 | |
54.601 | 62.769 | 290.5 | 11.5 | 3076.5 | ||
50.257 | 60.81 | 297 | 12 | 2997.5 | ||
58.377 | 66.545 | 302 | 13 | 2954.5 | ||
ESRGAN | 51.330 | 66.647 | 291 | 10 | 3036 | |
CAR | 50.696 | 66.709 | 398.5 | 48 | 2209.5 | |
LIIF | 56.194 | 64.362 | 283 | 7 | 3119.5 | |
x4 + blur | LR | 65.089 | 73.257 | 268.5 | 7.5 | 3311.5 |
FSRCNN | 53.430 | 68.246 | 290 | 8 | 3038.5 | |
SGAN | 62.236 | 70.854 | 316.5 | 14 | 2806 | |
63.810 | 71.978 | 279.5 | 13 | 3579.5 | ||
54.682 | 63.786 | 282.5 | 8.5 | 3445 | ||
70.048 | 78.216 | 288.5 | 9.5 | 3308 | ||
ESRGAN | 53.559 | 67.793 | 292 | 4 | 3011.5 | |
CAR | 60.483 | 83.280 | 359.5 | 30 | 2471 | |
LIIF | 56.194 | 64.362 | 282.5 | 6.5 | 3120 |
Algorithm | blur↓ | snr | rer | F | GSD↓ | Score↑ | ssim↑ | psnr↑ | swd↓ | fid↓ | SNR | RER | MTF | FWHM | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HR | 1.000 | 28.12 | 0.470 | 1.563 | 0.300 | 0.878 | 1.00 | 80.00 | - | 0.079 | 20.79 | 0.502 | 0.125 | 1.709 | |
Original x3 | MSRN | 1.000 | 28.18 | 0.464 | 1.355 | 0.300 | 0.879 | 0.717 | 23.65 | 1634 | 0.411 | 21.28 | 0.501 | 0.124 | 1.712 |
+QMRLoss | 1.000 | 26.81 | 0.521 | 2.285 | 0.300 | 0.894 | 0.608 | 21.22 | 1784 | 0.815 | 13.72 | 0.557 | 0.181 | 1.505 | |
+QMRLoss | 1.000 | 27.62 | 0.520 | 1.965 | 0.300 | 0.896 | 0.601 | 21.40 | 1799 | 0.745 | 12.81 | 0.573 | 0.195 | 1.447 | |
+QMRLoss | 1.000 | 26.62 | 0.524 | 1.947 | 0.300 | 0.904 | 0.605 | 21.41 | 1786 | 0.790 | 13.37 | 0.566 | 0.189 | 1.473 | |
+QMRLoss | 1.000 | 26.81 | 0.524 | 2.178 | 0.300 | 0.898 | 0.603 | 21.10 | 1788 | 0.850 | 13.24 | 0.558 | 0.180 | 1.493 | |
+QMRLoss | 1.000 | 26.75 | 0.521 | 2.232 | 0.300 | 0.895 | 0.604 | 21.12 | 1794 | 0.850 | 13.70 | 0.565 | 0.188 | 1.471 | |
x3 | LR | 1.149 | 29.94 | 0.274 | 1.000 | 0.300 | 0.763 | 0.778 | 27.00 | 1633 | 0.386 | 45.33 | 0.297 | 0.008 | 2.946 |
MSRN | 1.142 | 30.00 | 0.277 | 1.000 | 0.300 | 0.765 | 0.700 | 24.37 | 1846 | 0.502 | 43.88 | 0.301 | 0.010 | 2.900 | |
+QMRLoss | 1.031 | 30.00 | 0.307 | 1.000 | 0.300 | 0.795 | 0.706 | 24.35 | 1804 | 0.479 | 36.29 | 0.314 | 0.011 | 2.782 | |
+QMRLoss | 1.038 | 29.94 | 0.347 | 1.000 | 0.300 | 0.815 | 0.701 | 24.33 | 1814 | 0.482 | 35.02 | 0.330 | 0.016 | 2.664 | |
+QMRLoss | 1.028 | 29.75 | 0.412 | 1.000 | 0.300 | 0.849 | 0.696 | 24.26 | 1803 | 0.483 | 34.88 | 0.328 | 0.016 | 2.674 | |
QMRLoss | 1.036 | 30.00 | 0.304 | 1.000 | 0.300 | 0.793 | 0.704 | 24.37 | 1810 | 0.482 | 36.32 | 0.314 | 0.011 | 2.787 | |
+QMRLoss | 1.036 | 30.00 | 0.305 | 1.000 | 0.300 | 0.793 | 0.706 | 24.34 | 1797 | 0.481 | 35.08 | 0.315 | 0.012 | 2.773 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berga, D.; Gallés, P.; Takáts, K.; Mohedano, E.; Riordan-Chen, L.; Garcia-Moll, C.; Vilaseca, D.; Marín, J. QMRNet: Quality Metric Regression for EO Image Quality Assessment and Super-Resolution. Remote Sens. 2023, 15, 2451. https://doi.org/10.3390/rs15092451
Berga D, Gallés P, Takáts K, Mohedano E, Riordan-Chen L, Garcia-Moll C, Vilaseca D, Marín J. QMRNet: Quality Metric Regression for EO Image Quality Assessment and Super-Resolution. Remote Sensing. 2023; 15(9):2451. https://doi.org/10.3390/rs15092451
Chicago/Turabian StyleBerga, David, Pau Gallés, Katalin Takáts, Eva Mohedano, Laura Riordan-Chen, Clara Garcia-Moll, David Vilaseca, and Javier Marín. 2023. "QMRNet: Quality Metric Regression for EO Image Quality Assessment and Super-Resolution" Remote Sensing 15, no. 9: 2451. https://doi.org/10.3390/rs15092451
APA StyleBerga, D., Gallés, P., Takáts, K., Mohedano, E., Riordan-Chen, L., Garcia-Moll, C., Vilaseca, D., & Marín, J. (2023). QMRNet: Quality Metric Regression for EO Image Quality Assessment and Super-Resolution. Remote Sensing, 15(9), 2451. https://doi.org/10.3390/rs15092451