Polarimetric L-Band ALOS2-PALSAR2 for Discontinuous Permafrost Mapping in Peatland Regions
<p>AGS Classification.</p> "> Figure 2
<p>AGCC classification; burned areas are presented in light pink.</p> "> Figure 3
<p>AWI classification.</p> "> Figure 4
<p>ALOS2 multipolarization image: HH (red), HV (green), and VV (Blue).</p> "> Figure 5
<p>HH original–recalibrated magnitude ratio.</p> "> Figure 6
<p>VV original–recalibrated magnitude ratio.</p> "> Figure 7
<p>HH-VV phase difference.</p> "> Figure 8
<p>HV original–recalibrated magnitude ratio.</p> "> Figure 9
<p>VH original–recalibrated magnitude ratio.</p> "> Figure 10
<p>VH intensity in dB.</p> "> Figure 11
<p>Scattering type Phis1o derived from the original ALOS2 image. The contours of permafrost areas generated from the AGS classification are included in the image.</p> "> Figure 12
<p>Scattering type phase Phis1o derived using the recalibrated ALOS2 image. The contours of permafrost areas generated from the AGS classification are included in the image.</p> "> Figure 13
<p>Phis1o recalibrated–original image error (absolute phase difference in degrees).</p> "> Figure 14
<p>Scattering-type phase Phis2 derived using the recalibrated ALOS2 image.</p> "> Figure 15
<p>Phis2 recalibrated–original image error (dB).</p> "> Figure 16
<p>Dominant-scattering-type magnitude alphas1 obtained using the recalibrated ALOS2 image.</p> "> Figure 17
<p>alphas1 calibration error: absolute difference (in degrees) between the scattering-type magnitude obtained from the original image and the one obtained from the recalibrated image.</p> "> Figure 18
<p>Study area: multi-pol ALOS2 image.</p> "> Figure 19
<p>AGS classification.</p> "> Figure 20
<p>AWI classification.</p> "> Figure 21
<p>AGCC classification: burned areas are presented in light pink.</p> "> Figure 22
<p>Touzi dominant-scattering-type phase Phis1o derived using the recalibrated ALOS2 image.</p> "> Figure 23
<p>Touzi medium-scattering-type phase Phis2 derived using the recalibrated ALOS2 image.</p> "> Figure 24
<p>HH-VV phase difference.</p> "> Figure 25
<p>Minimum DoP pmin.</p> "> Figure 26
<p>Maximum DoP pmax.</p> "> Figure 27
<p>Site A: AGS permafrost classification.</p> "> Figure 28
<p>Site A: AWI classification.</p> "> Figure 29
<p>Site A: AGCC classification.</p> "> Figure 30
<p>Site A: Touzi scattering-type phases: phis1o and phis2.</p> "> Figure 31
<p>Site A: minimum DoP pmin. The legend of the different colored dots assigned to the permafrost and non-permafrost sites is given in <a href="#remotesensing-15-02312-f027" class="html-fig">Figure 27</a>.</p> "> Figure 32
<p>Site A: medium scattering’s Huynen maximum polarization return (m<math display="inline"><semantics> <msub> <mrow/> <mn>2</mn> </msub> </semantics></math>). The legend of the different colored dots assigned to the permafrost and non-permafrost sites is given in <a href="#remotesensing-15-02312-f027" class="html-fig">Figure 27</a>.</p> "> Figure 33
<p>Site A: HH-VV phase diffrence. The legend of the different colored dots assigned to the permafrost and non-permafrost sites is given in <a href="#remotesensing-15-02312-f027" class="html-fig">Figure 27</a>.</p> "> Figure 34
<p>Site A: multipolarization channel and span curves (in dB). Sample classes: BF: bog permafrost; DBF: deep bog permafrost; VDF: very deep permafrost; CS: collapse scar; FC: forest conifer.</p> "> Figure 35
<p>Site A: Scattering type phase (Phis1, Phis2) and HH-VV phase difference curves (in degrees). Sample classes: BF: bog permafrost; DBF: deep bog permafrost; VDF: very deep permafrost; CS: collapse scar; FC: forest conifer.</p> "> Figure 36
<p>Site A: pmax and pmin curves. Sample classes: BF: bog permafrost; DBF: deep bog permafrost; VDF: very deep permafrost (1.8 m and more); CS: collapse scar; FC: forest conifer.</p> "> Figure 37
<p>Site A: Touzi scattering-type magnitudes and Cloude alpha (in degrees). Sample classes: BF: bog permafrost; DBF: deep bog permafrost; VDF: very deep permafrost; CS: collapse scar; FC: forest conifer.</p> "> Figure 38
<p>Site A: ICTD eigenvalues and entropy. Sample classes: BF: bog permafrost; DBF: deep bog permafrost; VDF: very deep permafrost; CS: collapse scar; FC: forest conifer.</p> "> Figure 39
<p>Site B: AGS classification.</p> "> Figure 40
<p>Site B: Touzi scattering-type phase: phis1o and Phis2.</p> "> Figure 41
<p>Site B: HH-VV phase difference.</p> "> Figure 42
<p>Site B: pmin.</p> "> Figure 43
<p>Site B: multipolarization and span curves (in dB). Sample classes: BF: bog permafrost; DBF: deep bog permafrost; VDF: very deep permafrost (1.8 m and more); CS: collapse scar; FC: forest conifer.</p> "> Figure 44
<p>Site B: Scattering type phase (Phis1, Phis2) in degrees. Sample classes: BF: bog permafrost; DBF: deep bog permafrost; VDF: very deep permafrost; CS: collapse scar; FC: forest conifer.</p> "> Figure 45
<p>Site B: pmin and pmax curves.</p> "> Figure 46
<p>Site B: medium scattering’s Huynen maximum polarization return (m<math display="inline"><semantics> <msub> <mrow/> <mn>2</mn> </msub> </semantics></math>).</p> ">
Abstract
:1. Introduction
2. The Touzi Decomposition for a Unique Basis-Invariant Characterization of Polarimetric Target Scattering
3. Description of the Study Site, Permafrost, and Wetland Classifications Available, and ALOS2 Image Investigated
3.1. Study Site, Permafrost, and Wetland Classifications Available on the Site
3.2. PALSAR2 Image Investigated
4. Recalibration of PALSAR2 Image for Optimum Detection of Subsurface Discontinuous Permafrost
4.1. Polarimetric PALSAR2 Image Calibration
4.2. Recalibration of PALSAR2 Image
- Insert the transmit and receive distortion matrices (provided with the PALSAR2 data) in Equation (3) to derive the original voltage measurements.
4.3. PALSAR2 Recalibration: Impact on the Scattering Matrix Elements
4.4. PALSAR2 Image Recalibration: Impact on the Touzi Decomposition Main Parameters
5. Investigation of Recalibrated Polarimetric ALOS2 for Enhanced Discontinuous Permafrost Mapping
5.1. Polarimetric PALSAR2 Image Analysis
5.2. Field Data and Study Area Investigated
5.3. ALOS2-PALSAR2 Image Analysis
5.3.1. ALOS2 Results: Site A
- Is it possible for polarimetric ALOS2 imagery to identify all the permafrost samples and discriminate them from the nonpermafrost samples located in areas not underlain by permafrost?
- Given the limited penetration of the L-band wavelength (much better than the C-band but still limited in comparison with the P-band), is it possible to identify accurately the permafrost samples?
- Is it possible to adjust the decision regarding deep versus very deep permafrost samples using tools that measure the reliability of the information provided by polarimetric ALOS2.
- What is the maximum depth at which the long penetrating polarimetric ALOS2 is sensitive to permafrost? How deep is the permafrost that can be detected?
- The comparison of and revealed that performed better than .
- All the permafrost sites (of depth up to 50 cm) (BF-79, BF-90, BF-91, BF-93, BF-94, BF-98,BF-101, BF-104, BF-108, and BF-109) were detected by . missed the bog permafrost sites (BF-79, BF-91, BF-93, BF-98, BF-108, and BF-109) with phase values outside the permafrost class range (between and ) according to Table 3.
- Site BF-105: This bog permafrost site was missed by both and , according to Table 3 and Figure 35. The BF-105 site was originally assigned to a treed bog underlain by a relatively deep (30 cm) permafrost, according to Figure 28 and Table 2. A detailed analysis of the field data collected at this site revealed that the site was not underlain by a thick layer of permafrost. Ice was only present as thin lenses within a very thin peat cover, rather than at many sites where a contiguous and thick layer of frozen peat was encountered. As a result, both and produced values outside the phase range required by the permafrost class, and according to Table 3. This result confirmed the reliability of the scattering-type phases, and in particular, in the assignment of the samples not underlain by permafrost to the nonpermafrost class.
- Very deep permafrost sample (VDF-CS-96): According to the field data collected by the AGS, the area is located in a treed bog dominated by collapse scar vegetation, with very deep permafrost (more than 1.8 m). The sample was assigned by to bog. , which was slightly larger than the maximum permafrost range (85), did not assign it to the permafrost class either. The low value of the Huynen maximum polarization return confirmed the weak return from the very deep permafrost. In fact, the samples of very low outlined in Figure 32 should be excluded from the permafrost class prior to the consideration of the medium-scattering-type phase information.
- Collapse scar (SC) sites: measured over all the collapse scar sites (CS78, CS-89, CS-92, CS-97, and CS-100) and the forest conifer (FC) site (FC102) confirmed that all these samples, which were collected in areas not underlain by permafrost, were not assigned to the permafrost class, according to Table 3 and Figure 35.
5.3.2. PALSAR2 Results: Site B
- performed better than for permafrost identification. The results obtained at site BF136 confirmed this important statement, as discussed in the following.
- BF-136: the bog permafrost site was originally assigned to a treed bog underlain by a relatively deep (40 cm) permafrost, according to Figure 39. A detailed analysis of the field data collected by the AGS at that site revealed that permafrost was present in the area but just as small thin patches in otherwise homogeneous looking bog-caribou vegetation. Consequently, that area could not be considered as a treed bog underlain by permafrost. That site was not assigned to the permafrost class according to , in contrast to which misassigned it to the permafrost class with , according to Figure 40 and Figure 44.
- and had similar values on the other sites.
- The use of permitted the exclusion of all the samples located in areas of very deep permafrost (more than 50 cm) from the permafrost class.
- pmin and m could be used (prior to ) to remove eventual scattering-type phase ambiguities and exclude nonpermafrost areas from the permafrost class.
5.3.3. Global Analysis of the Study Area
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Schuur, E.A.G.; McGuire, A.D.; Schädel, C.; Grosse, G.; Harden, J.W.; Hayes, D.J.; Hugelius, G.; Koven, C.D.; Kuhry, P.; Lawrence, D.M.; et al. Permafrost carbon and climate change feedback. Nature 2015, 520, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Camill, P. Patterns of boreal permafrost peatland vegetation across environmental gradients sensitive to climate warming. Can. J. Bot. 1999, 77, 721–733. [Google Scholar]
- Gibson, J.; Birks, S.; Yi, Y.; Vitt, D. Runoff to boreal lakes linked to land cover, watershed morphology and permafrost thaw: A 9 year isotope mass balance assessment. Hydrol. Process. 2015, 29, 3848–3861. [Google Scholar] [CrossRef]
- Williams, T.J.; Quinton, W.L.; Baltzer, J.L. Linear disturbances on discontinuous permafrost: Implications for thaw-induced changes to land cover and drainage patterns. Environ. Res. Lett. 2013, 8, 025006. [Google Scholar] [CrossRef]
- Pawley, S. LiDAR AND Landsat based mapping of peatland and permafrost terrain using object-based classification, northeast Alberta. In Proceedings of the GSA Annual Meeting, Vancouver, Canada, 19–22 October 2014. [Google Scholar]
- Pawley, S.; Utting, D. Permafrost probability model for Northern Alberta (gridded data, GeoTIFF format. In AER/AGS Digital Data 2018–0007; Alberta Energy Regulator: Calgary, AB, Canada; lberta Geological Survey: Edmonton, AB, Canada, 2018. [Google Scholar]
- Rosenqvist, A.; Shimada, M.; Suzuki, S.; Ohgushi, F.; Tadono, T.; Watanabe, M.; Tsuzuku, K.; Watanabe, T.; Kamijo, S.; Aoki, E. Operational performance of the ALOS global systematic acquisition strategy and observation plans for ALOS-2 PALSAR-2. Remote Sens. Environ. 2014, 155, 3–12. [Google Scholar] [CrossRef]
- Shimada, M.; Itoh, T.; Motooka, T.; Watanabe, M.; Shiraishi, T.; Thapa, R.; Lucas, R. New global forest/non-forest maps from ALOS PALSAR data (2007–2010). Remote Sens. Environ. 2014, 155, 13–31. [Google Scholar] [CrossRef]
- Motohka, T.; Kanaku, Y.; Suzul, S. Overview of Advanced Land Observing Satellite-2 (ALOS-2). J. Remote Sens. 2021, 36, 320–327. [Google Scholar]
- Shimada, M. Imaging from Spaceborne and Airborne SARs, Calibration, and Applications; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Watanabe, M.; Koyama, C.N.; Hayashi, M.M.; Nagatani, I.; Tadono, T.; Shimada, M. Refined algorithm for forest early warniing system with ALOS2/PALSAR2 ScanSAR data in tropical forest regions. Remote Sens. Environ. 2021, 265, 1–16. [Google Scholar] [CrossRef]
- Arii, M.; Yamada, H.; Ohki, M. Characterization of L-Band MIMP SAR Data From Rice Paddies at Late Vegetative Stage. IEEE Trans. Geosci. Rem. Sens. 2018, 56, 3852–3860. [Google Scholar] [CrossRef]
- Tadono, T. ALOS3 and ALOS4 Overviews. In Proceedings of the On behalf of ALOS3 and ALOS4 Project Team, Presented at the ALOS2-PI Meeting, Tokyo, Japan, 22–25 January 2018. [Google Scholar]
- Touzi, R. Target scattering decomposition in terms of roll invariant target parameters. IEEE Trans. Geosci. Rem. Sens. 2007, 45, 73–84. [Google Scholar] [CrossRef]
- Touzi, R. Speckle effect on polarimetric target scattering decomposition of SAR imagery. Can. J. Rem. Sens. 2007, 33, 60–68. [Google Scholar] [CrossRef]
- Touzi, R.; Deschamps, A.; Rother, G. Phase of target scattering for wetland characterization using polarimetric C-band SAR. IEEE Trans. Geosci. Rem. Sens. 2009, 47, 3241–3261. [Google Scholar] [CrossRef]
- Cloude, S.; Pottier, E. A review of target decomposition theorems in radar polarimetry. IEEE Trans. Geosci. Rem. Sens. 1996, 34, 498–518. [Google Scholar] [CrossRef]
- Cloude, S.; Pottier, E. An entropy based classification scheme for land applications of polarimetric SARs. IEEE Trans. Geosci. Rem. Sens. 1997, 35, 68–78. [Google Scholar] [CrossRef]
- Freeman, A.; Durden, S. A Three-Component Scattering Model for Polarimetric SAR Data. IEEE Trans. Geosci. Rem. Sens. 1998, 36, 963–973. [Google Scholar] [CrossRef] [Green Version]
- Touzi, R.; Gosselin, G.; Brook, R. Peatland subsurface water monitoring using polarimetric L-band ALOS. In Proceedings of the PolinSAR 2013 Proceedings, Frascatti, Italy, 28 January–1 February 2013. [Google Scholar]
- Touzi, R.; Omari, K.; Sleep, B.; Jiao, X. Scattered and received wave polarization optimization for enhanced peatland classification and fire damage assessment using polarimetric PALSAR. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 4452–4477. [Google Scholar] [CrossRef]
- Touzi, R.; Gosselin, G.; Brook, R. Subarctic Peatland Characterization and Monitoring. In Polarimetric Synthetic Aperture Radar: Principles and Applications; Hajnsek, I., Desnos, Y.L., Eds.; Springer: Berlin/Heidelberg, Germany, 2021; Chapter 3, Section 3.5; pp. 160–168. Available online: https://www.springer.com/de/book/9783030565022 (accessed on 7 February 2023).
- Touzi, R.; Deschamps, A.; Rother, G. Wetland characterization using polarimetric RADARSAT-2 capability. Can. J. Rem. Sens. 2007, 33, S56–S67. [Google Scholar] [CrossRef]
- Grenier, M.; Dermers, A.; Labrecque, S.; Benoit, M.; Fournier, R.; Drolet, B. An object-based method to map wetland using RADARSAT-1 and Landsat ETM images: Test case on two sites in Quebec, Canada. Can. J. Rem. Sens. 2007, 33, S28–S45. [Google Scholar] [CrossRef]
- Fournier, R.; Grenier, M.; Lavoie, A.; Helie, R. Towards a strategy to implement the Canadian wetland inventory using satellite remote sensing. Can. J. Rem. Sens. 2007, 33, S1–S16. [Google Scholar] [CrossRef]
- Touzi, R.; Gosselin, G.; Li, J.; Brook, R. Peatland subsurface water monitoring using polarimetric L-band PALSAR. In Proceedings of the PolinSAR 2011 Proceedings, Frascatti, Italy, 24–28 January 2011. [Google Scholar]
- Touzi, R.; Pawley, S.; Hosseini, M.; Jiao, X. Polarimetric L-band PALSAR2 for Discontinuous Permafrost Mapping In Peatland Regions. In Proceedings of the IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019. [Google Scholar]
- Touzi, R.; Shimada, M. polarimetric PALSAR Calibration. IEEE Trans. Geosci. Rem. Sens. 2009, 47, 3951–3959. [Google Scholar] [CrossRef]
- Shimada, M.; Isoguchi, O.; Tadono, T.; Isono, K. PALSAR Radiometric and Geometric Calibration. IEEE Trans. Geosci. Rem. Sens. 2009, 47, 3951–3959. [Google Scholar] [CrossRef]
- Huynen, J. Phenomenological Theory of Radar Targets; Technical Report; University of Technology: Delft, The Netherlands, 1970. [Google Scholar]
- Touzi, R. Polarimetric Target Scattering Decomposition: A review. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016. [Google Scholar]
- Corr, D.; Rodrigues, A. Alternative basis matrices for polarimetric decomposition. In Proceedings of the European Conference on Synthetic Aperture Radar EUSAR 2002, Cologne, Germany, 4–6 June 2002. [Google Scholar]
- Paladini, R.; Famil, L.; Pottier, E.; Martorella, M.; Berizzi, F.; Mese, E.D. Lossless and sufficient Psi-invariant decomposition of random reciprocal target. IEEE Trans. Geosci. Rem. Sens. 2012, 50, 3487–3501. [Google Scholar] [CrossRef]
- Vitt, D.H.; Halsey, L.A.; Thormann, M.N.; Martin, T. Peatland Inventory of Alberta; Report; University of Alberta: Edmonton, AB, Canada, 1996. [Google Scholar]
- Shimada, M. PALSAR-2 beam calibration. In Proceedings of the ALOS2 Cal-Val meeting CVST2, Tsukuba, Japan, 25–26 November 2013. [Google Scholar]
- Shimada, M. PALSAR-2 initial calibration results. In Proceedings of the ALOS2 Cal-Val meeting CVST4, Tsukuba, Japan, 20 November 2014. [Google Scholar]
- Zyl, J.V.; Zebker, H.A. Imaging Radar Polarimetry. In Progress in Electromagnetics Research, PIER 3; Kong, J.A., Ed.; Elsevier: New York, NY, USA, 1990; Chapter 5. [Google Scholar]
- Freeman, A.; Zyl, J.V.; Klein, J.; Zebker, H.; Shen, Y. Calibration of Stokes and scattering matrix format polarimetric SAR data. IEEE Trans. Geosci. Rem. Sens. 1992, 30, 531–539. [Google Scholar] [CrossRef]
- Touzi, R.; Shimada, M.; Motohka, T. Calibration and Validation of Polarimetric ALOS2. Remote. Sens. Spec. Issue Alos2 Calibration 2022, 54, 1–13. [Google Scholar]
- Shimada, M.; Watanabe, M.; Motooka, T.; Kankaku, Y.; Suzuki, S. Calibration and validation of PALSAR2. In Proceedings of the IEEE International Symposium on Geoscience and Remote Sensing (IGARSS), Milano, Italy, 26–31 July 2015. [Google Scholar]
- Touzi, R.; Shimada, M. Assessment and Calibration of polarimetric PALSAR-2. In Proceedings of the IEEE International Symposium on Geoscience and Remote Sensing (IGARSS), Milano, Italy, 26–31 July 2015. [Google Scholar]
- Moriyama, T. Polarimetric calibration of PALSAR2. In Proceedings of the IEEE International Symposium on Geoscience and Remote Sensing (IGARSS), Milano, Italy, 26–31 July 2015. [Google Scholar]
- Touzi, R.; Freeman, T. Session Summary: Polarimetric interferometric processing. In Proceedings of the CEOS-ASAR Worksop 2003, St-Hubert, QC, Canada, 25–27 June 2003. [Google Scholar]
- Touzi, R.; Vachon, P.W.; Wolfe, J. Requirement on antenna isolation for operational use of future C-band SAR Constellations missions in maritime surveillance. IEEE Trans. Geosci. Rem. Sens. Let. 2010, 7, 861–865. [Google Scholar] [CrossRef]
- Okada, Y.; Hamasaki, T.; Tsuji, M.; Iwamoto, M.; Hariu, K.; Kankaku, Y.; Suzuki, S.; Osawa, Y. Hardware performance of L-band SAR system onboard ALOS2. In Proceedings of the 2011 IEEE International Geoscience and Remote Sensing Symposium, Vancouver, BC, Canada, 24–29 July 2011. [Google Scholar]
- Touzi, R.; Lopes, A.; Bousquet, P. A statistical and geometrical edge detector for SAR images. IEEE Trans. Geosci. Rem. Sens. 1988, 26, 764–773. [Google Scholar] [CrossRef]
- Bickel, S.; Bates, R. Effects of magneto-ionic on the propagation of the polarization scattering matrix. Proc. IEEE 1965, 53, 1089–1091. [Google Scholar] [CrossRef]
- Freeman, A. SIR-C/X data quality and calibration results. IEEE Trans. Geosci. Rem. Sens. 1995, 33, 848–857. [Google Scholar] [CrossRef]
- Touzi, R.; Shimada, M. Assessment and calibration of polarimetric ALOS-PALSAR2: Requirement for the re-calibration of FP6-4. In Proceedings of the ASAR and EO-Summit Conference, Montreal, QC, Canada, 20–22 June 2017. [Google Scholar]
- Touzi, R.; Pawley, S.; Jiao, X.; Hosseini, M. Investigation of L-band polarimetric ALOS-2 for discontinuous permafrost mapping in Northen Alberta peatlands. In Proceedings of the ASAR and EO-Summit Conference, Montreal, QC, Canada, 20–22 June 2017. [Google Scholar]
- Touzi, R. Polarimetric ALOS2 data Quality: Application for permafrost and Peatland mapping and Fire Damage Assessment. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016. [Google Scholar]
- Motohka, T.; Isoguchi, O.; Sakashita, M.; Shimada, M. ALOS-2 PALSAR-2 Cal/Val Updates. In Proceedings of the Proceedings of the JAXA/EORC Joint PI Meeting of Global Environment Observation Mission FY2017, Tokyo, Japan, 22–26 January 2018. [Google Scholar]
- Touzi, R.; Goze, S.; Toan, T.L.; Lopes, A.; Mougin, E. Polarimetric discriminators for SAR images. IEEE Trans. Geosci. Rem. Sens. 1992, 30, 973–980. [Google Scholar] [CrossRef]
- Touzi, R.; Hurley, J.; Vachon, P. Optimization of the degree of polarization for enhanced Ship detection using polarimetric RADARSAT-2. IEEE Trans. Geosci. Rem. Sens. 2015, 53, 5403–5424. [Google Scholar] [CrossRef]
- Ulaby, F.; Elachi, C. Radar Polarimetry for Geosci. Applications; Artech House: Norwood, MA, USA, 1990. [Google Scholar]
- Touzi, R.; Raney, R.; Charbonneau, F. On the use of symmetric scatterers for ship characterization. IEEE Trans. Geosci. Rem. Sens. 2004, 42, 2039–2045. [Google Scholar] [CrossRef]
- Boerner, W.; Mott, H.; Luneburg, E.; Livingstone, C.; Brisco, B.; Brown, R.J.; S.R. Cloude, J.S.P.; Krogager, E.; Lee, J.S.; Schuler, D.L.; et al. Polarimetry in Radar Remote Sensing: Basic and Applied Concepts. In Manual of Remote Sensing: Principles and Applications of Imaging Radar; Ryerson, R.A., Ed.; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 1998; Volume 3, Chapter 5; pp. 271–356. [Google Scholar]
- Mott, R.; Camfield, M. The Chott El Djerid, Tunisia: Observation and Discussion of a SAR Phase Signature Over Evaporitic Soils. IEEE Trans. Geosci. Rem. Sens. 2014, 9, 5798–5806. [Google Scholar]
- Lasne, Y.; Paillou, P.; Ruffie, G.; Crapeau, M. Effect of multiple scattering on the phase signature of wet subsurface stuctures: Applications to polarimetric L- and C-band SAR. IEEE Trans. Geosci. Rem. Sens. 2005, 43, 1716–1726. [Google Scholar] [CrossRef]
- Touzi, R.; Zhang, Y.; Choe, B.; Wilson, P.; Hong, G.; Moghaddam, M. Assessment of polarimetric L-, and P-band polarimetric SAR for permafrost characterization along the Inuvik-Tuktoyaktuk highway corridor and surrounding environment. In Proceedings of the ABoVE Multi-Band SAR Science Seminar; 22 April 2021. Available online: https://above.nasa.gov/science-seminars (accessed on 7 February 2023).
- Zhang, Y.; Touzi, R.; Feng, W.; Hong, G.; Lantz, T.; Kokelj, S. Landscape-scale variations in near-surface soil temperature and active-layer thickness: Implications for high-resolution permafrost mapping. Permafr. Periglac. Process. J. 2021, 32, 627–640. [Google Scholar] [CrossRef]
- Schaefer, K.; Clayton, L.; Battaglia, M.; Bourgeau-Chavez, L.L.; Chen, R.; Chen, A.; Chen, J.; Bakian-Dogaheh, K.; Douglas, T.; Grelick, S.; et al. ABoVE: Soil Moisture and Active Layer Thickness in Alaska and NWT, Canada, 2008–2020; ORNL DAAC: Oak Ridge, TN, USA, 2021. [Google Scholar] [CrossRef]
- Van der Sanden, J.J.; Drouin, H.; Bian, Y. Repeat pass InSAR observations and lake ice cover: A preliminary evaluation of information content. In Proceedings of the 17th Workshop on River Ice, Edmonton, AB, Canada, 21–24 July 2013. [Google Scholar]
- Okada, Y.; Yokota, Y.; Karasawa, A.; Arii, M.; Nakamura, S. Hardware Performance of PALSAR-3 Onboard ALOS-4. In Proceedings of the 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018. [Google Scholar]
- Motohka, T.; Kankaku, Y.; Miura, S.; Suzuki, S. ALOS-4 L-band SAR mission and Observation. In Proceedings of the 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019. [Google Scholar]
Cross-Talk | ||||
---|---|---|---|---|
FP6-4 | −32.27 | −33.80 | −36.59 | −35.47 |
Site ID | Site Type | ALT(m) | HHdB | HV | VV | Span | pmin | pmax | |
---|---|---|---|---|---|---|---|---|---|
BF-79 | Bog Permafrost | 0.3 | −10.35 | −19.44 | −10.55 | −6.92 | -24.34 | 0.54 | 0.87 |
BF-90 | Bog Permafrost | 0.5 | −10.20 | −16.94 | −9.91 | −6.23 | -26.88 | 0.46 | 0.78 |
BF-91 | Bog Permafrost | 0.4 | −9.42 | −17.97 | −9.66 | −5.94 | −21.43 | 0.35 | 0.78 |
BF-93 | Bog Permafrost | 0.4 | −8.93 | −18.87 | −9.40 | −5.70 | −32.63 | 0.49 | 0.86 |
BF-94 | Bog Permafrost | 0.5 | −9.68 | −18.46 | −9.53 | −6.07 | −34.53 | 0.44 | 0.82 |
BF-98 | Bog Permafrost | 0.5 | −10.97 | −17.87 | −10.77 | −7.03 | −28.32 | 0.30 | 0.73 |
BF-101 | Bog Permafrost | 0.4 | −10.95 | −18.66 | −10.72 | −7.16 | −20.06 | 0.34 | 0.76 |
BF-104 | Bog Permafrost | 0.4 | −9.92 | −19.20 | −10.43 | −6.65 | −25.93 | 0.41 | 0.80 |
BF-105 | Bog Permafrost | 0.3 | −10.20 | −19.15 | −10.53 | −6.81 | −21.06 | 0.43 | 0.81 |
BF-108 | Bog Permafrost | 0.5 | −8.30 | −17.62 | −8.08 | −4.71 | −29.73 | 0.58 | 0.87 |
BF-109 | Bog Permafrost | 0.5 | −10.74 | −21.02 | −11.18 | −7.54 | −21.10 | 0.38 | 0.86 |
DBF-99 | Deep Swamp Conifer | >1.0 | −9.68 | −15.87 | −9.62 | −5.70 | −32.64 | 0.02 | 0.72 |
DBF-106 | Bog Permafrost | 1 | −10.10 | −18.59 | −10.12 | −6.26 | −14.51 | 0.29 | 0.73 |
DBF-107 | Bog Permafrost | 1.2 | −8.81 | −17.94 | −9.60 | −5.63 | −17.50 | 0.36 | 0.81 |
VDF-CS-96 | Deep Collapse Scar | >1.8 | −9.00 | −18.83 | −9.53 | −5.73 | −27.53 | 0.50 | 0.82 |
CS-78 | Collapse Scar | N/A | −11.00 | −21.79 | −11.25 | −7.76 | −20.91 | 0.57 | 0.86 |
CS-89 | Collapse Scar | N/A | −9.12 | −17.18 | −9.41 | −5.64 | −24.22 | 0.09 | 0.78 |
CS-92 | Collapse Scar | N/A | −8.07 | −16.05 | −9.10 | −4.83 | −15.47 | 0.30 | 0.74 |
CS-97 | Collapse Scar | N/A | −9.80 | −18.71 | −9.70 | −6.22 | −28.94 | 0.54 | 0.85 |
CS-100 | Collapse Scar | N/A | −9.92 | −16.65 | −10.37 | −6.25 | −37.42 | 0.08 | 0.72 |
FC-102 | Forest-Conifer | N/A | −7.70 | −15.62 | −8.72 | −4.45 | −38.36 | 0.10 | 0.73 |
Site ID | Cloude | H | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
BF-79 | −36.00 | 72.00 | 0.77 | 0.13 | 0.10 | 6.35 | 39.54 | 19.08 | 28.21 | 0.64 |
BF-90 | −75.26 | 83.78 | 0.62 | 0.22 | 0.16 | 10.80 | 72.25 | 78.99 | 38.51 | 0.84 |
BF-91 | −27.72 | 80.78 | 0.71 | 0.17 | 0.12 | 5.26 | 75.18 | 85.12 | 31.10 | 0.72 |
BF-93 | −43.18 | 74.60 | 0.76 | 0.16 | 0.09 | 8.7 | 24.78 | 80.82 | 32.48 | 0.65 |
BF-94 | −71.59 | 79.37 | 0.76 | 0.13 | 0.11 | 7.0 | 53.35 | 61.12 | 32.03 | 0.65 |
BF-98 | −32.64 | 68.18 | 0.61 | 0.23 | 0.15 | 5.00 | 39.52 | 64.34 | 39.49 | 0.84 |
BF-101 | −82.50 | 83.34 | 0.68 | 0.17 | 0.13 | 10.5 | 75.1 | 83.34 | 37.67 | 0.8 |
BF-104 | −74.48 | 69.90 | 0.689 | 0.20 | 0.10 | 12.6 | 47.1 | 76.74 | 33.22 | 0.7 |
BF-105 | −62.00 | 47.00 | 0.70 | 0.19 | 0.10 | 9.75 | 27.4 | 67.65 | 31.48 | 0.7 |
BF-108 | −59.72 | 80.78 | 0.77 | 0.13 | 0.10 | 8.00 | 50.98 | 83.08 | 30.17 | 0.63 |
BF-109 | −47.11 | 79.17 | 0.72 | 0.20 | 0.08 | 5.16 | 71.58 | 84.35 | 31.17 | 0.69 |
DBF-99 | 25.47 | 18.34 | 0.63 | 0.21 | 0.16 | 7.05 | 46.78 | 38.67 | 40.37 | 0.84 |
DBF-106 | 32.58 | 30.15 | 0.72 | 0.17 | 0.11 | 3.26 | 26.71 | 65.52 | 29.48 | 0.71 |
DBF-107 | −63.77 | −22.89 | 0.75 | 0.16 | 0.09 | 10.00 | 33.19 | 41.19 | 28.03 | 0.65 |
VDF-CS-96 | −49.70 | 86.14 | 0.76 | 0.15 | 0.09 | 7.0 | 55.53 | 80.44 | 30.14 | 0.65 |
CS-78 | −62.65 | −2.17 | 0.81 | 0.12 | 0.07 | 3.53 | 13.46 | 71.15 | 25.05 | 0.54 |
CS-89 | −76.32 | 60.41 | 0.66 | 0.20 | 0.14 | 8.48 | 22.95 | 60.90 | 35.78 | 0.79 |
CS-92 | −39.30 | 8.31 | 0.67 | 0.21 | 0.12 | 10.06 | 22.17 | 56.62 | 34.26 | 0.77 |
CS-97 | −24.89 | 24.17 | 0.74 | 0.15 | 0.10 | 5.47 | 20.82 | 69.61 | 32.14 | 0.67 |
CS-100 | −58.36 | 4.94 | 0.58 | 0.26 | 0.16 | 14.35 | 21.44 | 28.34 | 43.91 | 0.87 |
FC-102 | −64.79 | 63.19 | 0.60 | 0.25 | 0.15 | 20.70 | 58.34 | 41.73 | 42.60 | 0.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Touzi, R.; Pawley, S.M.; Wilson, P.; Jiao, X.; Hosseini, M.; Shimada, M. Polarimetric L-Band ALOS2-PALSAR2 for Discontinuous Permafrost Mapping in Peatland Regions. Remote Sens. 2023, 15, 2312. https://doi.org/10.3390/rs15092312
Touzi R, Pawley SM, Wilson P, Jiao X, Hosseini M, Shimada M. Polarimetric L-Band ALOS2-PALSAR2 for Discontinuous Permafrost Mapping in Peatland Regions. Remote Sensing. 2023; 15(9):2312. https://doi.org/10.3390/rs15092312
Chicago/Turabian StyleTouzi, Ridha, Steven M. Pawley, Paul Wilson, Xianfeng Jiao, Mehdi Hosseini, and Masanobu Shimada. 2023. "Polarimetric L-Band ALOS2-PALSAR2 for Discontinuous Permafrost Mapping in Peatland Regions" Remote Sensing 15, no. 9: 2312. https://doi.org/10.3390/rs15092312
APA StyleTouzi, R., Pawley, S. M., Wilson, P., Jiao, X., Hosseini, M., & Shimada, M. (2023). Polarimetric L-Band ALOS2-PALSAR2 for Discontinuous Permafrost Mapping in Peatland Regions. Remote Sensing, 15(9), 2312. https://doi.org/10.3390/rs15092312