Plasmasphere Refilling after the 1 June 2013 Geomagnetic Storm
<p>Corotation (<b>a</b>), convection (<b>b</b>) and resulting (<b>c</b>) electric potential in the magnetic equatorial plane. The convection field was determined by assuming a dawn–dusk electric field of 0.82 mV/m. The black solid curves are equipotential lines, corresponding to plasma streamlines. The black arrows depict the electric field direction. The magenta line in panel (<b>c</b>) is the separatrix between close and open drift trajectories.</p> "> Figure 2
<p>(<b>a</b>) Plasma mass density on day 153 at 07:00 UT; the open circles are the values obtained from the EMMA station pairs, and the vertical bars are their uncertainties; the solid lines are the fit, and the dashed lines are the uncertainty on the fit; (<b>b</b>) second derivative of <math display="inline"><semantics> <mrow> <mo form="prefix">log</mo> <mo>(</mo> <mi>ρ</mi> <mo>)</mo> </mrow> </semantics></math>; the red and black solid lines are the position of the minimum (<math display="inline"><semantics> <msub> <mi>r</mi> <mrow> <mi>i</mi> <mi>n</mi> <mi>n</mi> </mrow> </msub> </semantics></math>) and the maximum (<math display="inline"><semantics> <msub> <mi>r</mi> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> </mrow> </msub> </semantics></math>) of the second derivative of <math display="inline"><semantics> <mrow> <mo form="prefix">log</mo> <mo>(</mo> <mi>ρ</mi> <mo>)</mo> </mrow> </semantics></math>; the red dashed line is the midpoint between <math display="inline"><semantics> <msub> <mi>r</mi> <mrow> <mi>i</mi> <mi>n</mi> <mi>n</mi> </mrow> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>r</mi> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> </mrow> </msub> </semantics></math>.</p> "> Figure 3
<p>Different representations of the inner magnetospheric equatorial electric potential on 2 June 2013 at 01:24 (<math display="inline"><semantics> <mrow> <mi>K</mi> <mi>p</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>), as determined by the VSMC (<b>a</b>) and E5D (<b>b</b>) models. The colors indicate the magnitude in kV of the electric potential. Equipotential lines are drawn only for <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mo>≥</mo> <mo>−</mo> <mn>50</mn> </mrow> </semantics></math> kV, with a step of 5 kV. The values of the potential are also indicated directly on selected contours. The magenta lines are the ZEABs. The magnetopause position is from the Shue et al. [<a href="#B80-remotesensing-15-02016" class="html-bibr">80</a>] model.</p> "> Figure 4
<p>Panels (<b>a</b>,<b>b</b>) show variations of the <math display="inline"><semantics> <mrow> <mi>D</mi> <mi>s</mi> <mi>t</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>K</mi> <mi>p</mi> </mrow> </semantics></math> indices, respectively; the four polar plots are a sequence of plasma density maps, as obtained from EMMA measurements; the Sun is to the left; shaded sectors refer to plasma density inferred for field lines having at least one footprint not lighted by the Sun; (<b>c</b>) saturated plasmasphere; (<b>d</b>) principal phase of the storm; a drainage plume formation is clearly visible; (<b>e</b>) eroded plasmasphere early in the recovery phase; (<b>f</b>) plasmasphere partially refilled in the late recovery phase; the magenta line is the magnetopause position from the Shue et al. [<a href="#B80-remotesensing-15-02016" class="html-bibr">80</a>] model; it is visible only during the main phase, when the magnetosphere shrinks below 9 <math display="inline"><semantics> <msub> <mi>R</mi> <mi>E</mi> </msub> </semantics></math>.</p> "> Figure 5
<p>Panels (<b>a</b>,<b>b</b>) show variations of the <span class="html-italic">Dst</span> and <span class="html-italic">Kp</span> indices, respectively. Panels (<b>c</b>–<b>f</b>) show plasma mass density measurements on 30 May–7 June 2013, evaluated at <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mrow> <mi>e</mi> <mi>q</mi> </mrow> </msub> <mo>=</mo> <mn>2.5</mn> </mrow> </semantics></math>, 3.5, 4.5 and 5.5 <math display="inline"><semantics> <msub> <mi>R</mi> <mi>E</mi> </msub> </semantics></math>, respectively, using the fitting procedure described in <a href="#sec2-remotesensing-15-02016" class="html-sec">Section 2</a>. The two top panels show the geomagnetic indices <math display="inline"><semantics> <mrow> <mi>D</mi> <mi>s</mi> <mi>t</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>K</mi> <mi>p</mi> </mrow> </semantics></math>. Shadowed areas indicate measurements obtained for flux tubes having both (dark shadows) or one (light shadow) footprints not lighted by the Sun.</p> "> Figure 6
<p>Radial plasma density profiles on days 151, 153, 155 and 157, at 09:00 MLT. The open circles are density estimated by the EMMA pairs. The solid curves are the fit profiles. The magenta curve is the plasmasphere model by Del Corpo et al. [<a href="#B52-remotesensing-15-02016" class="html-bibr">52</a>], which is a good representation of the saturated plasmasphere.</p> "> Figure 7
<p>Panels (<b>a</b>–<b>b</b>) show the geomagnetic indices <math display="inline"><semantics> <mrow> <mi>D</mi> <mi>s</mi> <mi>t</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>K</mi> <mi>p</mi> </mrow> </semantics></math>. Panel (<b>c</b>) shows the ZEAB position estimated from E5D and VSMC models. The dashed lines are the geocentric distances, 2.5, 3.5, 4.5 and 5.5 <math display="inline"><semantics> <msub> <mi>R</mi> <mi>E</mi> </msub> </semantics></math>. Panels (<b>d</b>–<b>g</b>) show the mass density variation evaluated at 09:00 (in red) and 12:00 MLT (in blue) for <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mrow> <mi>e</mi> <mi>q</mi> </mrow> </msub> <mo>=</mo> <mn>2.5</mn> </mrow> </semantics></math>, 3.5, 4.5 and 5.5 <math display="inline"><semantics> <msub> <mi>R</mi> <mi>E</mi> </msub> </semantics></math>, respectively.</p> "> Figure 8
<p>Panels (<b>d</b>–<b>g</b>) show the diurnal refilling rate for the same period and same geocentric distances shown in <a href="#remotesensing-15-02016-f005" class="html-fig">Figure 5</a>. Panels (<b>a</b>–<b>c</b>) are the same as in <a href="#remotesensing-15-02016-f007" class="html-fig">Figure 7</a>.</p> "> Figure 9
<p>Geocentric distance dependence of the the day-to-day refilling rate estimated from FLRs observations in this (red circles) and in past works (blue circles) for the noon sector. The value indicated by the blue filled circle refers to 15:00 MLT. See <a href="#remotesensing-15-02016-t002" class="html-table">Table 2</a> and text for details. The best fit found in Equation (<a href="#FD9-remotesensing-15-02016" class="html-disp-formula">9</a>) is represented by the black line. Magenta, green and cyan curves are models derived by Denton et al. [<a href="#B41-remotesensing-15-02016" class="html-bibr">41</a>], Krall et al. [<a href="#B84-remotesensing-15-02016" class="html-bibr">84</a>] and Gallagher et al. [<a href="#B39-remotesensing-15-02016" class="html-bibr">39</a>], respectively, based on derived measuremetns of the electron number density.</p> "> Figure 10
<p>Radial profiles of the diurnal refilling (<b>a</b>–<b>e</b>) and of the normalized diurnal refilling rate (<b>f</b>–<b>j</b>) during the recovery phase. The light blue stripes represent the average PBL position for the days indicated to the right. The red and green lines are the average diurnal ZEAB position determined on the same days from the VSMC and E5D electric potential, respectively. The dashed lines are the average ZEAB position across the midnight sector, between days 156 and 157.</p> ">
Abstract
:1. Introduction
2. Data and Methods
2.1. Plasma Mass Density
2.2. Solar Wind Parameters and Geomagnetic Activity Indices
2.3. Fit Profiles and PBL Inner Edge Evaluation
2.4. ZEAB Position Evaluation
3. Results
3.1. Observing the Plasmasphere Dynamics with EMMA
3.2. Day-to-Day Refilling
3.3. Diurnal Refilling
4. Discussion
5. Conclusions
- Inside the PBL, the flux tubes were not significantly depleted during the main phase, resulting in small refilling rates in all of the recovery phase.
- The region between the PBL and the ZEAB consisted of depleted flux tubes that corotated with the Earth. As suggested by Obana et al. [32], the resulting upward plasma flux during daytime was enhanced. As a result, the recovery of the plasmasphere took place principally in the region between the PBL and the ZEAB, and proceeded at an ever-increasing distance, until a new disturbance occurred.
- Outside the ZEAB, the plasma supplied by the ionosphere could not be sufficiently trapped, and was lost through convection towards the magnetopause. As pointed out by Denton et al. [42], the observed density variation may not be the result of refilling of a particular flux tube. This is especially true well outside the ZEAB, where the plasma typically does not corotate with the Earth, and what we see is the plasma density sampled at different moments on different drift paths. Strictly speaking, the refilling concept is not applicable to the region outside the ZEAB, with the exception of the post-dawn sector, when the flux tubes convecting from the nightside might corotate with the Earth [35], and be filled with ionospheric plasma for a few hours before they are lost to the magnetopause, e.g., [88]. However, it is worth noting that because of the plasma loss, an analysis of this region will result in an apparently smaller diurnal refilling rate.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EMMA | European quasi-Meridional Magnetometer Array |
EUV | Extreme Ultraviolet Imager |
FLR | Field Line Resonance |
GNSS | Global Navigation Satellite Systems |
GSM | Geocentric Solar Magnetospheric (coordinate system) |
MHD | Magnetohydrodynamics |
IMAGE | Imager for Magnetopause-to-Aurora Global Exploration |
IMF | Interplanetary Magnetic Field |
LT | Local Time |
MLT | Magnetic Local Time |
PBL | Plasmasphere Boundary Layer |
RIMS | Retarding Ion Mass Spectrometer |
RPI | Radio Plasma Imager |
ULF | Ultra-Low Frequency |
UT | Universal Time |
VLF | Very Low Frequency |
ZEAB | Zero-Energy Alfvén Boundary |
References
- Chappell, C.R. The Role of the Ionosphere in Providing Plasma to the Terrestrial Magnetosphere—An Historical Overview. Space Sci. Rev. 2015, 192, 5–25. [Google Scholar] [CrossRef]
- Carpenter, D.L.; Lemaire, J. The Plasmasphere Boundary Layer. Ann. Geophys. 2004, 22, 4291–4298. [Google Scholar] [CrossRef] [Green Version]
- Axford, W.I.; Hines, C.O. A unifying theory of high-latitude geophysical phenomena and geomagnetic storms. Can. J. Phys. 1961, 39, 1433–1464. [Google Scholar] [CrossRef]
- Nishida, A. Formation of plasmapause, or magnetospheric plasma knee, by the combined action of magnetospheric convection and plasma escape from the tail. J. Geophys. Res. (1896–1977) 1966, 71, 5669–5679. [Google Scholar] [CrossRef]
- Grebowsky, J.M. Model study of plasmapause motion. J. Geophys. Res. (1896–1977) 1970, 75, 4329–4333. [Google Scholar] [CrossRef] [Green Version]
- Hones, E.W., Jr.; Bergeson, J.E. Electric field generated by a rotating magnetized sphere. J. Geophys. Res. (1896–1977) 1965, 70, 4951–4958. [Google Scholar] [CrossRef] [Green Version]
- Dungey, J.W. Interplanetary Magnetic Field and the Auroral Zones. Phys. Rev. Lett. 1961, 6, 47–48. [Google Scholar] [CrossRef]
- McIlwain, C.E. Coordinates for mapping the distribution of magnetically trapped particles. J. Geophys. Res. (1896–1977) 1961, 66, 3681–3691. [Google Scholar] [CrossRef]
- Vasyliunas, V.M. A crude estimate of the relation between the solar wind speed and the magnetospheric electric field. J. Geophys. Res. (1896–1977) 1968, 73, 2529–2530. [Google Scholar] [CrossRef]
- Rowland, D.E.; Wygant, J.R. Dependence of the large-scale, inner magnetospheric electric field on geomagnetic activity. J. Geophys. Res. Space Phys. 1998, 103, 14959–14964. [Google Scholar] [CrossRef]
- Nishida, A. Coherence of geomagnetic DP 2 fluctuations with interplanetary magnetic variations. J. Geophys. Res. (1896–1977) 1968, 73, 5549–5559. [Google Scholar] [CrossRef] [Green Version]
- Reinisch, B.W.; Moldwin, M.B.; Denton, R.E.; Gallagher, D.L.; Matsui, H.; Pierrard, V.; Tu, J. Augmented empirical models of plasmaspheric density and electric field using IMAGE and CLUSTER data. Space Sci. Rev. 2009, 145, 231–261. [Google Scholar] [CrossRef]
- Volland, H. A semiempirical model of large-scale magnetospheric electric fields. J. Geophys. Res. (1896–1977) 1973, 78, 171–180. [Google Scholar] [CrossRef]
- Stern, D.P. The motion of a proton in the equatorial magnetosphere. J. Geophys. Res. (1896–1977) 1975, 80, 595–599. [Google Scholar] [CrossRef]
- Southwood, D.J. The role of hot plasma in magnetospheric convection. J. Geophys. Res. (1896–1977) 1977, 82, 5512–5520. [Google Scholar] [CrossRef]
- Southwood, D.; Kaye, S. Drift boundary approximations in simple magnetospheric convection models. J. Geophys. Res. Space Phys. 1979, 84, 5773–5780. [Google Scholar] [CrossRef]
- Ejiri, M. Trajectory traces of charged particles in the magnetosphere. J. Geophys. Res. Space Phys. 1978, 83, 4798–4810. [Google Scholar] [CrossRef] [Green Version]
- Maynard, N.C.; Chen, A.J. Isolated cold plasma regions: Observations and their relation to possible production mechanisms. J. Geophys. Res. (1896–1977) 1975, 80, 1009–1013. [Google Scholar] [CrossRef] [Green Version]
- McIlwain, C. A Kp dependent equatorial electric field model. Adv. Space Res. 1986, 6, 187–197. [Google Scholar] [CrossRef]
- Carpenter, D.L. Whistler evidence of a ‘knee’ in the magnetospheric ionization density profile. J. Geophys. Res. (1896–1977) 1963, 68, 1675–1682. [Google Scholar] [CrossRef]
- Chappell, C.R.; Fields, S.A.; Baugher, C.R.; Hoffman, J.H.; Hanson, W.B.; Wright, W.W.; Hammack, H.D.; Carignan, G.R.; Nagy, A.F. The retarding ion mass spectrometer on Dynamics Explorer-A. Space Sci. Instrum. 1981, 5, 477–491. [Google Scholar]
- Chandler, M.O.; Chappell, C.R. Observations of the flow of H+ and He+ along magnetic field lines in the plasmasphere. J. Geophys. Res. Space Phys. 1986, 91, 8847–8860. [Google Scholar] [CrossRef]
- Sandel, B.R.; Broadfoot, A.L.; Curtis, C.C.; King, R.A.; Stone, T.C.; Hill, R.H.; Chen, J.; Siegmund, O.H.W.; Raffanti, R.; Allred, D.D.; et al. The Extreme Ultraviolet Imager Investigation for the IMAGE Mission. In The Image Mission; Burch, J.L., Ed.; Springer: Dordrecht, The Netherlands, 2000; pp. 197–242. [Google Scholar] [CrossRef]
- Park, C.G. Some features of plasma distribution in the plasmasphere deduced from Antarctic whistlers. J. Geophys. Res. 1974, 79, 169–173. [Google Scholar] [CrossRef]
- Park, C.G.; Carpenter, D.L.; Wiggin, D.B. Electron density in the plasmasphere: Whistler data on solar cycle, annual, and diurnal variations. J. Geophys. Res. Space Phys. 1978, 83, 3137–3144. [Google Scholar] [CrossRef]
- Menk, F.W.; Orr, D.; Clilverd, M.A.; Smith, A.J.; Waters, C.L.; Milling, D.K.; Fraser, B.J. Monitoring spatial and temporal variations in the dayside plasmasphere using geomagnetic field line resonances. J. Geophys. Res. Space Phys. 1999, 104, 19955–19969. [Google Scholar] [CrossRef] [Green Version]
- Menk, F.; Kale, Z.; Sciffer, M.; Robinson, P.; Waters, C.; Grew, R.; Clilverd, M.; Mann, I. Remote sensing the plasmasphere, plasmapause, plumes and other features using ground-based magnetometers. J. Space Weather Space Clim. 2014, 4, A34. [Google Scholar] [CrossRef] [Green Version]
- Sandel, B.R.; Goldstein, J.; Gallagher, D.L.; Spasojevic, M. Extreme ultraviolet imager observations of the structure and dynamics of the plasmasphere. Space Sci. Rev. 2003, 109, 25–46. [Google Scholar] [CrossRef]
- Carpenter, D.; Lemaire, J. Erosion and Recovery of the Plasmasphere in the Plasmapause Region. Space Sci. Rev. 1997, 80, 153–179. [Google Scholar] [CrossRef]
- Thorne, R.M. Radiation belt dynamics: The importance of wave-particle interactions. Geophys. Res. Lett. 2010, 37, L22107. [Google Scholar] [CrossRef]
- Gallagher, D.L.; Comfort, R.H. Unsolved problems in plasmasphere refilling. J. Geophys. Res. Space Phys. 2016, 121, 1447–1451. [Google Scholar] [CrossRef] [Green Version]
- Obana, Y.; Menk, F.W.; Yoshikawa, I. Plasma refilling rates for L = 2.3–3.8 flux tubes. J. Geophys. Res. Space Phys. 2010, 115, A03204. [Google Scholar] [CrossRef]
- Goldstein, J.; Sandel, B.R.; Forrester, W.T.; Reiff, P.H. IMF-driven plasmasphere erosion of 10 July 2000. Geophys. Res. Lett. 2003, 30, 1146. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, C.E.; Guiter, S.M.; Thomas, S.G. A two-dimensional model of the plasmasphere: Refilling time constants. Planet. Space Sci. 1993, 41, 35–43. [Google Scholar] [CrossRef] [Green Version]
- Reinisch, B.W.; Huang, X.; Song, P.; Green, J.L.; Fung, S.F.; Vasyliunas, V.M.; Gallagher, D.L.; Sandel, B.R. Plasmaspheric mass loss and refilling as a result of a magnetic storm. J. Geophys. Res. Space Phys. 2004, 109, A01202. [Google Scholar] [CrossRef]
- Dent, Z.C.; Mann, I.R.; Goldstein, J.; Menk, F.W.; Ozeke, L.G. Plasmaspheric depletion, refilling, and plasmapause dynamics: A coordinated ground-based and IMAGE satellite study. J. Geophys. Res. Space Phys. 2006, 111, A03205. [Google Scholar] [CrossRef] [Green Version]
- Sandel, B.R.; Denton, M.H. Global view of refilling of the plasmasphere. Geophys. Res. Lett. 2007, 34, L17102. [Google Scholar] [CrossRef]
- Carpenter, D.L.; Anderson, R.R. An ISEE/whistler model of equatorial electron density in the magnetosphere. J. Geophys. Res. Space Phys. 1992, 97, 1097–1108. [Google Scholar] [CrossRef]
- Gallagher, D.L.; Comfort, R.H.; Katus, R.M.; Sandel, B.R.; Fung, S.F.; Adrian, M.L. The Breathing Plasmasphere: Erosion and Refilling. J. Geophys. Res. Space Phys. 2021, 126, e2020JA028727. [Google Scholar] [CrossRef]
- Singh, N.; Horwitz, J.L. Plasmasphere refilling: Recent observations and modeling. J. Geophys. Res. Space Phys. 1992, 97, 1049–1079. [Google Scholar] [CrossRef]
- Denton, R.E.; Wang, Y.; Webb, P.A.; Tengdin, P.M.; Goldstein, J.; Redfern, J.A.; Reinisch, B.W. Magnetospheric electron density long-term (>1 day) refilling rates inferred from passive radio emissions measured by IMAGE RPI during geomagnetically quiet times. J. Geophys. Res. Space Phys. 2012, 117, A03221. [Google Scholar] [CrossRef]
- Denton, R.E.; Takahashi, K.; Amoh, J.; Singer, H.J. Mass density at geostationary orbit and apparent mass refilling. J. Geophys. Res. Space Phys. 2016, 121, 2962–2975. [Google Scholar] [CrossRef]
- Chi, P.J.; Russell, C.T.; Musman, S.; Peterson, W.K.; Le, G.; Angelopoulos, V.; Reeves, G.D.; Moldwin, M.B.; Chun, F.K. Plasmaspheric depletion and refilling associated with the September 25, 1998 magnetic storm observed by ground magnetometers at L=2. Geophys. Res. Lett. 2000, 27, 633–636. [Google Scholar] [CrossRef] [Green Version]
- Lichtenberger, J.; Clilverd, M.A.; Heilig, B.; Vellante, M.; Manninen, J.; Rodger, C.J.; Collier, A.B.; Jørgensen, A.M.; Reda, J.; Holzworth, R.H.; et al. The plasmasphere during a space weather event: First results from the PLASMON project. J. Space Weather Space Clim. 2013, 3, A23. [Google Scholar] [CrossRef] [Green Version]
- Huba, J.; Krall, J. Modeling the plasmasphere with SAMI3. Geophys. Res. Lett. 2013, 40, 6–10. [Google Scholar] [CrossRef]
- Krall, J.; Huba, J.D. SAMI3 simulation of plasmasphere refilling. Geophys. Res. Lett. 2013, 40, 2484–2488. [Google Scholar] [CrossRef]
- Jorgensen, A.; Ober, D.; Koller, J.; Friedel, R. Specification of the Earth’s plasmasphere with data assimilation. Adv. Space Res. 2011, 47, 2152–2161. [Google Scholar] [CrossRef]
- Jorgensen, A.M.; Heilig, B.; Vellante, M.; Lichtenberger, J.; Reda, J.; Valach, F.; Mandic, I. Comparing the Dynamic Global Core Plasma Model with ground-based plasma mass density observations. J. Geophys. Res. Space Phys. 2017, 122, 7997–8013. [Google Scholar] [CrossRef] [Green Version]
- Maruyama, N.; Sun, Y.Y.; Richards, P.G.; Middlecoff, J.; Fang, T.W.; Fuller-Rowell, T.J.; Akmaev, R.A.; Liu, J.Y.; Valladares, C.E. A new source of the midlatitude ionospheric peak density structure revealed by a new Ionosphere-Plasmasphere model. Geophys. Res. Lett. 2016, 43, 2429–2435. [Google Scholar] [CrossRef]
- Milling, D.K.; Mann, I.R.; Menk, F.W. Diagnosing the plasmapause with a network of closely spaced ground-based magnetometers. Geophys. Res. Lett. 2001, 28, 115–118. [Google Scholar] [CrossRef] [Green Version]
- Menk, F.W.; Mann, I.R.; Smith, A.J.; Waters, C.L.; Clilverd, M.A.; Milling, D.K. Monitoring the plasmapause using geomagnetic field line resonances. J. Geophys. Res. Space Phys. 2004, 109, A04216. [Google Scholar] [CrossRef] [Green Version]
- Del Corpo, A.; Vellante, M.; Heilig, B.; Pietropaolo, E.; Reda, J.; Lichtenberger, J. An Empirical Model for the Dayside Magnetospheric Plasma Mass Density Derived From EMMA Magnetometer Network Observations. J. Geophys. Res. Space Phys. 2020, 125, e2019JA027381. [Google Scholar] [CrossRef]
- Del Corpo, A.; Vellante, M.; Heilig, B.; Pietropaolo, E.; Reda, J.; Lichtenberger, J. Observing the cold plasma in the Earth’s magnetosphere with the EMMA network. Ann. Geophys. 2019, 62, GM447. [Google Scholar] [CrossRef]
- Del Corpo, A.; Vellante, M.; Zhelavskaya, I.S.; Shprits, Y.Y.; Heilig, B.; Reda, J.; Pietropaolo, E.; Lichtenberger, J. Study of the Average Ion Mass of the Dayside Magnetospheric Plasma. J. Geophys. Res. Space Phys. 2022, 127, e2022JA030605. [Google Scholar] [CrossRef]
- Baransky, L.; Borovkov, J.; Gokhberg, M.; Krylov, S.; Troitskaya, V. High resolution method of direct measurement of the magnetic field lines’ eigen frequencies. Planet. Space Sci. 1985, 33, 1369–1374. [Google Scholar] [CrossRef]
- Waters, C.L.; Menk, F.W.; Fraser, B.J. The resonance structure of low latitude Pc3 geomagnetic pulsations. Geophys. Res. Lett. 1991, 18, 2293–2296. [Google Scholar] [CrossRef] [Green Version]
- Singer, H.; Southwood, D.; Walker, R.; Kivelson, M. Alfvén wave resonances in a realistic magnetospheric magnetic field geometry. J. Geophys. Res. Space Phys. 1981, 86, 4589–4596. [Google Scholar] [CrossRef] [Green Version]
- Waters, C.L.; Samson, J.C.; Donovan, E.F. The temporal variation of the frequency of high latitude field line resonances. J. Geophys. Res. Space Phys. 1995, 100, 7987–7996. [Google Scholar] [CrossRef]
- Tsyganenko, N.A.; Sitnov, M.I. Modeling the dynamics of the inner magnetosphere during strong geomagnetic storms. J. Geophys. Res. Space Phys. 2005, 110, A03208. [Google Scholar] [CrossRef]
- Alken, P.; Thébault, E.; Beggan, C.D.; Amit, H.; Aubert, J.; Baerenzung, J.; Bondar, T.; Brown, W.; Califf, S.; Chambodut, A.; et al. International geomagnetic reference field: The thirteenth generation. Earth Planets Space 2021, 73, 1–25. [Google Scholar] [CrossRef]
- Berube, D.; Moldwin, M.B.; Ahn, M. Computing magnetospheric mass density from field line resonances in a realistic magnetic field geometry. J. Geophys. Res. Space Phys. 2006, 111, A08206. [Google Scholar] [CrossRef] [Green Version]
- Vellante, M.; Piersanti, M.; Heilig, B.; Reda, J.; Del Corpo, A. Magnetospheric plasma density inferred from field line resonances: Effects of using different magnetic field models. In Proceedings of the 2014 XXXIth URSI General Assembly and Scientific Symposium (URSI GASS), Beijing, China, 16–23 August 2014; pp. 1–4. [Google Scholar] [CrossRef]
- Chi, P.J.; Engebretson, M.J.; Moldwin, M.B.; Russell, C.T.; Mann, I.R.; Hairston, M.R.; Reno, M.; Goldstein, J.; Winkler, L.I.; Cruz-Abeyro, J.L.; et al. Sounding of the plasmasphere by Mid-continent MAgnetoseismic Chain (McMAC) magnetometers. J. Geophys. Res. Space Phys. 2013, 118, 3077–3086. [Google Scholar] [CrossRef] [Green Version]
- Allan, W.; Knox, F. A dipole field model for axisymmetric alfvén waves with finite ionosphere conductivities. Planet. Space Sci. 1979, 27, 79–85. [Google Scholar] [CrossRef]
- Obana, Y.; Menk, F.W.; Sciffer, M.D.; Waters, C.L. Quarter-wave modes of standing Alfvén waves detected by cross-phase analysis. J. Geophys. Res. Space Phys. 2008, 113, A08203. [Google Scholar] [CrossRef]
- Obana, Y.; Waters, C.L.; Sciffer, M.D.; Menk, F.W.; Lysak, R.L.; Shiokawa, K.; Hurst, A.W.; Petersen, T. Resonance structure and mode transition of quarter-wave ULF pulsations around the dawn terminator. J. Geophys. Res. Space Phys. 2015, 120, 4194–4212. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, K.; Vellante, M.; Del Corpo, A.; Claudepierre, S.G.; Kletzing, C.; Wygant, J.; Koga, K. Multiharmonic Toroidal Standing Alfvén Waves in the Midnight Sector Observed During a Geomagnetically Quiet Period. J. Geophys. Res. Space Phys. 2020, 125, e2019JA027370. [Google Scholar] [CrossRef]
- Regi, M.; Perrone, L.; Del Corpo, A.; Spogli, L.; Sabbagh, D.; Cesaroni, C.; Alfonsi, L.; Bagiacchi, P.; Cafarella, L.; Carnevale, G.; et al. Space Weather Effects Observed in the Northern Hemisphere during November 2021 Geomagnetic Storm: The Impacts on Plasmasphere, Ionosphere and Thermosphere Systems. Remote Sens. 2022, 14, 5765. [Google Scholar] [CrossRef]
- Ozeke, L.G.; Mann, I.R. High and low ionospheric conductivity standing guided Alfvén wave eigenfrequencies: A model for plasma density mapping. J. Geophys. Res. Space Phys. 2005, 110, A04215. [Google Scholar] [CrossRef] [Green Version]
- Vellante, M.; Förster, M. Inference of the magnetospheric plasma mass density from field line resonances: A test using a plasmasphere model. J. Geophys. Res. Space Phys. 2006, 111, A11204. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, K.; Denton, R.E.; Anderson, R.R.; Hughes, W.J. Frequencies of standing Alfvén wave harmonics and their implication for plasma mass distribution along geomagnetic field lines: Statistical analysis of CRRES data. J. Geophys. Res. Space Phys. 2004, 109, A08202. [Google Scholar] [CrossRef] [Green Version]
- Denton, R.E.; Takahashi, K.; Galkin, I.A.; Nsumei, P.A.; Huang, X.; Reinisch, B.W.; Anderson, R.R.; Sleeper, M.K.; Hughes, W.J. Distribution of density along magnetospheric field lines. J. Geophys. Res. Space Phys. 2006, 111, A04213. [Google Scholar] [CrossRef]
- Takahashi, K.; Denton, R.E. Nodal Structure of Toroidal Standing Alfvén Waves and Its Implication for Field Line Mass Density Distribution. J. Geophys. Res. Space Phys. 2021, 126, e2020JA028981. [Google Scholar] [CrossRef]
- Vellante, M.; Takahashi, K.; Del Corpo, A.; Zhelavskaya, I.S.; Goldstein, J.; Mann, I.R.; Pietropaolo, E.; Reda, J.; Heilig, B. Multi-Instrument Characterization of Magnetospheric Cold Plasma Dynamics in the June 22, 2015 Geomagnetic Storm. J. Geophys. Res. Space Phys. 2021, 126, e2021JA029292. [Google Scholar] [CrossRef] [PubMed]
- Waters, C.; Kabin, K.; Rankin, R.; Donovan, E.; Samson, J. Effects of the magnetic field model and wave polarisation on the estimation of proton number densities in the magnetosphere using field line resonances. Planet. Space Sci. 2007, 55, 809–819. [Google Scholar] [CrossRef]
- Kawano, H.; Yumoto, K.; Pilipenko, V.A.; Tanaka, Y.M.; Takasaki, S.; Iizima, M.; Seto, M. Using two ground stations to identify magnetospheric field line eigenfrequency as a continuous function of ground latitude. J. Geophys. Res. Space Phys. 2002, 107, SMP 25-1–SMP 25-12. [Google Scholar] [CrossRef]
- Fraser, B.J.; Horwitz, J.L.; Slavin, J.A.; Dent, Z.C.; Mann, I.R. Heavy ion mass loading of the geomagnetic field near the plasmapause and ULF wave implications. Geophys. Res. Lett. 2005, 32, L04102. [Google Scholar] [CrossRef] [Green Version]
- Roberts, W.T., Jr.; Horwitz, J.L.; Comfort, R.H.; Chappell, C.R.; Waite, J.H., Jr.; Green, J.L. Heavy ion density enhancements in the outer plasmasphere. J. Geophys. Res. Space Phys. 1987, 92, 13499–13512. [Google Scholar] [CrossRef]
- Poulter, E.; Allan, W. Transient ULF pulsation decay rates observed by ground based magnetometers: The contribution of spatial integration. Planet. Space Sci. 1985, 33, 607–616. [Google Scholar] [CrossRef]
- Shue, J.H.; Song, P.; Russell, C.T.; Steinberg, J.T.; Chao, J.K.; Zastenker, G.; Vaisberg, O.L.; Kokubun, S.; Singer, H.J.; Detman, T.R.; et al. Magnetopause location under extreme solar wind conditions. J. Geophys. Res. Space Phys. 1998, 103, 17691–17700. [Google Scholar] [CrossRef]
- Burke, W.J. Penetration electric fields: A Volland–Stern approach. J. Atmos. Sol.-Terr. Phys. 2007, 69, 1114–1126. [Google Scholar] [CrossRef]
- Chappell, C.R. Recent satellite measurements of the morphology and dynamics of the plasmasphere. Rev. Geophys. 1972, 10, 951–979. [Google Scholar] [CrossRef]
- Chi, P.J.; Russell, C.T.; Foster, J.C.; Moldwin, M.B.; Engebretson, M.J.; Mann, I.R. Density enhancement in plasmasphere-ionosphere plasma during the 2003 Halloween Superstorm: Observations along the 330th magnetic meridian in North America. Geophys. Res. Lett. 2005, 32, L03S07. [Google Scholar] [CrossRef]
- Krall, J.; Huba, J.D.; Denton, R.E.; Crowley, G.; Wu, T.W. The effect of the thermosphere on quiet time plasmasphere morphology. J. Geophys. Res. Space Phys. 2014, 119, 5032–5048. [Google Scholar] [CrossRef]
- Burch, J. IMAGE mission overview. Space Sci. Rev. 2000, 91, 1–14. [Google Scholar] [CrossRef]
- Galvan, D.A.; Moldwin, M.B.; Sandel, B.R.; Crowley, G. On the causes of plasmaspheric rotation variability: IMAGE EUV observations. J. Geophys. Res. Space Phys. 2010, 115, A01214. [Google Scholar] [CrossRef] [Green Version]
- Chappell, C.R.; Huddleston, M.M.; Moore, T.E.; Giles, B.L.; Delcourt, D.C. Observations of the warm plasma cloak and an explanation of its formation in the magnetosphere. J. Geophys. Res. Space Phys. 2008, 113, A09206. [Google Scholar] [CrossRef] [Green Version]
- Higel, B.; Lei, W. Electron density and plasmapause characteristics at 6.6 RE: A statistical study of the GEOS 2 relaxation sounder data. J. Geophys. Res. Space Phys. 1984, 89, 1583–1601. [Google Scholar] [CrossRef]
Day 153 | Day 154 | Day 155 | Day 156 | Day 157 | |
---|---|---|---|---|---|
[] | 2.5 | 2.9 | 3.0 | 3.4 | 4.0 |
[] | 3.0 | 3.7 | 3.7 | 4.4 | 4.9 |
[] | [amu cm d] | MLT Sector | Source |
---|---|---|---|
3.5 | 09:00 | our observations | |
4.5 | 09:00 | our observations | |
5.5 | 09:00 | our observations | |
2.5 | 12:00 | our observations | |
3.5 | 12:00 | our observations | |
4.5 | 12:00 | our observations | |
5.5 | 12:00 | our observations | |
2 | 650 | 15:00 | Chi et al. [43] |
2.3 | 11:00 | Obana et al. [32] | |
2.6 | 11:00 | Obana et al. [32] | |
3.7 | 12:00 | Lichtenberger et al. [44] | |
4.1 | 11:00–12:00 | Dent et al. [36] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Del Corpo, A.; Vellante, M. Plasmasphere Refilling after the 1 June 2013 Geomagnetic Storm. Remote Sens. 2023, 15, 2016. https://doi.org/10.3390/rs15082016
Del Corpo A, Vellante M. Plasmasphere Refilling after the 1 June 2013 Geomagnetic Storm. Remote Sensing. 2023; 15(8):2016. https://doi.org/10.3390/rs15082016
Chicago/Turabian StyleDel Corpo, Alfredo, and Massimo Vellante. 2023. "Plasmasphere Refilling after the 1 June 2013 Geomagnetic Storm" Remote Sensing 15, no. 8: 2016. https://doi.org/10.3390/rs15082016
APA StyleDel Corpo, A., & Vellante, M. (2023). Plasmasphere Refilling after the 1 June 2013 Geomagnetic Storm. Remote Sensing, 15(8), 2016. https://doi.org/10.3390/rs15082016