Estimating Effects of Natural and Anthropogenic Activities on Trophic Level of Inland Water: Analysis of Poyang Lake Basin, China, with Landsat-8 Observations
"> Figure 1
<p>Study area. (<b>a</b>) Location of the study area. (<b>b</b>) The red points represent the locations of field measurement points at Poyang Lake and Zhelin Reservoir in 2016 and 2019 respectively. Pink triangles represent meteorological stations.</p> "> Figure 2
<p>Statistics of Landsat imagery across PLB from 2013 to 2020. (<b>a</b>) Spatial distribution of the total Landsat-8 images across the PLB from 2013 to 2020 coverage; (<b>b</b>) the annual number of available Landsat images; (<b>c</b>) the monthly number of available Landsat images across PLB ((<b>I</b>) Poyang Lake region; (<b>II</b>) Zhelin Reservoir region; (<b>III</b>) Tao River region; (<b>IV</b>) Yangming Lake region).</p> "> Figure 3
<p>Scatterplots of TLI (<span class="html-italic">R</span>rs) calibration between M value and in situ measurement TLI (<span class="html-italic">R</span>rs) data.</p> "> Figure 4
<p>Correlation coefficients between remote sensing reflectance and TLI after different atmospheric correction modules.</p> "> Figure 5
<p>Accuracy of four atmospheric correction algorithms on Landsat-8 OLI.</p> "> Figure 6
<p>Accuracy validation of TLI model.</p> "> Figure 7
<p>(<b>a</b>) Spatial distribution of climatological TLI for the four studied regions on the Poyang Lake Basin (PLB) from the Landsat-8 OLI observations. The annotations “↑” and “↓” represent statistically significant increasing and significant decreasing trends, respectively. Subpanels A to D shows the four studied regions, respectively. (<b>b</b>) represent the variations in annual mean TLI in Poyang Lake Basin. (<b>c</b>–<b>f</b>) represent the variations in annual mean TLI in Poyang Lake, Zhelin Reservoir, Tao River, and Yangming Lake, respectively.</p> "> Figure 8
<p>The quarterly mean TLI of these studied regions in the Poyang Lake Basin ((<b>a</b>–<b>d</b>) represent Quarter 1 to 4) between 2013 to 2020; (<b>e</b>) represents the seasonal variation of mean TLI values in Poyang Lake Basin; (<b>f</b>–<b>i</b>) represents the seasonal variation of mean TLI values in Poyang Lake, Zhelin Reservoir, Tao Lake and Yangming Lake, respectively.</p> "> Figure 9
<p>Spatial patterns of eutrophic water body proportion in four typical regions: (<b>a</b>) Annual distribution, (<b>b</b>) Monthly distribution, (<b>c</b>) Quarterly distribution, and (<b>d</b>) Pattern distribution between wet and dry seasons.</p> "> Figure 10
<p>Monthly mean change of the proportion of eutrophic water bodies and three meteorological factors.</p> "> Figure 11
<p>Contribution of drivers on spatial variation of water body eutrophication proportion in typical areas of Poyang Lake Basin using the entropy weight method.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Data and Processing
2.2.1. In Situ Data Collection
2.2.2. Landsat OLI Images and Preprocessing
2.2.3. Meteorological, Anthropogenic, and Land Use Data
2.3. Motivation of Evaluation Factor for Eutrophication
2.4. Landsat-Based TLI Calibration
2.5. Assessments of the TLI Patterns and Driving Variables
2.6. Statistical Analysis and Accuracy Assessment
3. Results
3.1. Evaluation of the Applicability of Atmospheric Correction Algorithms to the Model of Trophic Level of Inland Waters
3.2. Validation of Algorithm in Landsat-Based TLI Calibration
3.3. Spatio-Temporal Variations in OLI-Derived TLI
3.4. Relationships between the TLI and Driving Forces
3.4.1. Meteorological Factors
3.4.2. Socio-Economic Factors
3.4.3. Land Use/Cover Factors
4. Discussion
4.1. Driving Forces
4.2. Comparing with the Existing Algorithms
4.3. Limitations of Satellite Monitoring of Water Eutrophication
4.4. Implications for the Water Environment Management
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
The Total Population | GDP | Chemical Fertilizer Usage | Agrochemicals Usage | Crop Planting Area | GDP1 | GDP2 | GDP3 | Effective Irrigation Area | Agriculture, Forestry, Fisheries, and Livestock GDP | |
---|---|---|---|---|---|---|---|---|---|---|
Poyang Lake | 0.78 | 0.65 | 0.86 | 0.85 | 0.79 | 0.69 | 0.67 | 0.56 | 0.82 | 0.64 |
Zhelin Reservoir | 0.80 | 0.85 | 0.81 | 0.75 | 0.81 | 0.84 | 0.84 | 0.71 | 0.81 | 0.85 |
Tao River | 0.81 | 0.72 | 0.81 | 0.79 | 0.81 | 0.79 | 0.81 | 0.66 | 0.81 | 0.79 |
Yangming Lake | 0.78 | 0.76 | 0.76 | 0.72 | 0.78 | 0.78 | 0.76 | 0.67 | 0.78 | 0.78 |
Built-Up Land | Forest and Grassland | Water | Bare Land | Cropland | |
---|---|---|---|---|---|
Poyang Lake | 0.59 | 0.69 | 0.76 | 0.89 | 0.72 |
Zhelin Reservoir | 0.55 | 0.78 | 0.62 | 0.70 | 0.60 |
Tao River | 0.76 | 0.83 | 0.75 | 0.57 | 0.78 |
Yangming Lake | 0.66 | 0.82 | 0.80 | 0.72 | 0.74 |
References
- Liu, S.; Hou, J.; Suo, C.; Chen, J.; Liu, X.; Fu, R.; Wu, F. Molecular-level composition of dissolved organic matter in distinct trophic states in Chinese lakes: Implications for eutrophic lake management and the global carbon cycle. Water Res. 2022, 217, 118438. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Xu, S.; Song, K.; Kutser, T.; Wen, Z.; Liu, G.; Shang, Y.; Lyu, L.; Tao, H.; Wang, X.; et al. Remote Quantification of the Trophic Status of Chinese Lakes. Hydrol. Earth Syst. Sci. Discuss. 2022, 2022. [Google Scholar] [CrossRef]
- Paerl, H.W.; Huisman, J. Blooms like it hot. Science 2008, 320, 57–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilarranz, L.J.; Narwani, A.; Odermatt, D.; Siber, R.; Dakos, V. Regime shifts, trends, and variability of lake productivity at a global scale. Proc. Natl. Acad. Sci. USA 2022, 119, e2116413119. [Google Scholar] [CrossRef]
- Conley, D.J.; Paerl, H.W.; Howarth, R.W.; Boesch, D.F.; Seitzinger, S.P.; Havens, K.E.; Lancelot, C.; Likens, G.E. Controlling eutrophication: Nitrogen and phosphorus. Science 2009, 323, 1014–1015. [Google Scholar] [CrossRef]
- Schindler, D.W.; Hecky, R.E.; Findlay, D.L.; Stainton, M.P.; Parker, B.R.; Paterson, M.J.; Beaty, K.G.; Lyng, M.; Kasian, S.E.M. Eutrophication of lakes cannot be controlled by reducing nitrogen input: Results of a 37-year whole-ecosystem experiment. Proc. Natl. Acad. Sci. USA 2008, 105, 11254–11258. [Google Scholar] [CrossRef] [Green Version]
- Hu, M.; Ma, R.; Xiong, J.; Wang, M.; Cao, Z.; Xue, K. Eutrophication state in the Eastern China based on Landsat 35-year observations. Remote Sens. Environ. 2022, 277, 113057. [Google Scholar] [CrossRef]
- Guan, Q.; Feng, L.; Hou, X.; Schurgers, G.; Zheng, Y.; Tang, J. Eutrophication changes in fifty large lakes on the Yangtze Plain of China derived from MERIS and OLCI observations. Remote Sens. Environ. 2020, 246, 111890. [Google Scholar] [CrossRef]
- Shi, K.; Zhang, Y.; Song, K.; Liu, M.; Zhou, Y.; Zhang, Y.; Li, Y.; Zhu, G.; Qin, B. A semi-analytical approach for remote sensing of trophic state in inland waters: Bio-optical mechanism and application. Remote Sens. Environ. 2019, 232, 111349. [Google Scholar] [CrossRef]
- Wen, Z.; Song, K.; Liu, G.; Shang, Y.; Fang, C.; Du, J.; Lyu, L. Quantifying the trophic status of lakes using total light absorption of optically active components. Environ. Pollut. 2019, 245, 684–693. [Google Scholar] [CrossRef]
- Carlson, R.E. A trophic state index for lakes 1. Limnol. Oceanogr. 1977, 22, 361–369. [Google Scholar] [CrossRef] [Green Version]
- Aizaki, M.; Otsuki, A.; Fukushima, T.; Hosomi, M.; Muraoka, K. Application of Carlson’s trophic state index to Japanese lakes and relationships between the index and other parameters. SIL Proc. 1922–2010 1981, 21, 675–681. [Google Scholar] [CrossRef]
- Jin, X.; Tu, Q. Specification of Lake Eutrophication Survey (in Chinese); Environmental Science Press: Beijing, China, 1990. [Google Scholar]
- Lin, S.-S.; Shen, S.-L.; Zhou, A.; Lyu, H.-M. Assessment and management of lake eutrophication: A case study in Lake Erhai, China. Sci. Total Environ. 2021, 751, 141618. [Google Scholar] [CrossRef]
- Ren, J.; Zheng, Z.; Li, Y.; Lv, G.; Wang, Q.; Lyu, H.; Huang, C.; Liu, G.; Du, C.; Mu, M.; et al. Remote observation of water clarity patterns in Three Gorges Reservoir and Dongting Lake of China and their probable linkage to the Three Gorges Dam based on Landsat 8 imagery. Sci. Total Environ. 2018, 625, 1554–1566. [Google Scholar] [CrossRef]
- Zheng, Z.; Li, Y.; Guo, Y.; Xu, Y.; Liu, G.; Du, C. Landsat-based long-term monitoring of total suspended matter concentration pattern change in the wet season for Dongting Lake, China. Remote Sens. 2015, 7, 13975–13999. [Google Scholar] [CrossRef] [Green Version]
- Shen, M.; Duan, H.; Cao, Z.; Xue, K.; Qi, T.; Ma, J.; Liu, D.; Song, K.; Huang, C.; Song, X. Sentinel-3 OLCI observations of water clarity in large lakes in eastern China: Implications for SDG 6.3.2 evaluation. Remote Sens. Environ. 2020, 247, 111950. [Google Scholar] [CrossRef]
- Liu, H.; He, B.; Zhou, Y.; Kutser, T.; Toming, K.; Feng, Q.; Yang, X.; Fu, C.; Yang, F.; Li, W.; et al. Trophic state assessment of optically diverse lakes using Sentinel-3-derived trophic level index. Int. J. Appl. Earth Obs. Geoinf. 2022, 114, 103026. [Google Scholar] [CrossRef]
- Zeng, S.; Lei, S.; Li, Y.; Lyu, H.; Dong, X.; Li, J.; Cai, X. Remote monitoring of total dissolved phosphorus in eutrophic Lake Taihu based on a novel algorithm: Implications for contributing factors and lake management. Environ. Pollut. 2022, 296, 118740. [Google Scholar] [CrossRef]
- Wang, S.; Li, J.; Zhang, B.; Spyrakos, E.; Tyler, A.N.; Shen, Q.; Zhang, F.; Kuster, T.; Lehmann, M.K.; Wu, Y.; et al. Trophic state assessment of global inland waters using a MODIS-derived Forel-Ule index. Remote Sens. Environ. 2018, 217, 444–460. [Google Scholar] [CrossRef] [Green Version]
- Pozdnyakov, D.V.; Korosov, A.A.; Petrova, N.A.; Grassl, H. Multi-year satellite observations of Lake Ladoga’s biogeochemical dynamics in relation to the lake’s trophic status. J. Great Lakes Res. 2013, 39, 34–45. [Google Scholar] [CrossRef]
- Zheng, Z.; Ren, J.; Li, Y.; Huang, C.; Liu, G.; Du, C.; Lyu, H. Remote sensing of diffuse attenuation coefficient patterns from Landsat 8 OLI imagery of turbid inland waters: A case study of Dongting Lake. Sci. Total Environ. 2016, 573, 39–54. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Ma, R.; Liu, M.; Duan, H.; Xiao, Q.; Xue, K.; Shen, M. Harmonized Chlorophyll-a Retrievals in Inland Lakes From Landsat-8/9 and Sentinel 2A/B Virtual Constellation Through Machine Learning. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–16. [Google Scholar] [CrossRef]
- Li, Y.; Shi, K.; Zhang, Y.; Zhu, G.; Zhang, Y.; Wu, Z.; Liu, M.; Guo, Y.; Li, N. Analysis of water clarity decrease in Xin’anjiang Reservoir, China, from 30-Year Landsat TM, ETM+, and OLI observations. J. Hydrol. 2020, 590, 125476. [Google Scholar] [CrossRef]
- Lee, Z.; Shang, S.; Qi, L.; Yan, J.; Lin, G. A semi-analytical scheme to estimate Secchi-disk depth from Landsat-8 measurements. Remote Sens. Environ. 2016, 177, 101–106. [Google Scholar] [CrossRef]
- Watanabe, F.S.; Alcântara, E.; Rodrigues, T.W.; Imai, N.N.; Barbosa, C.C.; Rotta, L.H. Estimation of Chlorophyll-a Concentration and the Trophic State of the Barra Bonita Hydroelectric Reservoir Using OLI/Landsat-8 Images. Int. J. Environ. Res. Public Health 2015, 12, 10391–10417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, B.; Yang, G.; Wan, R. Multidecadal water quality deterioration in the largest freshwater lake in China (Poyang Lake): Implications on eutrophication management. Environ. Pollut. 2020, 260, 114033. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Bi, S.; Xu, J.; Guo, F.; Lyu, H.; Dong, X.; Cai, X. Utilization of GOCI data to evaluate the diurnal vertical migration of Microcystis aeruginosa and the underlying driving factors. J. Environ. Manag. 2022, 310, 114734. [Google Scholar] [CrossRef]
- Morel, A.; Mueller, J.L. Normalized Water-Leaving Radiance and Remote Sensing Reflectance: Bidirectional Reflectance and. In Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 3; National Aeronautics and Space Administration, Goddard Space Flight Center: Greenbelt, MD, USA, 2002; Volume 210004, p. 183. [Google Scholar]
- Xing, Q.; Hu, C. Mapping macroalgal blooms in the Yellow Sea and East China Sea using HJ-1 and Landsat data: Application of a virtual baseline reflectance height technique. Remote Sens. Environ. 2016, 178, 113–126. [Google Scholar] [CrossRef]
- Vermote, E.F.; Tanré, D.; Deuze, J.L.; Herman, M.; Morcette, J.J. Second simulation of the satellite signal in the solar spectrum, 6S: An overview. IEEE Trans. Geosci. Remote Sens. 1997, 35, 675–686. [Google Scholar] [CrossRef] [Green Version]
- Gordon, H.R.; Wang, M. Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: A preliminary algorithm. Appl. Opt. 1994, 33, 443–452. [Google Scholar] [CrossRef]
- Bernstein, L.S.; Jin, X.; Gregor, B.; Adler-Golden, S.M. Quick atmospheric correction code: Algorithm description and recent upgrades. Opt. Eng. 2012, 51, 111719. [Google Scholar] [CrossRef]
- National Meteorological Information Center. Daily Meteorological Dataset of Basic Meteorological Elements of China National Surface Weather Station (V3.0) (1951–2020); National Meteorological Information Center: Beijing, China, 2021. [Google Scholar]
- Xu, Y.; Li, Y.; Wang, Q.; Lv, H.; Liu, Z.; Xu, X.; Tan, J.; Guo, Y.; Wu, C. Eutrophication evaluation of three lakes and one reservoir using CCD images of HJ-1 satellite (in Chinese). Acta Sci. Circumstantiae 2011, 31, 81–93. [Google Scholar] [CrossRef]
- Gupana, R.S.; Odermatt, D.; Cesana, I.; Giardino, C.; Nedbal, L.; Damm, A. Remote sensing of sun-induced chlorophyll-a fluorescence in inland and coastal waters: Current state and future prospects. Remote Sens. Environ. 2021, 262, 112482. [Google Scholar] [CrossRef]
- Guo, Y.; Huang, C.; Li, Y.; Du, C.; Shi, L.; Li, Y.; Chen, W.; Wei, H.; Cai, E.; Ji, G. Hyperspectral reconstruction method for optically complex inland waters based on bio-optical model and sparse representing. Remote Sens. Environ. 2022, 276, 113045. [Google Scholar] [CrossRef]
- Bi, S.; Li, Y.; Liu, G.; Song, K.; Xu, J.; Dong, X.; Cai, X.; Mu, M.; Miao, S.; Lyu, H. Assessment of algorithms for estimating chlorophyll-a concentration in inland waters: A round-robin scoring method based on the optically fuzzy clustering. IEEE Trans. Geosci. Remote Sens. 2021, 60, 4200717. [Google Scholar] [CrossRef]
- Carpenter, D.J.; Carpenter, S.M. Modeling inland water quality using Landsat data. Remote Sens. Environ. 1983, 13, 345–352. [Google Scholar] [CrossRef]
- Gitelson, A.; Szilagyi, F.; Mittenzwey, K.H. Improving quantitative remote sensing for monitoring of inland water quality. Water Res. 1993, 27, 1185–1194. [Google Scholar] [CrossRef]
- Gons, H.J.; Auer, M.T.; Effler, S.W. MERIS satellite chlorophyll mapping of oligotrophic and eutrophic waters in the Laurentian Great Lakes. Remote Sens. Environ. 2008, 112, 4098–4106. [Google Scholar] [CrossRef]
- Le, C.; Li, Y.; Zha, Y.; Sun, D.; Huang, C.; Lu, H. A four-band semi-analytical model for estimating chlorophyll a in highly turbid lakes: The case of Taihu Lake, China. Remote Sens. Environ. 2009, 113, 1175–1182. [Google Scholar] [CrossRef]
- Warren, M.A.; Simis, S.G.H.; Selmes, N. Complementary water quality observations from high and medium resolution Sentinel sensors by aligning chlorophyll-a and turbidity algorithms. Remote Sens. Environ. 2021, 265, 112651. [Google Scholar] [CrossRef]
- Zhang, R.; Zheng, Z.; Liu, G.; Du, C.; Du, C.; Lei, S.; Xu, Y.; Xu, J.; Mu, M.; Bi, S.; et al. Simulation and assessment of the capabilities of Orbita Hyperspectral (OHS) imagery for remotely monitoring chlorophyll-a in eutrophic plateau lakes. Remote Sens. 2021, 13, 2821. [Google Scholar] [CrossRef]
- Mooij, W.M.; Hülsmann, S.; De Senerpont Domis, L.N.; Nolet, B.A.; Bodelier, P.L.E.; Boers, P.; Pires, L.; Gons, H.J.; Ibelings, B.W.; Noordhuis, R. The impact of climate change on lakes in the Netherlands: A review. Aquat. Ecol. 2005, 39, 381–400. [Google Scholar] [CrossRef]
- Zhang, M.; Duan, H.; Shi, X.; Yu, Y.; Kong, F. Contributions of meteorology to the phenology of cyanobacterial blooms: Implications for future climate change. Water Res. 2012, 46, 442–452. [Google Scholar] [CrossRef]
- Whitehead, P.G.; Barbour, E.; Futter, M.N.; Sarkar, S.; Rodda, H.; Caesar, J.; Butterfield, D.; Jin, L.; Sinha, R.; Nicholls, R.; et al. Impacts of climate change and socio-economic scenarios on flow and water quality of the Ganges, Brahmaputra and Meghna (GBM) river systems: Low flow and flood statistics. Environ. Sci. Process. Impacts 2015, 17, 1057–1069. [Google Scholar] [CrossRef] [PubMed]
- Berkhout, F.; Hertin, J.; Jordan, A. Socio-economic futures in climate change impact assessment: Using scenarios as ‘learning machines’. Glob. Environ. Change 2002, 12, 83–95. [Google Scholar] [CrossRef]
- Islam, M.M.M.; Iqbal, M.S.; Leemans, R.; Hofstra, N. Modelling the impact of future socio-economic and climate change scenarios on river microbial water quality. Int. J. Hyg. Environ. Health 2018, 221, 283–292. [Google Scholar] [CrossRef]
- Deng, J. Control problems of grey systems. Syst. Control Lett. 1982, 1, 288–294. [Google Scholar] [CrossRef]
- Huang, Y.; Shen, L.; Liu, H. Grey relational analysis, principal component analysis and forecasting of carbon emissions based on long short-term memory in China. J. Clean. Prod. 2019, 209, 415–423. [Google Scholar] [CrossRef]
- Malek, A.; Ebrahimnejad, S.; Tavakkoli-Moghaddam, R. An improved hybrid grey relational analysis approach for green resilient supply chain network assessment. Sustainability 2017, 9, 1433. [Google Scholar] [CrossRef] [Green Version]
- Mu, M.; Li, Y.; Bi, S.; Lyu, H.; Xu, J.; Lei, S.; Miao, S.; Zeng, S.; Zheng, Z.; Du, C. Prediction of algal bloom occurrence based on the naive Bayesian model considering satellite image pixel differences. Ecol. Indic. 2021, 124, 107416. [Google Scholar] [CrossRef]
- Zhe, W.; Xigang, X.; Feng, Y. An abnormal phenomenon in entropy weight method in the dynamic evaluation of water quality index. Ecol. Indic. 2021, 131, 108137. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Q.; Wang, L.; Liang, L. Regional environmental efficiency in China: An empirical analysis based on entropy weight method and non-parametric models. J. Clean. Prod. 2020, 276, 124147. [Google Scholar] [CrossRef]
- Neil, C.; Spyrakos, E.; Hunter, P.D.; Tyler, A.N. A global approach for chlorophyll-a retrieval across optically complex inland waters based on optical water types. Remote Sens. Environ. 2019, 229, 159–178. [Google Scholar] [CrossRef]
- Bonansea, M.; Rodriguez, M.C.; Pinotti, L.; Ferrero, S. Using multi-temporal Landsat imagery and linear mixed models for assessing water quality parameters in Río Tercero reservoir (Argentina). Remote Sens. Environ. 2015, 158, 28–41. [Google Scholar] [CrossRef]
- Feng, L.; Hou, X.; Zheng, Y. Monitoring and understanding the water transparency changes of fifty large lakes on the Yangtze Plain based on long-term MODIS observations. Remote Sens. Environ. 2019, 221, 675–686. [Google Scholar] [CrossRef]
- Zhou, Q.; Wang, J.; Tian, L.; Feng, L.; Li, J.; Xing, Q. Remotely sensed water turbidity dynamics and its potential driving factors in Wuhan, an urbanizing city of China. J. Hydrol. 2021, 593, 125893. [Google Scholar] [CrossRef]
- Li, Y.; Shi, K.; Zhang, Y.; Zhu, G.; Qin, B.; Zhang, Y.; Liu, M.; Zhu, M.; Dong, B.; Guo, Y. Remote sensing of column-integrated chlorophyll a in a large deep-water reservoir. J. Hydrol. 2022, 610, 127918. [Google Scholar] [CrossRef]
- Akoglu, H. User’s guide to correlation coefficients. Turk. J. Emerg. Med. 2018, 18, 91–93. [Google Scholar] [CrossRef]
- Shi, K.; Zhang, Y.; Liu, X.; Wang, M.; Qin, B. Remote sensing of diffuse attenuation coefficient of photosynthetically active radiation in Lake Taihu using MERIS data. Remote Sens. Environ. 2014, 140, 365–377. [Google Scholar] [CrossRef]
- Li, B.; Yang, G.; Wan, R.; Hörmann, G. Dynamic water quality evaluation based on fuzzy matter—Element model and functional data analysis, a case study in Poyang Lake. Environ. Sci. Pollut. Res. 2017, 24, 19138–19148. [Google Scholar] [CrossRef]
- Shi, K.; Zhang, Y.; Qin, B.; Zhou, B. Remote sensing of cyanobacterial blooms in inland waters: Present knowledge and future challenges. Sci. Bull. 2019, 64, 1540–1556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duan, H.; Zhang, Y.; Zhang, B.; Song, K.; Wang, Z. Assessment of Chlorophyll-a Concentration and Trophic State for Lake Chagan Using Landsat TM and Field Spectral Data. Environ. Monit. Assess. 2007, 129, 295–308. [Google Scholar] [CrossRef] [PubMed]
Band Combination | Correlation Coefficient | Band Combination | Correlation Coefficient |
---|---|---|---|
B1/(B3 + B5) | −0.6239 | B2/(B1 + B3) | −0.5914 |
B2/(B3 + B5) | −0.6034 | B3/(B2 + B3) | 0.5900 |
(B3 − B2)/(B1 + B2) | 0.6014 | (B3 − B2)/(B1 + B3) | 0.5897 |
B3/(B1 + B2) | 0.5993 | B4/(B1 + B2) | 0.5855 |
(B3 − B1)/(B1 + B2) | 0.5966 | (B5 − B2)/(B1 − B3) | −0.5850 |
Model | Equation Form | MAD | RMSD | MAPD |
---|---|---|---|---|
Wen, et al. [10] | 4.33 | 5.31 | 9.39 | |
3.74 | 4.69 | 7.63 | ||
Duan, et al. [65] | 11.25 | 23.47 | 22.92 | |
Hu, et al. [7] | 4.49 | 5.33 | 9.21 | |
This study | 3.58 | 4.43 | 8.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Zheng, Z.; Liu, G.; Chen, N.; Lei, S.; Du, C.; Xu, J.; Li, Y.; Zhang, R.; Huang, C. Estimating Effects of Natural and Anthropogenic Activities on Trophic Level of Inland Water: Analysis of Poyang Lake Basin, China, with Landsat-8 Observations. Remote Sens. 2023, 15, 1618. https://doi.org/10.3390/rs15061618
Li J, Zheng Z, Liu G, Chen N, Lei S, Du C, Xu J, Li Y, Zhang R, Huang C. Estimating Effects of Natural and Anthropogenic Activities on Trophic Level of Inland Water: Analysis of Poyang Lake Basin, China, with Landsat-8 Observations. Remote Sensing. 2023; 15(6):1618. https://doi.org/10.3390/rs15061618
Chicago/Turabian StyleLi, Jianzhong, Zhubin Zheng, Ge Liu, Na Chen, Shaohua Lei, Chao Du, Jie Xu, Yuan Li, Runfei Zhang, and Chao Huang. 2023. "Estimating Effects of Natural and Anthropogenic Activities on Trophic Level of Inland Water: Analysis of Poyang Lake Basin, China, with Landsat-8 Observations" Remote Sensing 15, no. 6: 1618. https://doi.org/10.3390/rs15061618
APA StyleLi, J., Zheng, Z., Liu, G., Chen, N., Lei, S., Du, C., Xu, J., Li, Y., Zhang, R., & Huang, C. (2023). Estimating Effects of Natural and Anthropogenic Activities on Trophic Level of Inland Water: Analysis of Poyang Lake Basin, China, with Landsat-8 Observations. Remote Sensing, 15(6), 1618. https://doi.org/10.3390/rs15061618