A Novel Dual-Encoder Model for Hyperspectral and LiDAR Joint Classification via Contrastive Learning
<p>The proposed classification framework of joint HSI-LiDAR classification.</p> "> Figure 2
<p>Two architectures of HSI networks. (<b>a</b>) Trident-HSI. (<b>b</b>) ConvNeXt-HSI.</p> "> Figure 3
<p>The principle of Octave convolution.</p> "> Figure 4
<p>The architecture of OctaveConv-LiDAR DSM encoder.</p> "> Figure 5
<p>Feature visualization. (<b>a</b>) ConvNeXt-HSI feature map. (<b>b</b>) OctaveConv-LiDAR.</p> "> Figure 6
<p>The framework of our proposed stagewise training strategy.</p> "> Figure 7
<p>The visualization of the Houston2013 dataset. (<b>a</b>) Pseudo color map of an HSI. (<b>b</b>) DSM of LiDAR. (<b>c</b>) Training samples map. (<b>d</b>) Testing samples map.</p> "> Figure 8
<p>The visualization of the Trento dataset. (<b>a</b>) Pseudo color map of an HSI. (<b>b</b>) DSM of LiDAR. (<b>c</b>) Training samples map. (<b>d</b>) Testing samples map.</p> "> Figure 9
<p>Classification maps of the Houston2013 dataset. (<b>a</b>) Two-Branch. (<b>b</b>) EndNet. (<b>c</b>) MDL-Middle. (<b>d</b>) Trident-HSI. (<b>e</b>) CNN-LiDAR. (<b>f</b>) ConvNeXt-HSI. (<b>g</b>) OctaveConv-LiDAR. (<b>h</b>) Proposed.</p> "> Figure 10
<p>Classification maps of the Trento dataset using different models. (<b>a</b>) Two-Branch. (<b>b</b>) EndNet. (<b>c</b>) MDL-Middle. (<b>d</b>) Trident-HSI. (<b>e</b>) CNN-LiDAR. (<b>f</b>) ConvNeXt-HSI. (<b>g</b>) OctaveConv-LiDAR. (<b>h</b>) Proposed.</p> "> Figure 10 Cont.
<p>Classification maps of the Trento dataset using different models. (<b>a</b>) Two-Branch. (<b>b</b>) EndNet. (<b>c</b>) MDL-Middle. (<b>d</b>) Trident-HSI. (<b>e</b>) CNN-LiDAR. (<b>f</b>) ConvNeXt-HSI. (<b>g</b>) OctaveConv-LiDAR. (<b>h</b>) Proposed.</p> "> Figure 11
<p>Stagewise training strategy. (<b>a</b>) train_loss on the Houston2013 dataset. (<b>b</b>) val_acc on the Houston2013 dataset. (<b>c</b>) train_loss on the Trento dataset. (<b>d</b>) val_acc on the Trento dataset.</p> ">
Abstract
:1. Introduction
- We introduce a multi-sensor pair training framework for the HSI-LiDAR classification task. Our multi-sensor training framework can exploit intrinsic data properties in each modality and simultaneously extract semantic information from cross-modal correlations. It can not only encode the two modalities independently to capture more modality-specific information but also complete the deep fusion of the two sensors’ information and learn the alignment between different modalities and learn deep fusion for HSI-LiDAR classification tasks;
- It is well known that information is conveyed at different frequencies, where higher frequencies are typically used for fine detail encoding and lower frequencies are typically used for global structure encoding. The Digital Surface Model (DSM) of LiDAR has rich depth information, that is, high- and low-frequency information. We propose a new LiDAR encoder network structure with Octave convolution. The output maps of a convolutional layer can also be factorized and grouped by their spatial frequency. OctaveConv focuses on reducing the spatial redundancy in CNNs and is designed to replace vanilla convolution operations. In this way, the high- and low-frequency information of the DSM is fully utilized from the aspect of feature extraction;
- Due to the spectral redundancy and low spatial resolution of HSIs, we propose the Spectral-Aware Trident network in parallel and the ConvNeXt network in series. In both networks, dilated convolution that can improve the receptive field is used. Recently, the application of the ConvNeXt network in the visual field has become a hot spot. On the basis of maintaining the CNN structure, the ConvNeXt network borrows the design concepts of Transformer and other methods. While maintaining the local sensitivity of the CNN, a larger kernel size is used to simulate the long-range modeling ability, which ensures the global information of the network. The spectrum of an HSI is a sequence of data that typically contains hundreds of bands. Through the feature extraction advantages of the local information and the global information of the ConvNeXt network, we can not only complete the extraction of global spectral–spatial information but also overcome the problems of accuracy degradation caused by mixed pixels.
- In the training method of the network, we show the use of a stagewise training strategy, which trains the HSI branch, LiDAR branch, and HSI-LiDAR classification tasks in stages. The method of training the HSI and LiDAR branches in stages can provide better model parameter initialization for the HSI-LiDAR classification model, which usually leads to better generalization performance and accelerates convergence on this downstream task.
2. Methods
2.1. Overview
2.2. HSI and LiDAR Encoder
2.2.1. HSI Encoder
- Trident-HSI
- 2.
- ConvNeXt-HSI
2.2.2. LiDAR DSM Encoder
2.2.3. Feature Visualization and Analysis
2.3. HSI-LiDAR Contrastive Learning
2.4. Stagewise Training Strategy
3. Results
3.1. Experimental Datasets Description
3.2. Experimental Setup
3.3. Experimental Results
3.3.1. Classification Results of the Houston2013 Dataset
3.3.2. Classification Results of the Trento Dataset
3.3.3. Computational Complexity Analysis
4. Discussion
4.1. Effect of the Online Multi-Scale Data Augmentation Module
4.2. Effect of the Contrastive Learning Module
4.3. Effect of the Stagewise Training Strategy
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schaepman, M.E.; Ustin, S.L.; Plaza, A.J.; Painter, T.H.; Verrelst, J.; Liang, S. Earth system science related imaging spectroscopy—An assessment. Remote Sens. Environ. 2009, 113, S123–S137. [Google Scholar] [CrossRef]
- Hong, D.; Yokoya, N.; Chanussot, J.; Zhu, X.X. CoSpace: Common subspace learning from hyperspectral-multispectral correspondences. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4349–4359. [Google Scholar] [CrossRef]
- Shah, C.; Du, Q.; Xu, Y. Enhanced TabNet: Attentive Interpretable Tabular Learning for Hyperspectral Image Classification. Remote Sens. 2022, 14, 716. [Google Scholar] [CrossRef]
- Zhao, R.; Du, S. An Encoder–Decoder with a Residual Network for Fusing Hyperspectral and Panchromatic Remote Sensing Images. Remote Sens. 2022, 14, 1981. [Google Scholar] [CrossRef]
- Shahshahani, B.M.; Landgrebe, D.A. The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon. IEEE Trans. Geosci. Remote Sens. 1994, 32, 1087–1095. [Google Scholar] [CrossRef]
- Dalponte, M.; Bruzzone, L.; Gianelle, D. Tree species classification in the Southern Alps based on the fusion of very high geometrical resolution multispectral/hyperspectral images and LiDAR data. Remote Sens. Environ. 2012, 123, 258–270. [Google Scholar] [CrossRef]
- Kuras, A.; Brell, M.; Rizzi, J.; Burud, I. Hyperspectral and lidar data applied to the urban land cover machine learning and neural-network-based classification: A review. Remote Sens. 2021, 13, 3393. [Google Scholar] [CrossRef]
- Mäyrä, J.; Keski-Saari, S.; Kivinen, S.; Tanhuanpää, T.; Hurskainen, P.; Kullberg, P.; Poikolainen, L.; Viinikka, A.; Tuominen, S.; Kumpula, T. Tree species classification from airborne hyperspectral and LiDAR data using 3D convolutional neural networks. Remote Sens. Environ. 2021, 256, 112322. [Google Scholar] [CrossRef]
- Dalponte, M.; Bruzzone, L.; Gianelle, D. Fusion of hyperspectral and LIDAR remote sensing data for classification of complex forest areas. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1416–1427. [Google Scholar] [CrossRef]
- Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- Ghamisi, P.; Rasti, B.; Yokoya, N.; Wang, Q.; Hofle, B.; Bruzzone, L.; Bovolo, F.; Chi, M.; Anders, K.; Gloaguen, R. Multisource and multitemporal data fusion in remote sensing: A comprehensive review of the state of the art. IEEE Geosci. Remote Sens. Mag. 2019, 7, 6–39. [Google Scholar] [CrossRef]
- Debes, C.; Merentitis, A.; Heremans, R.; Hahn, J.; Frangiadakis, N.; van Kasteren, T.; Liao, W.; Bellens, R.; Pižurica, A.; Gautama, S. Hyperspectral and LiDAR data fusion: Outcome of the 2013 GRSS data fusion contest. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2405–2418. [Google Scholar] [CrossRef]
- Geng, J.; Deng, X.; Ma, X.; Jiang, W. Transfer learning for SAR image classification via deep joint distribution adaptation networks. IEEE Trans. Geosci. Remote Sens. 2020, 58, 5377–5392. [Google Scholar] [CrossRef]
- Feng, Q.; Zhu, D.; Yang, J.; Li, B. Multisource hyperspectral and LiDAR data fusion for urban land-use mapping based on a modified two-branch convolutional neural network. ISPRS Int. J. Geo-Inf. 2019, 8, 28. [Google Scholar] [CrossRef]
- Jia, X.; Kuo, B.-C.; Crawford, M.M. Feature mining for hyperspectral image classification. Proc. IEEE 2013, 101, 676–697. [Google Scholar] [CrossRef]
- Gao, S.-H.; Cheng, M.-M.; Zhao, K.; Zhang, X.-Y.; Yang, M.-H.; Torr, P. Res2net: A new multi-scale backbone architecture. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 43, 652–662. [Google Scholar] [CrossRef] [PubMed]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826. [Google Scholar]
- Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A.A. Inception-v4, inception-resnet and the impact of residual connections on learning. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Xie, S.; Girshick, R.; Dollár, P.; Tu, Z.; He, K. Aggregated residual transformations for deep neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1492–1500. [Google Scholar]
- Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M. Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [Google Scholar] [CrossRef]
- Zhou, B.; Lapedriza, A.; Khosla, A.; Oliva, A.; Torralba, A. Places: A 10 million image database for scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 1452–1464. [Google Scholar] [CrossRef] [PubMed]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. In Advances in Neural Information Processing Systems 28; MIT Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Bazi, Y.; Bashmal, L.; Rahhal, M.M.A.; Dayil, R.A.; Ajlan, N.A. Vision transformers for remote sensing image classification. Remote Sens. 2021, 13, 516. [Google Scholar] [CrossRef]
- Miao, W.; Geng, J.; Jiang, W. Semi-Supervised Remote-Sensing Image Scene Classification Using Representation Consistency Siamese Network. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–14. [Google Scholar] [CrossRef]
- Xu, X.; Li, W.; Ran, Q.; Du, Q.; Gao, L.; Zhang, B. Multisource remote sensing data classification based on convolutional neural network. IEEE Trans. Geosci. Remote Sens. 2017, 56, 937–949. [Google Scholar] [CrossRef]
- Hong, D.; Gao, L.; Hang, R.; Zhang, B.; Chanussot, J. Deep encoder-decoder networks for classification of hyperspectral and LiDAR data. IEEE Geosci. Remote Sens. Lett. 2020, 19, 5500205. [Google Scholar] [CrossRef]
- Hong, D.; Gao, L.; Yokoya, N.; Yao, J.; Chanussot, J.; Du, Q.; Zhang, B. More diverse means better: Multimodal deep learning meets remote-sensing imagery classification. IEEE Trans. Geosci. Remote Sens. 2020, 59, 4340–4354. [Google Scholar] [CrossRef]
- Bachman, P.; Hjelm, R.D.; Buchwalter, W. Learning representations by maximizing mutual information across views. In Advances in Neural Information Processing Systems 32; MIT Press: Cambridge, MA, USA, 2019. [Google Scholar]
- Oord, A.v.d.; Li, Y.; Vinyals, O. Representation learning with contrastive predictive coding. arXiv 2018, arXiv:1807.03748. [Google Scholar]
- He, K.; Fan, H.; Wu, Y.; Xie, S.; Girshick, R. Momentum contrast for unsupervised visual representation learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 9729–9738. [Google Scholar]
- Chen, T.; Kornblith, S.; Norouzi, M.; Hinton, G. A simple framework for contrastive learning of visual representations. In Proceedings of the International Conference on Machine Learning, Vienna, Austria, 12–18 July 2020; pp. 1597–1607. [Google Scholar]
- Chen, X.; Fan, H.; Girshick, R.; He, K. Improved baselines with momentum contrastive learning. arXiv 2020, arXiv:2003.04297. [Google Scholar]
- Liu, Z.; Mao, H.; Wu, C.-Y.; Feichtenhofer, C.; Darrell, T.; Xie, S. A convnet for the 2020s. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 19–24 June 2022; pp. 11976–11986. [Google Scholar]
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 10012–10022. [Google Scholar]
- Wang, P.; Chen, P.; Yuan, Y.; Liu, D.; Huang, Z.; Hou, X.; Cottrell, G. Understanding convolution for semantic segmentation. In Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Tahoe, NV, USA, 12–15 March 2018; pp. 1451–1460. [Google Scholar]
- Chen, Y.; Fan, H.; Xu, B.; Yan, Z.; Kalantidis, Y.; Rohrbach, M.; Yan, S.; Feng, J. Drop an octave: Reducing spatial redundancy in convolutional neural networks with octave convolution. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 3435–3444. [Google Scholar]
Class | Class Name | Train Num | Test Num | Color |
---|---|---|---|---|
C1 | Healthy Grass | 198 | 1053 | |
C2 | Stressed Grass | 190 | 1064 | |
C3 | Synthetic Grass | 192 | 505 | |
C4 | Trees | 188 | 1056 | |
C5 | Soil | 186 | 1056 | |
C6 | Water | 182 | 143 | |
C7 | Residential | 196 | 1072 | |
C8 | Commercial | 191 | 1053 | |
C9 | Road | 193 | 1059 | |
C10 | Highway | 191 | 1036 | |
C11 | Railway | 181 | 1054 | |
C12 | Parking Lot1 | 192 | 1041 | |
C13 | Parking Lot2 | 184 | 285 | |
C14 | Tennis Court | 181 | 247 | |
C15 | Running Track | 187 | 473 | |
- | Total | 2832 | 12,197 |
Class | Class Name | Train Number | Test Number | Color |
---|---|---|---|---|
C1 | Apples | 129 | 3905 | |
C2 | Buildings | 15 | 2778 | |
C3 | Ground | 105 | 374 | |
C4 | Woods | 154 | 8969 | |
C5 | Vineyard | 184 | 10,317 | |
C6 | Roads | 122 | 29,395 | |
- | Total | 819 | 55,738 |
Class | Two- | EndNet | MDL- | Trident- | CNN- | ConvNeXt | OctaveConv | Proposed |
---|---|---|---|---|---|---|---|---|
Branch | Middle | HSI | LiDAR | -HSI | -LiDAR | |||
C1 | 83.1 | 81.58 | 83.1 | 82.72 | 52.42 | 83.1 | 46.63 | 88.41 |
C2 | 84.1 | 83.65 | 85.06 | 84.4 | 35.06 | 84.77 | 54.79 | 81.3 |
C3 | 100 | 100 | 99.6 | 98.02 | 83.96 | 99.8 | 86.14 | 100 |
C4 | 93.09 | 93.09 | 91.57 | 92.99 | 82.95 | 92.9 | 81.63 | 99.53 |
C5 | 100 | 99.91 | 98.86 | 99.91 | 44.03 | 100 | 47.72 | 100 |
C6 | 99.3 | 95.1 | 100 | 93.71 | 64.34 | 96.5 | 71.33 | 97.2 |
C7 | 92.82 | 82.65 | 97.64 | 82.28 | 88.06 | 82.74 | 91.98 | 91.98 |
C8 | 82.34 | 81.29 | 88.13 | 70.85 | 94.87 | 76.63 | 87.84 | 85.28 |
C9 | 84.7 | 88.29 | 85.93 | 78.09 | 48.63 | 83.76 | 64.02 | 90.46 |
C10 | 65.44 | 89 | 74.42 | 41.89 | 52.7 | 64.38 | 56.27 | 75.1 |
C11 | 88.24 | 83.78 | 84.54 | 61.86 | 87.95 | 91.75 | 87.86 | 94.97 |
C12 | 89.53 | 90.39 | 95.39 | 96.73 | 27.28 | 97.79 | 35.45 | 96.54 |
C13 | 92.28 | 82.46 | 87.37 | 76.81 | 68.77 | 82.46 | 70.18 | 91.23 |
C14 | 96.76 | 100 | 95.14 | 100 | 78.14 | 97.57 | 80.57 | 100 |
C15 | 99.79 | 98.1 | 100 | 100 | 67.44 | 97.25 | 84.57 | 98.31 |
OA (%) | 87.98 | 88.52 | 89.55 | 81.35 | 63.17 | 87.12 | 67.58 | 91.37 |
AA (%) | 90.11 | 89.95 | 91.05 | 81.76 | 60.6 | 88.17 | 65.29 | 91.33 |
K × 100 | 86.98 | 87.59 | 87.59 | 79.83 | 60.21 | 86.02 | 64.92 | 90.64 |
Class | Two- | EndNet | MDL- | Trident- | CNN- | ConvNeXt- | OctaveConv- | Proposed |
---|---|---|---|---|---|---|---|---|
Branch | Middle | HSI | LiDAR | HSI | LiDAR | |||
C1 | 99.78 | 88.19 | 99.5 | 97.87 | 99.5 | 98.17 | 99.78 | 99.88 |
C2 | 97.93 | 98.49 | 97.55 | 87.39 | 95.25 | 98.35 | 96.49 | 99.1 |
C3 | 99.93 | 95.19 | 99.1 | 98.75 | 78.91 | 98.96 | 75.78 | 96.87 |
C4 | 99.46 | 99.3 | 99.9 | 97.94 | 93.73 | 98.09 | 94.38 | 99.87 |
C5 | 98.96 | 91.96 | 99.71 | 99.21 | 91.68 | 99.39 | 91.48 | 99.08 |
C6 | 91.68 | 90.14 | 92.25 | 78.01 | 67.62 | 77.22 | 74.01 | 94.77 |
OA (%) | 98.36 | 94.17 | 98.73 | 95.28 | 90.95 | 96.4 | 91.85 | 98.92 |
AA (%) | 97.96 | 93.88 | 98 | 90.17 | 81.98 | 92.91 | 83.57 | 98.4 |
K × 100 | 97.83 | 92.22 | 98.32 | 92.7 | 88.07 | 95.2 | 89.26 | 98.61 |
Methods | #param. (M) | FLOPs (M) |
---|---|---|
Two-Branch | 0.25 | 4.7 |
EndNet | 0.27 | 4.9 |
MDL-Middle | 0.25 | 4.7 |
Proposed | 50 | 10 |
Dataset | Online Multi-Scale | OA (%) | AA (%) | K × 100 |
---|---|---|---|---|
Houston2013 | × | 89.6 | 89.41 | 88.55 |
√ | 91.37 | 91.33 | 90.64 | |
Trento | × | 97.88 | 97.54 | 96.96 |
√ | 98.92 | 98.4 | 98.61 |
Dataset | Contrastive | OA (%) | AA (%) | K × 100 |
---|---|---|---|---|
Learning | ||||
Houston2013 | × | 88.14 | 89.12 | 87.16 |
√ | 91.37 | 91.33 | 90.64 | |
Trento | × | 98.55 | 98.23 | 97.94 |
√ | 98.92 | 98.4 | 98.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, H.; Dai, S.; Liu, C.; Wang, A.; Iwahori, Y. A Novel Dual-Encoder Model for Hyperspectral and LiDAR Joint Classification via Contrastive Learning. Remote Sens. 2023, 15, 924. https://doi.org/10.3390/rs15040924
Wu H, Dai S, Liu C, Wang A, Iwahori Y. A Novel Dual-Encoder Model for Hyperspectral and LiDAR Joint Classification via Contrastive Learning. Remote Sensing. 2023; 15(4):924. https://doi.org/10.3390/rs15040924
Chicago/Turabian StyleWu, Haibin, Shiyu Dai, Chengyang Liu, Aili Wang, and Yuji Iwahori. 2023. "A Novel Dual-Encoder Model for Hyperspectral and LiDAR Joint Classification via Contrastive Learning" Remote Sensing 15, no. 4: 924. https://doi.org/10.3390/rs15040924
APA StyleWu, H., Dai, S., Liu, C., Wang, A., & Iwahori, Y. (2023). A Novel Dual-Encoder Model for Hyperspectral and LiDAR Joint Classification via Contrastive Learning. Remote Sensing, 15(4), 924. https://doi.org/10.3390/rs15040924