ET Partitioning Assessment Using the TSEB Model and sUAS Information across California Central Valley Vineyards
<p>Study areas in California and the position of EC flux towers at each research site. The position of each EC flux tower within the respective research sites is marked by a red cross and the corresponding tower name in white font.</p> "> Figure 2
<p>Flowchart showing the process of comparing ET rate and ET partitioning from TSEB models within the footprint area. The top 5 boxes, along with surface temperature in the second row, are the inputs for the TSEB models. The ET rate and T/ET were extracted within the corresponding footprint area and then compared with the EC flux tower monitored data.</p> "> Figure 3
<p>Flowchart showing the ideal temperature separation process for a single TSEB model pixel (3.6 m resolution).</p> "> Figure 4
<p>One example showing the performance of the method in one TSEB modeling pixel (3.6 m resolution grid) to separate the temperature as canopy and soil temperature. (<b>a</b>) Spectral image at 0.15 m resolution, along with (<b>b</b>) co-collected temperature image and (<b>c</b>) generated NDVI image at 0.6 m resolution. Pixels highlighted with the dashed line in (<b>b</b>,<b>c</b>) represent the locations of shadow at 0.6 m pixel scale, and the 0.15 m red pixels in (<b>b</b>) represent shadow locations at 0.15 m pixel scale; (<b>d</b>) linear relationship between temperature and NDVI considering 36 pairs of pixels within the 3.6 m grid. The red points highlighted by dashed lines represent the temperatures from the shadow pixels. The pure vegetation zone whose x-axis value is higher than 0.70 and the pure soil zone whose x-axis value is lower than 0.40 are displayed at each side of the x-axis; (<b>e</b>) Within the pure vegetation zone, pixels with temperatures higher than its 75th percentile temperature are highlighted by dash-lined boxes; (<b>f</b>) pixel locations where the temperature is higher than its 75th percentile temperature are highlighted on the temperature image; (<b>g</b>) box plots for soil region, NDVI <math display="inline"><semantics> <mo>∈</mo> </semantics></math> [0, 0.40], vegetation region, NDVI <math display="inline"><semantics> <mo>∈</mo> </semantics></math> [0.70, 1], and the middle part region, NDVI <math display="inline"><semantics> <mo>∈</mo> </semantics></math> (0.4, 0.7). The 50th and 75th percentile temperatures within the pure vegetation zone are shown on the right side; (<b>h</b>) linear relationship between temperature and NDVI obtained by eliminating vegetation-temperature pixels above the 75th percentile temperature, highlighted by the red dashed-line box.</p> "> Figure 5
<p>Scatter plots showing the comparison between energy balance components measured from the EC flux tower (y-axis) and the modeled energy balance components from TSEB-PT, TSEB-2T, and TSEB-2T<sub>Q</sub> (rows 1–3) using the NK, CM and MV (columns 1–3) resistance formulations (x-axis).</p> "> Figure 6
<p>Scatter plots illustrating the performance of the TSEB-2T<sub>Q</sub> model coupled with the Norman and Kustas (NK) resistance model at different time periods.</p> "> Figure 7
<p>Scatter plots showing the difference between the transpiration estimated based on different methods (CEC, MREA, and FVS). The red dashline is a reference 1:1 line.</p> "> Figure 8
<p>The comparison between the transpiration based on the CEC method and the transpiration modeled via the TSEB models (different TSEB models with different resistance models).</p> "> Figure 9
<p>Two examples, (<b>a</b>,<b>b</b>), show the different interrow under the vine canopy.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. sUAS Platform Collection
2.2.2. Eddy-Covariance Flux Tower Data
2.3. Methodology
2.3.1. Temperature Separation
2.3.2. TSEB Model
2.3.3. Validation Data from the Eddy Covariance Tower
Energy Components
Transpiration
3. Results and Discussion
3.1. TSEB Modeling Results
3.1.1. TSEB Component Comparison Considering Different Resistance Models
3.1.2. Time-Based Performance of the TSEB-2TQ NK Model
3.2. Transpiration
3.2.1. Transpiration Estimation via CEC, MREA, and FVS
3.2.2. Transpiration Comparison
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Study Sites | Latitude | Longitude | Elevation above the Sea Level (m) |
---|---|---|---|
SLM | 38°16′49.76″ | −121°7′3.35″ | 40 |
BAR | 38°45′4.91″ | −122°58′28.77″ | 120 |
RIP760 | 36°50′20.52″ | −120°12′36.60″ | 62 |
RIP720 | 36°50′57.27″ | −120°10′26.50″ | 62 |
Sites | Year | Month | Day | Time Flight | Azimuth | Elevation |
---|---|---|---|---|---|---|
RIP 720-1 RIP 720-2 RIP 720-3 RIP 720-4 | 2018 | 6 | 19 | 11:20 | 144.1 | 74.0 |
2018 | 6 | 19 | 13:17 | 236.1 | 68.8 | |
2018 | 6 | 19 | 15:38 | 269.8 | 41.8 | |
2018 | 7 | 12 | 12:29 | 201.0 | 74.2 | |
2018 | 7 | 12 | 15:32 | 266.5 | 43.1 | |
2018 | 7 | 13 | 10:40 | 123.3 | 66.3 | |
2018 | 7 | 13 | 15:22 | 264.6 | 45.1 | |
2018 | 8 | 5 | 10:44 | 132.4 | 63.3 | |
2018 | 8 | 5 | 12:33 | 198.9 | 69.2 | |
2018 | 8 | 6 | 10:41 | 131.2 | 62.8 | |
2019 | 5 | 4 | 10:25 | 130.1 | 60.9 | |
RIP 760 | 2018 | 6 | 19 | 11:20 | 144.1 | 74.0 |
2018 | 6 | 19 | 13:17 | 236.1 | 68.8 | |
2018 | 6 | 19 | 15:38 | 269.8 | 41.8 | |
2018 | 7 | 12 | 12:29 | 201.0 | 74.2 | |
2018 | 7 | 12 | 15:32 | 266.5 | 43.1 | |
2018 | 7 | 13 | 10:40 | 123.3 | 66.3 | |
2018 | 8 | 5 | 10:44 | 132.4 | 63.3 | |
2018 | 8 | 5 | 12:33 | 198.9 | 69.2 | |
2018 | 8 | 6 | 10:41 | 131.2 | 62.8 | |
BAR012 | 2017 | 8 | 8 | 10:52 | 144.9 | 63.6 |
2017 | 8 | 9 | 10:43 | 141.1 | 62.3 | |
2019 | 6 | 27 | 10:41 | 131.9 | 68.9 | |
2019 | 6 | 27 | 12:07 | 193.6 | 74.2 | |
2019 | 6 | 27 | 14:21 | 255.2 | 54.7 | |
2019 | 7 | 29 | 10:51 | 140.8 | 65.8 | |
2019 | 7 | 29 | 13:09 | 224.2 | 64.4 | |
2019 | 7 | 30 | 10:28 | 130.9 | 62.5 | |
2019 | 7 | 30 | 13:09 | 223.9 | 64.2 | |
2019 | 7 | 30 | 15:40 | 264.2 | 37.5 | |
SLM001 | 2014 | 8 | 9 | 10:41 | 136.3 | 61.5 |
2015 | 6 | 2 | 10:43 | 131.9 | 67.9 | |
2015 | 6 | 2 | 14:07 | 250.2 | 57.2 | |
2015 | 7 | 11 | 10:35 | 125.1 | 65.5 | |
2015 | 7 | 11 | 14:14 | 250.1 | 57.3 | |
2019 | 5 | 3 | 10:38 | 139.1 | 62.0 | |
SLM002 | 2014 | 8 | 9 | 10:41 | 136.3 | 61.5 |
2015 | 6 | 2 | 10:43 | 131.9 | 67.9 | |
2015 | 6 | 2 | 14:07 | 250.2 | 57.2 | |
2015 | 7 | 11 | 10:35 | 125.1 | 65.5 | |
2015 | 7 | 11 | 14:14 | 250.1 | 57.3 |
Time Periods | Net Radiation | Ground Heat Flux | Sensible Heat Flux | Latent Heat Flux | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N | RMSE | Bias | r | N | RMSE | Bias | r | N | RMSE | Bias | r | N | RMSE | Bias | r | |
LS | 29 | 21 | −9 | 0.91 | 29 | 45 | −28 | −0.43 | 29 | 66 | 2 | 0.33 | 29 | 68 | 16 | 0.62 |
SN | 17 | 21 | −3 | 0.79 | 17 | 40 | −28 | −0.38 | 17 | 69 | −23 | 0.63 | 17 | 81 | 49 | 0.64 |
AF | 14 | 29 | −23 | 0.96 | 14 | 20 | −12 | 0.64 | 14 | 58 | 8 | 0.63 | 14 | 56 | −22 | 0.46 |
Site | Date | Time | Sonic Air Temperature | Soil Temperature | Canopy Temperature | Soil–Canopy Temperature Difference |
---|---|---|---|---|---|---|
SLM001 | 20150711 | 14:14 | 28.1 | 32.9 | 28.7 | 4.2 |
SLM002 | 20150711 | 14:14 | 30.7 | 32.9 | 28.7 | 4.2 |
BAR012 | 20190627 | 14:21 | 25.7 | 31.0 | 26.6 | 4.4 |
BAR012 | 20190730 | 15:40 | 30.9 | 34.2 | 29.4 | 4.8 |
RIP760 | 20180619 | 15:38 | 32.1 | 36.2 | 31.6 | 4.6 |
RIP720-1 | 20180619 | 15:38 | 34.0 | 35.5 | 32.1 | 3.4 |
RIP720-1 | 20180712 | 15:32 | 38.3 | 36.8 | 33.1 | 3.7 |
RIP720-1 | 20180713 | 15:22 | 38.1 | 36.7 | 33.3 | 3.4 |
RIP720-2 | 20180619 | 15:38 | 34.5 | 37.3 | 32.5 | 4.8 |
RIP720-2 | 20180712 | 15:32 | 38.8 | 37.8 | 33.0 | 4.8 |
RIP720-2 | 20180713 | 15:22 | 38.5 | 38.6 | 34.4 | 4.2 |
RIP720-3 | 20180713 | 15:22 | 38.5 | 35.1 | 31.1 | 4.0 |
RIP720-4 | 20180619 | 15:38 | 35.9 | 35.6 | 31.8 | 3.8 |
RIP720-4 | 20180713 | 15:22 | 40.5 | 37.1 | 32.9 | 4.2 |
Group 1 | Group 2 | Mean Difference | p-Adj | Lower Boundary | Upper Boundary | The Mean Transpiration Is the Same |
---|---|---|---|---|---|---|
CEC | TSEB-PT (NK) | −25 | 0.674 | −69 | 18 | YES |
CEC | TSEB-PT (CM) | −16 | 0.900 | −60 | 27 | YES |
CEC | TSEB-PT (MV) | −32 | 0.372 | −75 | 12 | YES |
CEC | TSEB-2T (NK) | −36 | 0.194 | −80 | 7 | YES |
CEC | TSEB-2T (CM) | −30 | 0.456 | −74 | 13 | YES |
CEC | TSEB-2T (MV) | −39 | 0.132 | −82 | 5 | YES |
CEC | TSEB-2TQ (NK) | −10 | 0.900 | −53 | 34 | YES |
CEC | TSEB-2TQ (CM) | −7 | 0.900 | −51 | 36 | YES |
CEC | TSEB-2TQ (MV) | −9 | 0.900 | −53 | 34 | YES |
TSEB-PT | TSEB-2T | TSEB-2TQ | |||||||
---|---|---|---|---|---|---|---|---|---|
NK | CM | MV | NK | CM | MV | NK | CM | MV | |
N | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 |
RMSE | 71 | 68 | 77 | 84 | 77 | 83 | 72 | 70 | 71 |
Bias | 25 | 16 | 32 | 36 | 30 | 39 | 10 | 7 | 9 |
r | 0.58 | 0.58 | 0.56 | 0.54 | 0.55 | 0.56 | 0.54 | 0.54 | 0.54 |
d | 0.73 | 0.73 | 0.72 | 0.71 | 0.72 | 0.72 | 0.73 | 0.72 | 0.73 |
References
- Virnodkar, S.S.; Pachghare, V.K.; Patil, V.C.; Jha, S.K. Remote Sensing and Machine Learning for Crop Water Stress Determination in Various Crops: A Critical Review. Precis. Agric. 2020, 21, 1121–1155. [Google Scholar] [CrossRef]
- Ahmad, U.; Alvino, A.; Marino, S. A Review of Crop Water Stress Assessment Using Remote Sensing. Remote Sens. 2021, 13, 4155. [Google Scholar] [CrossRef]
- Kool, D.; Kustas, W.P.; Ben-Gal, A.; Agam, N. Energy Partitioning between Plant Canopy and Soil, Performance of the Two-Source Energy Balance Model in a Vineyard. Agric. For. Meteorol. 2021, 300, 108328. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Jin, J.; Zeng, X.; Hawkins, C.P.; Neto, A.A.M.; Niu, G.Y. The Compensatory CO2 Fertilization and Stomatal Closure Effects on Runoff Projection From 2016–2099 in the Western United States. Water Resour. Res. 2022, 58, e2021WR030046. [Google Scholar] [CrossRef]
- Wei, Z.; Lee, X.; Wen, X.; Xiao, W. Evapotranspiration Partitioning for Three Agro-Ecosystems with Contrasting Moisture Conditions: A Comparison of an Isotope Method and a Two-Source Model Calculation. Agric. For. Meteorol. 2018, 252, 296–310. [Google Scholar] [CrossRef]
- Xue, J.; Anderson, M.C.; Gao, F.; Hain, C.; Yang, Y.; Knipper, K.R.; Kustas, W.P.; Yang, Y. Mapping Daily Evapotranspiration at Field Scale Using the Harmonized Landsat and Sentinel-2 Dataset, with Sharpened VIIRS as a Sentinel-2 Thermal Proxy. Remote Sens. 2021, 13, 3420. [Google Scholar] [CrossRef]
- Safre, A.L.S.; Nassar, A.; Torres-Rua, A.F.; Aboutalebi, M.; Saad, C.C.J.; Manzione, R.L.; Teixeira, A.H.D.C.; Prueger, J.H.; McKee, L.G.; Alfieri, J.G.; et al. Performance of Sentinel-2 SAFER ET Model for Daily and Seasonal Estimation of Grapevine Water Consumption. Irrig. Sci. 2022, 1, 1–20. [Google Scholar] [CrossRef]
- Nassar, A.; Torres-Rua, A.F.; Hipps, L.E.; Kustas, W.P.; McKee, M.; Stevens, D.; Nieto, H.; Keller, D.; Gowing, I.; Coopmans, C. Using Remote Sensing to Estimate Scales of Spatial Heterogeneity to Analyze Evapotranspiration Modeling in a Natural Ecosystem. Remote Sens. 2022, 14, 372. [Google Scholar] [CrossRef]
- Bellvert, J.; Jofre-Ĉekalović, C.; Pelechá, A.; Mata, M.; Nieto, H. Feasibility of Using the Two-Source Energy Balance Model (TSEB) with Sentinel-2 and Sentinel-3 Images to Analyze the Spatio-Temporal Variability of Vine Water Status in a Vineyard. Remote Sens. 2020, 12, 2299. [Google Scholar] [CrossRef]
- Gao, F.; Kustas, W.P.; Anderson, M.C. A Data Mining Approach for Sharpening Thermal Satellite Imagery over Land. Remote Sens. 2012, 4, 3287–3319. [Google Scholar] [CrossRef]
- Xue, J.; Anderson, M.C.; Gao, F.; Hain, C.; Sun, L.; Yang, Y.; Knipper, K.R.; Kustas, W.P.; Torres-Rua, A.F.; Schull, M. Sharpening ECOSTRESS and VIIRS Land Surface Temperature Using Harmonized Landsat-Sentinel Surface Reflectances. Remote Sens. Environ. 2020, 251, 112055. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Anderson, M.C.; Gao, F.; Xue, J.; Knipper, K.; Hain, C. Improved Daily Evapotranspiration Estimation Using Remotely Sensed Data in a Data Fusion System. Remote Sens. 2022, 14, 1772. [Google Scholar] [CrossRef]
- De Castro, A.I.; Shi, Y.; Maja, J.M.; Peña, J.M. Uavs for Vegetation Monitoring: Overview and Recent Scientific Contributions. Remote Sens. 2021, 13, 2139. [Google Scholar] [CrossRef]
- Tunca, E.; Köksal, E.S.; Torres-Rua, A.F.; Kustas, W.P.; Nieto, H.S. Estimation of Bell Pepper Evapotranspiration Using Two-Source Energy Balance Model Based on High-Resolution Thermal and Visible Imagery from Unmanned Aerial Vehicles. Appl. Remote Sens. 2022, 16, 022204. [Google Scholar] [CrossRef]
- Long, D.S.; Engel, R.E.; Siemens, M.C. Measuring Grain Protein Concentration with In-Line Near Infrared Reflectance Spectroscopy. Agron. J. 2008, 100, 247–252. [Google Scholar] [CrossRef] [Green Version]
- Kustas, W.P.; Anderson, M.C.; Alfieri, J.G.; Knipper, K.; Torres-Rua, A.F.; Parry, C.K.; Nieto, H.; Agam, N.; White, W.A.; Gao, F.; et al. The Grape Remote Sensing Atmospheric Profile and Evapotranspiration Experiment. Bull. Am. Meteorol. Soc. 2018, 99, 1791–1812. [Google Scholar] [CrossRef] [Green Version]
- Norman, J.M.; Kustas, W.P.; Humes, K.S. Source Approach for Estimating Soil and Vegetation Energy Fluxes in Observations of Directional Radiometric Surface Temperature. Agric. For. Meteorol. 1995, 77, 263–293. [Google Scholar] [CrossRef]
- Kustas, W.P.; Norman, J.M. Use of Remote Sensing for Evapotranspiration Monitoring over Land Surfaces. Hydrol. Sci. J. 1996, 41, 495–516. [Google Scholar] [CrossRef] [Green Version]
- Kustas, W.P.; Nieto, H.; Garcia-Tejera, O.; Bambach, N.; McElrone, A.J.; Gao, F.; Alfieri, J.G.; Hipps, L.E.; Prueger, J.H.; Torres-Rua, A.F.; et al. Impact of Advection on Two-Source Energy Balance (TSEB) Canopy Transpiration Parameterization for Vineyards in the California Central Valley. Irrig. Sci. 2022, 40, 575–591. [Google Scholar] [CrossRef]
- Alfieri, J.G.; Kustas, W.P.; Nieto, H.; Prueger, J.H.; Hipps, L.E.; McKee, L.G.; Gao, F.; Los, S. Influence of Wind Direction on the Surface Roughness of Vineyards. Irrig. Sci. 2019, 37, 359–373. [Google Scholar] [CrossRef]
- Nassar, A.; Torres-Rua, A.F.; Kustas, W.P.; Nieto, H.; McKee, M.; Hipps, L.E.; Stevens, D.; Alfieri, J.G.; Prueger, J.H.; Alsina, M.M.; et al. Influence of Model Grid Size on the Estimation of Surface Fluxes Using the Two Source Energy Balance Model and SUAS Imagery in Vineyards. Remote Sens. 2020, 12, 342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nassar, A.; Torres-Rua, A.F.; Kustas, W.P.; Nieto, H.; McKee, M.; Hipps, L.E.; Alfieri, J.G.; Prueger, J.H.; Alsina, M.M.; McKee, L.G.; et al. To What Extend Does the Eddy Covariance Footprint Cutoff Influence the Estimation of Surface Energy Fluxes Using Two Source Energy Balance Model and High-Resolution Imagery in Commercial Vineyards? In Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping V; Thomasson, J.A., Torres-Rua, A.F., Eds.; SPIE: Bellingham, WA, USA, 2020; Volume 11414, p. 16. [Google Scholar]
- Nassar, A.; Torres-rua, A.F.; Kustas, W.P.; Alfieri, J.G.; Hipps, L.E.; Prueger, J.H.; Nieto, H.; Alsina, M.M.; White, W.A.; McKee, L.; et al. Assessing Daily Evapotranspiration Methodologies from One-time-of-day Suas and Ec Information in the Grapex Project. Remote Sens. 2021, 13, 2887. [Google Scholar] [CrossRef] [PubMed]
- Nieto, H.; Alsina, M.M.; Kustas, W.P.; García-Tejera, O.; Chen, F.; Bambach, N.; Gao, F.; Alfieri, J.G.; Hipps, L.E.; Prueger, J.H.; et al. Evaluating Different Metrics from the Thermal-Based Two-Source Energy Balance Model for Monitoring Grapevine Water Stress. Irrig. Sci. 2022, 40, 697–713. [Google Scholar] [CrossRef]
- Nieto, H.; Bellvert, J.; Kustas, W.P.; Alfieri, J.G.; Gao, F.; Prueger, J.H.; Torres-Rua, A.F.; Hipps, L.E.; Elarab, M.; Song, L. Unmanned Airborne Thermal and Mutilspectral Imagery for Estimating Evapotranspiration in Irrigated Vineyards. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Forth Worth, TX, USA, 23–27 July 2017; pp. 5510–5513. [Google Scholar]
- Torres-Rua, A.F.; Ticlavilca, A.M.; Aboutalebi, M.; Nieto, H.; Alsina, M.M.; White, A.; Prueger, J.H.; Alfieri, J.G.; Hipps, L.E.; McKee, L.G.; et al. Estimation of Evapotranspiration and Energy Fluxes Using a Deep-Learning-Based High-Resolution Emissivity Model and the Two-Source Energy Balance Model with SUAS Information. In Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping V; Thomasson, J.A., Torres-Rua, A.F., Eds.; SPIE: Bellingham, WA, USA, 2020; Volume 11414, p. 10. [Google Scholar]
- Nieto, H.; Kustas, W.P.; Torres-Rúa, A.F.; Alfieri, J.G.; Gao, F.; Anderson, M.C.; White, W.A.; Song, L.; Alsina, M.M.; Prueger, J.H.; et al. Evaluation of TSEB Turbulent Fluxes Using Different Methods for the Retrieval of Soil and Canopy Component Temperatures from UAV Thermal and Multispectral Imagery. Irrig. Sci. 2019, 37, 389–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, Y.; Gao, F.; Anderson, M.C.; Kustas, W.P.; Nieto, H.; Knipper, K.; Yang, Y.; White, W.A.; Alfieri, J.G.; Torres-Rua, A.F.; et al. Evaluation of Satellite Leaf Area Index in California Vineyards for Improving Water Use Estimation. Irrig. Sci. 2022, 40, 531–551. [Google Scholar] [CrossRef]
- Aboutalebi, M.; Torres-Rua, A.F.; McKee, M.; Kustas, W.P.; Nieto, H.; Alsina, M.M.; White, A.; Prueger, J.H.; McKee, L.; Alfieri, J.G.; et al. Downscaling UAV Land Surface Temperature Using a Coupled Wavelet-Machine Learning-Optimization Algorithm and Its Impact on Evapotranspiration. Irrig. Sci. 2022, 40, 553–574. [Google Scholar] [CrossRef]
- Gao, R.; Torres-Rua, A.F.; Aboutalebi, M.; White, W.A.; Anderson, M.C.; Kustas, W.P.; Agam, N.; Alsina, M.M.; Alfieri, J.G.; Hipps, L.E.; et al. LAI Estimation across California Vineyards Using SUAS Multi-Seasonal Multi-Spectral, Thermal, and Elevation Information and Machine Learning. Irrig. Sci. 2022, 1, 1–29. [Google Scholar] [CrossRef]
- Knipper, K.; Anderson, M.C.; Bambach, N.; Kustas, W.P.; Gao, F.; Zahn, E.; Hain, C.; Mcelrone, A.; Belfiore, O.R.; Castro, S.; et al. Evaluation of Partitioned Evaporation and Transpiration Estimates within the DisALEXI Modeling Framework over Irrigated Crops in California. Remote Sens. 2023, 15, 68. [Google Scholar] [CrossRef]
- Aboutalebi, M.; Torres-Rua, A.F.; McKee, M.; Nieto, H.; Kustas, W.P.; Coopmans, C. The Impact of Shadows on Partitioning of Radiometric Temperature to Canopy and Soil Temperature Based on the Contextual Two-Source Energy Balance Model (TSEB-2T). In Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping IV; Thomasson, J.A., McKee, M., Moorhead, R.J., Eds.; SPIE: Bellingham, WA, USA, 2019; Volume 11008, p. 3. [Google Scholar]
- Aboutalebi, M.; Torres-Rua, A.F.; Kustas, W.P.; Nieto, H.; Coopmans, C.; McKee, M. Assessment of Different Methods for Shadow Detection in High-Resolution Optical Imagery and Evaluation of Shadow Impact on Calculation of NDVI, and Evapotranspiration. Irrig. Sci. 2019, 37, 407–429. [Google Scholar] [CrossRef]
- Aboutalebi, M.; Torres-Rua, A.F.; McKee, M.; Kustas, W.P.; Nieto, H.; Alsina, M.M.; White, A.; Prueger, J.H.; McKee, L.; Alfieri, J.G.; et al. Incorporation of Unmanned Aerial Vehicle (UAV) Point Cloud Products into Remote Sensing Evapotranspiration Models. Remote Sens. 2019, 12, 50. [Google Scholar] [CrossRef]
- Gao, R.; Torres-Rua, A.F.; Nassar, A.; Hipps, L.; Nieto, H.; Aboutalebi, M.; White, W.A.; Anderson, M.; Kustas, W.P.; Alsina, M.M.; et al. TSEB Modeling and the Comparison between the Model Results and the Eddy-Covariance Monitored Data within the Footprint Area. CUAHSI HydroShare 2021. [Google Scholar] [CrossRef]
- Gao, R.; Torres-Rua, A.F.; Nassar, A.; Alfieri, J.G.; Aboutalebi, M.; Hipps, L.E.; Ortiz, N.B.; Mcelrone, A.J.; Coopmans, C.; Kustas, W.P.; et al. Evapotranspiration Partitioning Assessment Using a Machine-Learning-Based Leaf Area Index and the Two-Source Energy Balance Model with SUAV Information; Thomasson, J.A., Torres-Rua, A.F., Eds.; SPIE: Bellingham, WA, USA, 2021; Volume 11747, p. 21. [Google Scholar]
- Zahn, E.; Bou-Zeid, E.; Good, S.P.; Katul, G.G.; Thomas, C.K.; Ghannam, K.; Smith, J.A.; Chamecki, M.; Dias, N.L.; Fuentes, J.D.; et al. Direct Partitioning of Eddy-Covariance Water and Carbon Dioxide Fluxes into Ground and Plant Components. Agric. For. Meteorol. 2022, 315. [Google Scholar] [CrossRef]
- Kljun, N.; Calanca, P.; Rotach, M.W.; Schmid, H.P. A Simple Two-Dimensional Parameterisation for Flux Footprint Prediction (FFP). Geosci. Model Dev. 2015, 8, 3695–3713. [Google Scholar] [CrossRef] [Green Version]
- Gao, R.; Nassar, A.; Torres-Rua, A.F.; Hipps, L.; Aboutalebi, M.; White, W.A.; Anderson, M.; Kustas, W.P.; Alsina, M.M.; Alfieri, J.; et al. Footprint Area Generating Based on Eddy Covariance Records. CUAHSI HydroShare 2021. [Google Scholar] [CrossRef]
- Gao, R.; Torres-Rua, A.F. Features Extraction from the LAI2200C Plant Canopy Analyzer. CUAHSI HydroShare 2021. [Google Scholar] [CrossRef]
- Kustas, W.P.; Agam, N.; Alfieri, J.G.; McKee, L.G.; Prueger, J.H.; Hipps, L.E.; Howard, A.M.; Heitman, J.L. Below Canopy Radiation Divergence in a Vineyard: Implications on Interrow Surface Energy Balance. Irrig. Sci. 2019, 37, 227–237. [Google Scholar] [CrossRef]
- Gao, R.; Alsina, M.M.; Torres-Rua, A.F.; Hipps, L.E.; Kustas, W.P.; White, W.A.; Anderson, M.C.; Alfieri, J.G.; Dokoozlian, N.; Nieto, H.; et al. Exploratory Analysis of Vineyard Leaf Water Potential against UAS Multispectral and Temperature Information; Thomasson, J.A., Torres-Rua, A.F., Eds.; SPIE: Bellingham, WA, USA, 2022; Volume 12114, pp. 160–185. [Google Scholar]
- Torres-Rua, A.F. Vicarious Calibration of SUAS Microbolometer Temperature Imagery for Estimation of Radiometric Land Surface Temperature. Sensors 2017, 17, 1499. [Google Scholar] [CrossRef] [Green Version]
- Bambach, N.; Kustas, W.P.; Alfieri, J.G.; Prueger, J.H.; Hipps, L.E.; McKee, L.; Castro, S.J.; Volk, J.; Alsina, M.M.; McElrone, A.J. Evapotranspiration Uncertainty at Micrometeorological Scales: The Impact of the Eddy Covariance Energy Imbalance and Correction Methods. Irrig. Sci. 2022, 40, 445–461. [Google Scholar] [CrossRef]
- Gao, R.; Torres-Rua, A.F. A Python-Based Program Generating a Part of Information Based on AggieAir Images for the TSEB Model: Taking California Vineyards as an Example. CUAHSI HydroShare 2022. [Google Scholar] [CrossRef]
- Gao, R.; Torres-Rua, A.F.; Aboutalebi, M.; White, W.A.; Anderson, M.; Kustas, W.P.; Agam, N.; Alsina, M.M.; Alfieri, J.; Hipps, L.; et al. Feature Extraction Approaches for Leaf Area Index Estimation in California Vineyards via Machine Learning Algorithms. CUAHSI HydroShare 2021. [Google Scholar] [CrossRef]
- Kustas, W.P.; Norman, J.M. A Two-Source Approach for Estimating Turbulent Fluxes Using Multiple Angle Thermal Infrared Observations. Water Resour. Res. 1997, 33, 1495–1508. [Google Scholar] [CrossRef]
- McNaughton, K.G.; Hurk, B.J.J.M.V.D. A “Lagrangian” Revision of the Resistors in the Two-Layer Model for Calculating the Energy Budget of a Plant Canopy. Boundary-Layer Meteorol. 1995, 74, 261–288. [Google Scholar] [CrossRef]
- Choudhury, B.J.; Monteith, J.L. A Four-layer Model for the Heat Budget of Homogeneous Land Surfaces. Q. J. R. Meteorol. Soc. 1988, 114, 373–398. [Google Scholar] [CrossRef]
- Gao, R.; Torres-Rua, A.F.; Hipps, L.E.; Kustas, W.P.; Anderson, M.C.; White, W.A.; Alfieri, J.G.; Alsina, M.M.; Dokoozlian, N.; Nieto, H.; et al. Assessment of TSEB-PT and -2T in ET Partitioning Estimation over California Commercial Vineyards Based on SUAS Information; SPIE: Bellingham, WA, USA, 2022; Volume 12114, p. 121140I. [Google Scholar]
- Willmott, C.J. Some Comments on the Evaluation of Model Performance. Bull.- Am. Meteorol. Soc. 1982, 63, 1309–1313. [Google Scholar] [CrossRef]
- Gao, Y.; Tang, B.; Lu, B.; Ji, G.; Ye, H. Investigation on the Effects of Water Loss on the Solar Spectrum Reflectance and Transmittance of Osmanthus Fragrans Leaves Based on Optical Experiment and PROSPECT Model. RSC Adv. 2021, 11, 37268–37275. [Google Scholar] [CrossRef]
- Santanello, J.A.; Friedl, M.A. Diurnal Covariation in Soil Heat Flux and Net Radiation. J. Appl. Meteorol. 2003, 42, 851–862. [Google Scholar] [CrossRef]
- Montgomery, D.C.; Runger, G.C. Applied Statistics and Probability for Engineers; John Wiley&Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Burchard-Levine, V.; Nieto, H.; Kustas, W.P.; Gao, F.; Alfieri, J.G.; Prueger, J.H.; Hipps, L.E.; Bambach-Ortiz, N.; McElrone, A.J.; Castro, S.J.; et al. Application of a Remote-Sensing Three-Source Energy Balance Model to Improve Evapotranspiration Partitioning in Vineyards. Irrig. Sci. 2022, 40, 593–608. [Google Scholar] [CrossRef]
- Temperature Separation via Eliminating Shadow-Pixel Influence Based on High-Resolution SUAS Image in California Vineyards. CUAHSI HydroShare 4. 2023. Available online: https://doi.org/10.4211/hs.c0876501581f46c698727dc956cc2d73 (accessed on 18 January 2023).
TSEB-PT (NK) | TSEB-PT (CM) | TSEB-PT (MV) | TSEB-2T (NK) | TSEB-2T (CM) | TSEB-2T (MV) | TSEB-2TQ (NK) | TSEB-2TQ (CM) | TSEB-2TQ (MV) | ||
---|---|---|---|---|---|---|---|---|---|---|
Net radiation | N | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 |
RMSE | 22 | 22 | 22 | 21 | 21 | 21 | 23 | 23 | 23 | |
Bias | −4 | −5 | −4 | −5 | −5 | −5 | −10 | −10 | −10 | |
r | 0.96 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | |
d | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | |
Ground heat flux | N | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 |
RMSE | 41 | 40 | 41 | 41 | 41 | 41 | 39 | 39 | 39 | |
Bias | −27 | −26 | −27 | −26 | −26 | −26 | −24 | −24 | −24 | |
r | 0.25 | 0.24 | 0.25 | 0.26 | 0.26 | 0.26 | 0.27 | 0.27 | 0.27 | |
d | 0.52 | 0.52 | 0.52 | 0.54 | 0.54 | 0.54 | 0.55 | 0.55 | 0.55 | |
Sensible heat flux | N | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 |
RMSE | 78 | 85 | 84 | 71 | 71 | 69 | 65 | 71 | 65 | |
Bias | 21 | 45 | 17 | −16 | 14 | −19 | −3 | 26 | −3 | |
r | 0.63 | 0.62 | 0.61 | 0.62 | 0.60 | 0.64 | 0.63 | 0.61 | 0.63 | |
d | 0.78 | 0.74 | 0.76 | 0.78 | 0.77 | 0.79 | 0.77 | 0.75 | 0.77 | |
Latent heat flux | N | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 |
RMSE | 82 | 84 | 90 | 80 | 73 | 81 | 69 | 71 | 70 | |
Bias | −7 | −32 | −3 | 34 | 3 | 36 | 16 | −13 | 16 | |
r | 0.53 | 0.55 | 0.51 | 0.55 | 0.57 | 0.58 | 0.58 | 0.59 | 0.58 | |
d | 0.73 | 0.73 | 0.71 | 0.71 | 0.76 | 0.72 | 0.75 | 0.78 | 0.75 |
Group 1 | Group 2 | Mean Difference | p-Adj | Lower Boundary | Upper Boundary | The Mean Transpiration Is the Same |
---|---|---|---|---|---|---|
CEC | FVS | −84 | 0.004 | −152 | −15 | NO |
CEC | MREA | 0 | 0.900 | −69 | 68 | YES |
MREA | FVS | −84 | 0.004 | −152 | −15 | NO |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, R.; Torres-Rua, A.F.; Nieto, H.; Zahn, E.; Hipps, L.; Kustas, W.P.; Alsina, M.M.; Bambach, N.; Castro, S.J.; Prueger, J.H.; et al. ET Partitioning Assessment Using the TSEB Model and sUAS Information across California Central Valley Vineyards. Remote Sens. 2023, 15, 756. https://doi.org/10.3390/rs15030756
Gao R, Torres-Rua AF, Nieto H, Zahn E, Hipps L, Kustas WP, Alsina MM, Bambach N, Castro SJ, Prueger JH, et al. ET Partitioning Assessment Using the TSEB Model and sUAS Information across California Central Valley Vineyards. Remote Sensing. 2023; 15(3):756. https://doi.org/10.3390/rs15030756
Chicago/Turabian StyleGao, Rui, Alfonso F. Torres-Rua, Hector Nieto, Einara Zahn, Lawrence Hipps, William P. Kustas, Maria Mar Alsina, Nicolas Bambach, Sebastian J. Castro, John H. Prueger, and et al. 2023. "ET Partitioning Assessment Using the TSEB Model and sUAS Information across California Central Valley Vineyards" Remote Sensing 15, no. 3: 756. https://doi.org/10.3390/rs15030756
APA StyleGao, R., Torres-Rua, A. F., Nieto, H., Zahn, E., Hipps, L., Kustas, W. P., Alsina, M. M., Bambach, N., Castro, S. J., Prueger, J. H., Alfieri, J., McKee, L. G., White, W. A., Gao, F., McElrone, A. J., Anderson, M., Knipper, K., Coopmans, C., Gowing, I., ... Dokoozlian, N. (2023). ET Partitioning Assessment Using the TSEB Model and sUAS Information across California Central Valley Vineyards. Remote Sensing, 15(3), 756. https://doi.org/10.3390/rs15030756