Developing Spatial and Temporal Continuous Fractional Vegetation Cover Based on Landsat and Sentinel-2 Data with a Deep Learning Approach
<p>The study areas and the major land cover types of Hubei province.</p> "> Figure 2
<p>The framework of spatio-temporal reconstruction of 30 m FVC using different methods.</p> "> Figure 3
<p>The structure of the LSTM/Bi-LSTM network.</p> "> Figure 4
<p>Comparison between the Landsat and Sentinel-2 FVC acquired for the same date over (<b>a</b>) forest, (<b>b</b>) grassland, and (<b>c</b>) cropland.</p> "> Figure 5
<p>Comparisons between real FVC and predicted FVC on 24 December 2017: (<b>a</b>) is the real FVC with gaps; (<b>b</b>) is the FVC predicted by the STARFM method; (<b>c</b>) is the FVC predicted by the S-G filter; and (<b>d</b>) is the FVC predicted by LSTM.</p> "> Figure 6
<p>The scatter plot comparisons of real FVC and predicted FVC on 24 December 2017: the (<b>left</b>) plot is the real FVC compared with STARFM-predicted FVC; the (<b>middle</b>) plot is the real FVC compared with S-G-filter-predicted FVC; the (<b>right</b>) plot is the real FVC compared with LSTM-predicted FVC.</p> "> Figure 7
<p>Time-series curves from real data and from other time reconstruction methods.</p> "> Figure 8
<p>Comparison of the validation results of the LSTM model (blue) and Bi-LSTM model (red).</p> "> Figure 9
<p>Model validation results with different time steps (blue line is the result of three steps, red line is the result of one step).</p> "> Figure 10
<p>Phik (φk) correlation coefficients for different GLASS products and FVC.</p> "> Figure 11
<p>The image pairs of 30 m FVC before and after reconstructions using the optimized Bi-LSTM method with multiple variables.</p> "> Figure 12
<p>Comparison of the reconstructed FVC in 2017 using the optimized multivariate Bi-LSTM model to three reference FVC products for different vegetation types, including grassland, cropland, and forest. The 30 m FVC has been aggregated to 500 m for the purpose of comparison.</p> "> Figure 13
<p>The reconstructed 30 m/16 days FVC of Hubei province in 2017 using the optimized Bi-LSTM method. The year and date-of-year are labeled below each mosaic in the format of YEARDOY.</p> "> Figure 14
<p>Comparison between the reconstructed FVC in January and coarse-resolution products for major vegetation types in Hubei. For illustration purpose, all FVC pixels have been aggregated to 1 km resolution.</p> "> Figure 15
<p>Comparison between the reconstructed FVC in July and coarse-resolution products for major vegetation types in Hubei. For illustration purposes, all FVC pixels have been aggregated to 1 km resolution.</p> ">
Abstract
:1. Introduction
2. Study Area and Materials
2.1. Study Area
2.2. Fine-Resolution Satellite Data and Preprocessing
2.2.1. Landsat 8 Data and Preprocessing
2.2.2. Sentinel-2 Data and Preprocessing
2.3. Coarse-Resolution Satellite Products
3. Methodology
3.1. Research Framework
3.2. Reconstructing FVC Using STARFM
3.3. Reconstructing FVC Using S-G Filtering Method
3.4. Reconstructing FVC with LSTM and Optimized Parameters
3.4.1. The LSTM Method
3.4.2. The Bi-LSTM Method
3.4.3. Changing the Time Steps
3.4.4. The Inclusion of Various Input Variables
3.5. Validation of the Reconstructed FVC
4. Results
4.1. Consistency between the Landsat and Sentinel-2 FVC
4.2. Comparison of Different Reconstruction Methods
4.2.1. Accuracy Comparison of Different FVC Reconstructions
4.2.2. Time-Series FVC Derived from Different Reconstruction Methods
4.3. Accuracies of LSTM Models with Changing Parameters
4.3.1. Accuracies of LSTM and Bi-LSTM
4.3.2. Accuracy of Changing the Time Step
4.3.3. Accuracy of Changing Input Variables
4.4. Reconstructed Time-Series FVC in Hubei Using the Optimized Model
4.4.1. Spatial Performance of the Reconstructed FVC Image
4.4.2. Temporal Trend of the Reconstructed FVC Pixels
4.4.3. Regional Accuracy of the Reconstructed FVC
5. Discussion
5.1. Implications of the Reconstructed 30 m FVC Dataset
5.2. Uncertainties of Different Spatio-Temporal Reconstruction Methods
5.3. Further Improvements to the Proposed Method
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Huang, L.; Chen, K.F.; Zhou, M. Climate change and carbon sink: A bibliometric analysis. Environ. Sci. Pollut. Res. 2020, 27, 8740–8758. [Google Scholar] [CrossRef] [PubMed]
- Jia, K.; Liang, S.; Wei, X.; Yao, Y.; Yang, L.; Zhang, X.; Liu, D. Validation of Global LAnd Surface Satellite (GLASS) fractional vegetation cover product from MODIS data in an agricultural region. Remote Sens. Lett. 2018, 9, 847–856. [Google Scholar] [CrossRef]
- Sha, Z.; Bai, Y.; Li, R.; Lan, H.; Zhang, X.; Li, J.; Liu, X.; Chang, S.; Xie, Y. The global carbon sink potential of terrestrial vegetation can be increased substantially by optimal land management. Commun. Earth Environ. 2022, 3, 8. [Google Scholar] [CrossRef]
- Gao, L.; Wang, X.; Johnson, B.A.; Tian, Q.; Wang, Y.; Verrelst, J.; Mu, X.; Gu, X. Remote sensing algorithms for estimation of fractional vegetation cover using pure vegetation index values: A review. ISPRS J. Photogramm. Remote Sens. 2020, 159, 364–377. [Google Scholar] [CrossRef] [PubMed]
- Jia, K.; Yang, L.; Liang, S.; Xiao, Z.; Zhao, X.; Yao, Y.; Zhang, X.; Jiang, B.; Liu, D. Long-Term Global Land Surface Satellite (GLASS) Fractional Vegetation Cover Product Derived from MODIS and AVHRR Data. IEEE Trans. Geosci. Remote Sens. 2019, 12, 508–518. [Google Scholar]
- Jia, K.; Liang, S.; Gu, X.; Baret, F.; Wei, X.; Wang, X.; Yao, Y.; Yang, L.; Li, Y. Fractional vegetation cover estimation algorithm for Chinese GF-1 wide field view data. Remote Sens. Environ. 2016, 177, 184–191. [Google Scholar] [CrossRef]
- North, P.R.J. Estimation of f(APAR), LAI, and vegetation fractional cover from ATSR-2 imagery. Remote Sens. Environ. 2002, 80, 114–121. [Google Scholar] [CrossRef]
- Baret, F.; Weiss, M.; Lacaze, R.; Camacho, F.; Makhmara, H.; Pacholcyzk, P.; Smets, B. GEOV1: LAI and FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part1: Principles of development and production. Remote Sens. Environ. 2013, 137, 299–309. [Google Scholar] [CrossRef]
- García-Haro, F.J.; Camacho, F.; Meliá, J. Inter-comparison of SEVIRI/MSG and MERIS/ENVISAT biophysical products over Europe and Africa. In MERIS/(A)ATSR User Workshop, 2nd ed.; ESA SP-666: Frascati, Italy, 2008. [Google Scholar]
- Roujean, J.L.; Lacaze, R. Global mapping of vegetation parameters from POLDER multiangular measurements for studies of surface-atmosphere interactions: A pragmatic method and its validation. J. Geophys. Res.-Atmos. 2002, 107, ACL-6. [Google Scholar] [CrossRef]
- Fillol, E.; Baret, F.; Weiss, M.; Dedieu, G.; Demarez, V.; Gouaux, P.; Ducrot, D. Cover fraction estimation from high resolution SPOT HRV&HRG and medium resolution SPOTVEGETATION sensors, Validation and comparison over South-West France. In Second Recent Advances in Quantitative Remote Sensing Symposium; Publicacions de la Universitat de València: Valencia, Spain, 2006; pp. 659–663. [Google Scholar]
- Verger, A.; Baret, F.; Weiss, M. Algorithm Theoretical Basis Document, Leaf Area Index (LAI), Fraction of Absorbed Photosynthetically Active Radiation (FAPAR), Fraction of Green Vegetation Cover (FCover), Collection 1 km, Version 20. Operations, C.G.L., Ed.; 2019. Available online: https://land.copernicus.eu/global/sites/cgls.vito.be/files/products/CGLOPS1_ATBD_LAI1km-V2_I1.41.pdf (accessed on 1 October 2022).
- Verger, A.; Descals, A. Algorithm Theoretical Basis Document, Leaf Area Index (LAI), Fraction of Absorbed Photosynthetically Active Radiation (FAPAR), Fraction of Green Vegetation Cover (FCover), Collection 300m, Version 1.1. Copernicus Global Land Operations. Pubmed Partial Author Stitle Stitle. 2021. Available online: https://land.copernicus.eu/global/sites/cgls.vito.be/files/products/CGLOPS1_ATBD_FCOVER300m-V1.1_I1.02.pdf (accessed on 1 October 2022).
- Jia, K.; Liang, S.; Liu, S.; Li, Y.; Xiao, Z.; Yao, Y.; Jiang, B.; Zhao, X.; Wang, X.; Xu, S.; et al. Global land surface fractional vegetation cover estimation using general regression neural networks from MODIS surface reflectance. IEEE Trans. Geosci. Remote Sens. 2015, 53, 4787–4796. [Google Scholar] [CrossRef]
- Claverie, M.; Ju, J.; Masek, J.G.; Dungan, J.L.; Vermote, E.F.; Roger, J.-C.; Skakun, S.V.; Justice, C. The Harmonized Landsat and Sentinel-2 surface reflectance data set. Remote Sens. Environ. 2018, 219, 145–161. [Google Scholar] [CrossRef]
- Zhao, J.; Li, J.; Zhang, Z.; Wu, S.; Zhong, B.; Liu, Q. MuSyQ GF-Series 16m/10days Fractional Vegetation Cover Product (from 2018 to 2020 across China Version 01). Science Data Bank. 2021. Available online: http://cstr.cn/31253.11.sciencedb.j00001.00266 (accessed on 4 September 2022).
- Zhang, X.; Liao, C.; Li, J.; Sun, Q. Fractional vegetation cover estimation in arid and semi-arid environments using HJ-1 satellite hyperspectral data. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 506–512. [Google Scholar] [CrossRef]
- Ludwig, M.; Morgenthal, T.; Detsch, F.; Higginbottom, T.P.; Valdes, M.L.; Nauss, T.; Meyer, H. Machine learning and multi-sensor based modelling of woody vegetation in the Molopo Area, South Africa. Remote Sens. Environ. 2019, 222, 195–203. [Google Scholar] [CrossRef]
- Gill, T.; Johansen, K.; Phinn, S.; Trevithick, R.; Scarth, P.; Armston, J. A method for mapping Australian woody vegetation cover by linking continental-scale field data and long-term Landsat time series. Int. J. Remote Sens. 2017, 38, 679–705. [Google Scholar] [CrossRef] [Green Version]
- Song, D.X.; Wang, Z.; He, T.; Wang, H.; Liang, S. Estimation and Validation of 30 m Fractional Vegetation Cover over China Through Integrated Use of Landsat 8 and Gaofen 2 Data. Sci. Remote Sens. 2022, 6, 100058. [Google Scholar] [CrossRef]
- Chen, Y.; Cao, R.; Chen, J.; Liu, L.; Matsushita, B. A practical approach to reconstruct high-quality Landsat NDVI time-series data by gap filling and the Savitzky–Golay filter. ISPRS J. Photogramm. Remote Sens. 2021, 180, 174–190. [Google Scholar] [CrossRef]
- Gao, F.; Masek, J.; Schwaller, M.; Hall, F. On the blending of the Landsat and modis surface reflectance: Predicting daily Landsat surface reflectance. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2207–2218. [Google Scholar]
- Zhu, X.; Helmer, E.H.; Gao, F.; Liu, D.; Chen, J.; Lefsky, M.A. A flexible spatiotemporal method for fusing satellite images with different resolutions. Remote Sens. Environ. 2016, 172, 165–177. [Google Scholar] [CrossRef]
- Kaffash, M.; Nejad, H.S. Spatio-temporal fusion of Landsat and MODIS land surface temperature data using FSDAF algorithm. J. Water Soil Sci. 2021, 25, 45–62. [Google Scholar]
- Zhou, L.; Lyu, A. Investigating natural drivers of vegetation coverage variation using MODIS imagery in Qinghai, China. J. Arid. Land 2016, 8, 109–124. [Google Scholar] [CrossRef] [Green Version]
- Walker, J.J.; Beurs, K.M.; Wynne, R.H.; Gao, F. Evaluation of Landsat and MODIS data fusion products for analysis of dryland forest phenology. Remote Sens. Environ. 2012, 117, 381–393. [Google Scholar] [CrossRef]
- Meng, J.; Du, X.; Wu, B. Generation of high spatial and temporal resolution NDVI and its application in crop biomass estimation. Int. J. Digit. Earth 2013, 6, 203–218. [Google Scholar] [CrossRef]
- Sherstinsky, A. Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) network. Phys. D Nonlinear Phenom. 2020, 404, 132306. [Google Scholar] [CrossRef] [Green Version]
- Reddy, D.S.; Prasad, P.R. Prediction of vegetation dynamics using NDVI time series data and LSTM. Model. Earth Syst. Environ. 2018, 4, 409–419. [Google Scholar] [CrossRef]
- Van de Voorde, T.; Vlaeminck, J.; Canters, F. Comparing Different Approaches for Mapping Urban Vegetation Cover from Landsat ETM + Data: A Case Study on Brussels. Sensors 2008, 8, 3880–3902. [Google Scholar] [CrossRef] [Green Version]
- O’Donncha, F.; Hu, Y.; Palmes, P.; Burke, M.; Filgueira, R.; Grant, J. A spatio-temporal LSTM model to forecast across multiple temporal and spatial scales. Ecol. Inform. 2022, 69, 101687. [Google Scholar] [CrossRef]
- Markham, B.L.; Arvidson, T.; Barsi, J.A.; Choate, M.; Kaita, E.; Levy, R.; Lubke, M.; Maesk, J.G. Landsat program. In Comprehensive Remote Sensing; Liang, S., Ed.; Elsevier: Oxford, UK, 2018; pp. 27–90. [Google Scholar]
- Xu, G.; Xu, H. Cross-comparison of Sentinel-2A MSI and Landsat 8 OLI Multispectral Information. Remote Sens. Technol. Appl. 2021, 36, 165–175. [Google Scholar]
- Liang, S.; Zhao, X.; Yuan, W.; Liu, S.; Cheng, X.; Xiao, Z.; Zhang, X.; Liu, Q.; Cheng, J.; Tang, H.; et al. A Long-term Global LAnd Surface Satellite (GLASS) Dataset for Environmental Studies. Int. J. Digit. Earth 2013, 6, 5–33. [Google Scholar] [CrossRef]
- Chen, J.; Jönsson, P.; Tamura, M.; Gu, Z.; Matsushita, B.; Eklundh, L. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky–Golay filter. Remote Sens. Environ. 2004, 91, 332–344. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long Short-term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Graves, A.; Schmidhuber, J. Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Netw. 2005, 18, 602–610. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Wang, P.; Tansey, K.; Zhang, J.; Zhang, S.; Li, H. An LSTM neural network for improving wheat yield estimates by integrating remote sensing data and meteorological data in the Guanzhong Plain, PR China. Agric. For. Meteorol. 2021, 310, 108629. [Google Scholar] [CrossRef]
- Baak, M.; Koopman, R.; Snoek, H.; Klous, S. A new correlation coefficient between categorical, ordinal and interval variables with Pearson characteristics. Comput. Stat. Data Anal. 2020, 152, 107043. [Google Scholar] [CrossRef]
- Tao, J.; Wang, Y.; Qiu, B.; Wu, W. Exploring cropping intensity dynamics by integrating crop phenology information using Bayesian networks. Comput. Electron. Agric. 2022, 193, 106667. [Google Scholar] [CrossRef]
- Yan, Y.; Liu, H.; Bai, X.; Yan, Y.; Liu, H.; Bai, X.; Zhang, W.; Wang, S.; Luo, J.; Cao, Y. Exploring and attributing change to fractional vegetation coverage in the middle and lower reaches of Hanjiang River Basin, China. Environ. Monit. Assess 2023, 195, 131. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y. Understanding urban plant phenology for sustainable cities and planet. Nat. Clim. Chang. 2022, 12, 302–304. [Google Scholar] [CrossRef]
- Zhang, M.; Du, H.; Zhou, G.; Mao, F.; Li, X.; Zhou, L.; Zhu, D.; Xu, Y.; Huang, Z. Spatiotemporal Patterns and Driving Force of Urbanization and Its Impact on Urban Ecology. Remote Sens. 2022, 14, 1160. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, J.; Gao, F.; Chen, X.; Masek, J.G. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions. Remote Sens. Environ. 2010, 114, 2610–2623. [Google Scholar] [CrossRef]
- Ma, H.; Liang, S. Development of the GLASS 250-m leaf area index product (version 6) from MODIS data using the bidirectional LSTM deep learning model. Remote Sens. Environ. 2022, 273, 112985. [Google Scholar] [CrossRef]
- Liu, D.; Jia, K.; Wei, X.; Xia, M.; Zhang, X.; Yao, Y.; Zhang, X.; Wang, B. Spatiotemporal comparison and validation of three global-scale fractional vegetation cover products. Remote Sens. 2019, 11, 2524. [Google Scholar] [CrossRef] [Green Version]
Statistical Test | Feature | |||
---|---|---|---|---|
FVC | FVC, LAI | FVC, LAI, Albedo, FAPAR | FVC, LAI, Albedo, AT FAPAR, ET, NR, BBE, LST | |
R² | 0.94 | 0.97 | 0.98 | 0.94 |
RMSE | 5.022 | 3.012 | 2.797 | 4.696 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Song, D.-X.; He, T.; Lu, J.; Wang, C.; Zhong, D. Developing Spatial and Temporal Continuous Fractional Vegetation Cover Based on Landsat and Sentinel-2 Data with a Deep Learning Approach. Remote Sens. 2023, 15, 2948. https://doi.org/10.3390/rs15112948
Wang Z, Song D-X, He T, Lu J, Wang C, Zhong D. Developing Spatial and Temporal Continuous Fractional Vegetation Cover Based on Landsat and Sentinel-2 Data with a Deep Learning Approach. Remote Sensing. 2023; 15(11):2948. https://doi.org/10.3390/rs15112948
Chicago/Turabian StyleWang, Zihao, Dan-Xia Song, Tao He, Jun Lu, Caiqun Wang, and Dantong Zhong. 2023. "Developing Spatial and Temporal Continuous Fractional Vegetation Cover Based on Landsat and Sentinel-2 Data with a Deep Learning Approach" Remote Sensing 15, no. 11: 2948. https://doi.org/10.3390/rs15112948
APA StyleWang, Z., Song, D. -X., He, T., Lu, J., Wang, C., & Zhong, D. (2023). Developing Spatial and Temporal Continuous Fractional Vegetation Cover Based on Landsat and Sentinel-2 Data with a Deep Learning Approach. Remote Sensing, 15(11), 2948. https://doi.org/10.3390/rs15112948