Performance Assessment of Four Data-Driven Machine Learning Models: A Case to Generate Sentinel-2 Albedo at 10 Meters
<p>The geographic distribution of in situ observations was used in this study.</p> "> Figure 2
<p>The geographic distribution of MCD43A1 data used in this study. There are three surface types (vegetation, bare ground, snow, and ice).</p> "> Figure 3
<p>The workflow of the machine learning model for Sentinel-2 albedo retrieval.</p> "> Figure 4
<p>The scenes of forests on different slopes; (<b>a</b>) slope 10° and aspect 45°; (<b>b</b>) slope 20° and aspect 0°; (<b>c</b>) slope 30° and aspect 90°; (<b>d</b>) slope 40° and aspect 135°; (<b>e</b>) slope 50° and aspect 180°; (<b>f</b>) slope 60° and aspect 90°.</p> "> Figure 5
<p>Evaluation of BSA estimates for training datasets over flat terrain in (<b>a</b>–<b>d</b>); (<b>a</b>–<b>d</b>) denotes the result of ANN, KNN, RF, and XGBT; Evaluation of WSA estimates for training datasets over flat terrain in (<b>e</b>–<b>h</b>); (<b>e</b><span class="html-italic">–</span><b>h</b>) denotes the result of ANN, KNN, RF, and XGBT.</p> "> Figure 6
<p>Evaluation of BSA estimates for testing datasets over flat terrain in (<b>a</b>–<b>d</b>); (<b>a</b>–<b>d</b>) denotes the result of ANN, KNN, RF, and XGBT; Evaluation of WSA estimates for testing datasets over flat terrain in (<b>e</b>–<b>h</b>); (<b>e</b>–<b>h</b>) denotes the result of ANN, KNN, RF, and XGBT.</p> "> Figure 7
<p>Evaluation of BSA estimates for training datasets over rugged terrain in (<b>a</b>–<b>d</b>); (<b>a</b>–<b>d</b>) denotes the result of ANN, KNN, RF, and XGBT; Evaluation of WSA estimates for training datasets over rugged terrain in (<b>e</b>–<b>h</b>); (<b>e</b>–<b>h</b>) denotes the result of ANN, KNN, RF, and XGBT.</p> "> Figure 8
<p>Evaluation of BSA estimates for training datasets over rugged terrain in (<b>a</b>–<b>d</b>); (<b>a</b>–<b>d</b>) denotes the result of ANN, KNN, RF, and XGBT; Evaluation of WSA estimates for testing datasets over rugged terrain in (<b>e</b>–<b>h</b>); (<b>e</b>–<b>h</b>) denotes the result of ANN, KNN, RF, and XGBT.</p> "> Figure 9
<p>Evaluation of Sentinel-2 image estimates based on measured values at the in situ sites; (<b>a</b>) is ANN result; (<b>b</b>) is KNN result; (<b>c</b>) is RF result; (<b>d</b>) is XGBT result.</p> "> Figure 10
<p>Evaluation of Sentinel-2 image estimates based on measured values at the in situ sites over snow-covered terrain; (<b>a</b>) is ANN result; (<b>b</b>) is KNN result; (<b>c</b>) is RF result; (<b>d</b>) is XGBT result.</p> "> Figure 11
<p>Evaluation of Sentinel-2 image estimates based on measured values at the in situ sites on rugged terrain; (<b>a</b>) is ANN result; (<b>b</b>) is KNN result; (<b>c</b>) is RF result; (<b>d</b>) is XGBT result.</p> "> Figure 12
<p>Distribution of Sentinel-2 and MODIS black-sky albedo on the glacier, including (<b>a</b>) true-color imagery; (<b>b</b>) Sentinel-2 black-sky albedo; (<b>c</b>) MODIS black-sky albedo.</p> "> Figure 13
<p>The results of RMSE in different sample quantities. (<b>a</b>) is BSA result; (<b>b</b>) is WSA result.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.1.1. In Situ Observations
2.1.2. Sentinel-2 Data
2.1.3. MCD43A1 BRDF/Albedo Product
2.1.4. MOD09GA Product
2.2. Methods
2.2.1. Training and Testing Dataset Simulation over Flat Terrain
2.2.2. Training and Testing Datasets Simulation over Rugged Terrain
2.2.3. Machine Learning Models
2.2.4. Sentinel-2 Albedo Retrieval by Using Machine Learning Models
2.2.5. Machine Learning Models’ Performance Evaluation
3. Results
3.1. The Performance of the Machine Learning Model
3.2. Site-Level Comparison of the Sentinel-2 Albedos over Flat Terrain
3.3. Site-Level Comparison of the Sentinel-2 Albedos over Rugged Terrain
4. Discussion
4.1. The Performance of High-Resolution Surface Albedo over Snow/Ice-Covered Surfaces
4.2. Sensitivity Analysis of the Machine Learning Models
4.3. The Differences and Shortcomings of the Machine Learning Models
5. Conclusions
- (1)
- The RF model outperformed the ANN, KNN, and XGBT models in the simulation of Sentinel-2 albedo, demonstrated by the RMSE (smaller than 0.015) between the model-derived albedo and the simulated albedo in the training and testing datasets. Overall, the RF-model-derived Sentinel-2 albedo showed better consistency with the in situ albedo than that retrieved by using the ANN, KNN, and XGBT models, with an RMSE smaller than 0.0308. The XGBT and KNN models showed slightly worse performance than the RF model, with an RMSE of 0.0313 between the model-derived Sentinel-2 albedo and the in situ albedo. The ANN model showed worse performance than the RF, XGBT, and the KNN models, with an RMSE of 0.0335 between the model-derived Sentinel-2 albedo and the in situ albedo.
- (2)
- Over rugged terrain, all four machine learning models also showed good performance in the retrieval of Sentinel-2 albedo, with an RMSE smaller than 0.0272 in flat terrain. The RF model also showed better performance than the XGBT, ANN, and KNN models with an RMSE of 0.0254. The XGBT, ANN, and KNN models showed worse performance than the RF model, with an RMSE lower than 0.0272.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Site Name | Lat/Lon (deg/deg) | Land Type | Time Period |
---|---|---|---|
BE-Lon | 50.5516/4.7462 | flat terrain | 2019 |
BE-Vie | 50.3049/5.9981 | flat terrain | 2019 |
BON | 40.0519/−88.3731 | flat terrain | 2019 |
BOS | 40.125/−105.237 | flat terrain | 2019 |
BUD | 47.4291/19.1822 | flat terrain | 2019 |
CAB | 51.9711/4.9267 | flat terrain | 2019 |
DE-Hai | 51.0792/10.4522 | flat terrain | 2019 |
DE-Rur | 50.6219/6.3041 | flat terrain | 2019 |
DE-Rus | 50.8659/6.4471 | flat terrain | 2019 |
DK-Sor | 55.4859/11.6446 | flat terrain | 2019 |
ES-Lm1 | 39.9427/−5.7787 | flat terrain | 2019 |
ES-Lm2 | 39.9346/−5.7759 | flat terrain | 2019 |
FR-Lgt | 47.3229/2.2841 | flat terrain | 2019 |
IT-Sr2 | 43.732/10.2909 | flat terrain | 2019 |
IZA | 28.3093/−16.4993 | flat terrain | 2019 |
PAY | 46.815/6.944 | flat terrain | 2019 |
TAT | 36.0581/140.126 | flat terrain | 2019 |
TBL | 40.125/−105.237 | flat terrain | 2019 |
TOR | 58.254/26.462 | flat terrain | 2019 |
US-A03 | 70.4953/−149.882 | flat terrain | 2019 |
US-A10 | 71.3242/−156.615 | flat terrain | 2019 |
US-ALQ | 46.0308/−89.6067 | flat terrain | 2019 |
US-An2 | 68.95/−150.21 | flat terrain | 2019 |
US-An3 | 68.93/−150.27 | flat terrain | 2019 |
US-ARM | 36.6058/−97.4888 | flat terrain | 2019 |
US-Bi1 | 38.0992/−121.499 | flat terrain | 2019 |
US-Bi2 | 38.1091/−121.535 | flat terrain | 2019 |
US-BRG | 39.2167/−86.5406 | flat terrain | 2019 |
US-DFC | 43.3448/−89.7117 | flat terrain | 2019 |
US-EDN | 37.6156/−122.114 | flat terrain | 2019 |
US-Ha2 | 42.5393/−72.1779 | flat terrain | 2019 |
US-HB1 | 33.3455/−79.1957 | flat terrain | 2019 |
US-HB2 | 33.3242/−79.244 | flat terrain | 2019 |
US-HB3 | 33.3482/−79.2322 | flat terrain | 2019 |
US-HBK | 43.9397/−71.7181 | flat terrain | 2019 |
US-Jo2 | 32.5849/−106.603 | flat terrain | 2019 |
US-KS3 | 28.7085/−80.7427 | flat terrain | 2019 |
US-Los | 46.0827/−89.9792 | flat terrain | 2019 |
US-Me6 | 44.3233/−121.608 | flat terrain | 2019 |
US-MtB | 32.4167/−110.726 | flat terrain | 2019 |
US-NC2 | 35.803/−76.6685 | flat terrain | 2019 |
US-NC3 | 35.799/−76.656 | flat terrain | 2019 |
US-NC4 | 35.7879/−75.9038 | flat terrain | 2019 |
US-NGB | 71.28/−156.609 | flat terrain | 2019 |
US-NGC | 64.8614/−163.7008 | flat terrain | 2019 |
US-NR1 | 40.0329/−105.5464 | flat terrain | 2019 |
US-ONA | 27.3836/−81.9509 | flat terrain | 2019 |
US-PFb | 45.972/−90.3232 | flat terrain | 2019 |
US-PFc | 45.9677/−90.3088 | flat terrain | 2019 |
US-PFd | 45.9689/−90.301 | flat terrain | 2019 |
US-PFe | 45.9793/−90.3004 | flat terrain | 2019 |
US-PFg | 45.9735/−90.2723 | flat terrain | 2019 |
US-PFh | 45.9557/−90.2406 | flat terrain | 2019 |
US-PFi | 45.9749/−90.2327 | flat terrain | 2019 |
US-PFk | 45.9149/−90.3425 | flat terrain | 2019 |
US-PFm | 45.9207/−90.3099 | flat terrain | 2019 |
US-PFq | 45.9272/−90.2475 | flat terrain | 2019 |
US-PFr | 45.9245/−90.2475 | flat terrain | 2019 |
US-PFt | 45.9197/−90.2288 | flat terrain | 2019 |
US-PHM | 42.7423/−70.8301 | flat terrain | 2019 |
US-Ro4 | 44.6781/−93.0723 | flat terrain | 2019 |
US-Ro5 | 44.691/−93.0576 | flat terrain | 2019 |
US-Ro6 | 44.6946/−93.0578 | flat terrain | 2019 |
US-Seg | 34.3623/−106.7019 | flat terrain | 2019 |
US-Ses | 34.3349/−106.7442 | flat terrain | 2019 |
US-Snf | 38.0402/−121.727 | flat terrain | 2019 |
US-SRG | 31.7894/−110.828 | flat terrain | 2019 |
US-SRM | 31.8214/−110.866 | flat terrain | 2019 |
US-Syv | 46.242/−89.3477 | flat terrain | 2019 |
US-Tw1 | 38.1074/−121.6469 | flat terrain | 2019 |
US-Tw4 | 38.1027/−121.641 | flat terrain | 2019 |
US-Tw5 | 38.1072/−121.643 | flat terrain | 2019 |
US-Uaf | 64.8663/−147.855 | flat terrain | 2019 |
US-UMB | 45.5598/−84.7138 | flat terrain | 2019 |
US-UMd | 45.5625/−84.6975 | flat terrain | 2019 |
US-Vcm | 35.8884/−106.5321 | flat terrain | 2019 |
US-Vcp | 35.8624/−106.5974 | flat terrain | 2019 |
US-Vcs | 35.9193/−106.6142 | flat terrain | 2019 |
US-WCr | 45.8059/−90.0799 | flat terrain | 2019 |
US-Whs | 31.7438/−110.052 | flat terrain | 2019 |
US-Wjs | 34.4255/−105.862 | flat terrain | 2019 |
US-xAB | 45.7624/−122.33 | flat terrain | 2019 |
US-xAE | 35.4106/−99.0588 | flat terrain | 2019 |
US-xBA | 71.2824/−156.619 | flat terrain | 2019 |
US-xBL | 39.0603/−78.0716 | flat terrain | 2019 |
US-xBN | 65.154/−147.503 | flat terrain | 2019 |
US-xBR | 44.0639/−71.2873 | flat terrain | 2019 |
US-xCL | 33.4012/−97.57 | flat terrain | 2019 |
US-xCP | 40.8155/−104.746 | flat terrain | 2019 |
US-xDC | 47.1617/−99.1066 | flat terrain | 2019 |
US-xDL | 32.5417/−87.8039 | flat terrain | 2019 |
US-xDS | 28.125/−81.4362 | flat terrain | 2019 |
US-xGR | 35.689/−83.502 | flat terrain | 2019 |
US-xHA | 42.5369/−72.1727 | flat terrain | 2019 |
US-xHE | 63.8757/−149.213 | flat terrain | 2019 |
US-xJE | 31.1948/−84.4686 | flat terrain | 2019 |
US-xKA | 39.1104/−96.613 | flat terrain | 2019 |
US-xKZ | 39.1008/−96.5631 | flat terrain | 2019 |
US-xMB | 38.2483/−109.388 | flat terrain | 2019 |
US-xML | 37.3783/−80.5248 | flat terrain | 2019 |
US-xNG | 46.7697/−100.915 | flat terrain | 2019 |
US-xNQ | 40.1776/−112.452 | flat terrain | 2019 |
US-xNW | 40.0543/−105.582 | flat terrain | 2019 |
US-xRM | 40.2759/−105.546 | flat terrain | 2019 |
US-xSB | 29.6893/−81.9934 | flat terrain | 2019 |
US-xSE | 38.8901/−76.56 | flat terrain | 2019 |
US-xSP | 37.0334/−119.262 | flat terrain | 2019 |
US-xSR | 31.9107/−110.836 | flat terrain | 2019 |
US-xST | 45.5089/−89.5864 | flat terrain | 2019 |
US-xTA | 32.9505/−87.3933 | flat terrain | 2019 |
US-xTE | 37.0058/−119.006 | flat terrain | 2019 |
US-xTL | 68.6611/−149.37 | flat terrain | 2019 |
US-xTR | 45.4937/−89.5857 | flat terrain | 2019 |
US-xUK | 39.0404/−95.1922 | flat terrain | 2019 |
US-xWR | 45.8205/−121.952 | flat terrain | 2019 |
US-xYE | 44.9535/−110.539 | flat terrain | 2019 |
Arou | 38.0473/100.4643 | rugged terrain | 2019–2021 |
CH-Cha | 47.2102/8.4104 | rugged terrain | 2019 |
CH-Dav | 46.8153/9.8559 | rugged terrain | 2019 |
CZ-Wet | 49.0247/14.7704 | rugged terrain | 2019 |
Daman | 38.8555/100.3722 | rugged terrain | 2019–2021 |
Heiheyaogan | 38.827/100.4756 | rugged terrain | 2019–2021 |
Huangmo | 42.1135/100.9872 | rugged terrain | 2019–2021 |
Huazhaizi | 38.7659/100.3201 | rugged terrain | 2019–2021 |
IT-Ren | 46.5869/11.4337 | rugged terrain | 2019 |
IT-Tor | 45.8444/7.5781 | rugged terrain | 2019 |
US-Me2 | 44.4523/−121.5574 | rugged terrain | 2019–2020 |
US-Mpj | 34.4384/−106.2377 | rugged terrain | 2019 |
US-Ton | 38.4309/−120.966 | rugged terrain | 2019–2020 |
US-Var | 38.4133/−120.9506 | rugged terrain | 2019–2020 |
US-Vcm | 35.8884/−106.5321 | rugged terrain | 2019 |
US-Wkg | 31.7365/−109.9419 | rugged terrain | 2019–2020 |
Zhangye | 38.9751/100.4464 | rugged terrain | 2019–2021 |
CA-NS6 | 55.92/−98.96 | snow-covered | 2001–2005 |
CA-SF3 | 54.09/−106.01 | snow-covered | 2003–2005 |
CDP | 45.29/5.676 | snow-covered | 2000–2014 |
Fort_Peck | 48.3079/−105.101 | snow-covered | 2000–2008 |
GVN | −70.65/−8.25 | snow-covered | 2000–2009 |
Mead_Irrigated | 41.1651/−96.4766 | snow-covered | 2001–2008 |
OAS | 54.05/−106.333 | snow-covered | 2000–2010 |
OBS | 54.65/−105.2 | snow-covered | 2000–2010 |
OJP | 54.53/−105 | snow-covered | 2000–2010 |
SAP | 43.06/141.329 | snow-covered | 2005–2015 |
SNB | 37.907/−107.726 | snow-covered | 2005–2015 |
SPO | −89.983/−24.799 | snow-covered | 2000–2009 |
SWA | 37.907/−107.711 | snow-covered | 2005–2015 |
WFJ | 46.827/9.807 | snow-covered | 2000–2016 |
References
- Dickinson, R.E. Land Surface Processes and Climate—Surface Albedos and Energy Balance. In Advances in Geophysics; Elsevier: Amsterdam, The Netherlands, 1983; Volume 25, pp. 305–353. [Google Scholar]
- Ollinger, S.V.; Richardson, A.D.; Martin, M.E.; Hollinger, D.Y.; Frolking, S.E.; Reich, P.B.; Plourde, L.C.; Katul, G.G.; Munger, J.W.; Oren, R. Canopy nitrogen, carbon assimilation, and albedo in temperate and boreal forests: Functional relations and potential climate feedbacks. Proc. Natl. Acad. Sci. USA 2008, 105, 19336–19341. [Google Scholar] [CrossRef]
- Picard, G.; Domine, F.; Krinner, G.; Arnaud, L.; Lefebvre, E. Inhibition of the positive snow-albedo feedback by precipitation in interior Antarctica. Nat. Clim. Change 2012, 2, 795–798. [Google Scholar] [CrossRef]
- Ryan, J.; Hubbard, A.; Irvine-Fynn, T.D.; Doyle, S.H.; Cook, J.; Stibal, M.; Box, J. How robust are in situ observations for validating satellite-derived albedo over the dark zone of the Greenland Ice Sheet? Geophys. Res. Lett. 2017, 44, 6218–6225. [Google Scholar] [CrossRef]
- Charlson, R.J.; Lovelock, J.E.; Andreae, M.O.; Warren, S.G. Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 1987, 326, 655–661. [Google Scholar] [CrossRef]
- Wang, Z.; Schaaf, C.B.; Chopping, M.J.; Strahler, A.H.; Wang, J.; Román, M.O.; Rocha, A.V.; Woodcock, C.E.; Shuai, Y. Evaluation of Moderate-resolution Imaging Spectroradiometer (MODIS) snow albedo product (MCD43A) over tundra. Remote Sens. Environ. 2012, 117, 264–280. [Google Scholar] [CrossRef]
- Wang, K.; Liang, S.; Schaaf, C.L.; Strahler, A.H. Evaluation of Moderate Resolution Imaging Spectroradiometer land surface visible and shortwave albedo products at FLUXNET sites. J. Geophys. Res. Atmos. 2010, 115, D17. [Google Scholar] [CrossRef]
- Wu, X.; Wen, J.; Xiao, Q.; Liu, Q.; Peng, J.; Dou, B.; Li, X.; You, D.; Tang, Y.; Liu, Q. Coarse scale in situ albedo observations over heterogeneous snow-free land surfaces and validation strategy: A case of MODIS albedo products preliminary validation over northern China. Remote Sens. Environ. 2016, 184, 25–39. [Google Scholar] [CrossRef]
- Wu, X.; Wen, J.; Xiao, Q.; You, D.; Dou, B.; Lin, X.; Hueni, A. Accuracy assessment on MODIS (V006), GLASS and MuSyQ land-surface albedo products: A case study in the Heihe River Basin, China. Remote Sens. 2018, 10, 2045. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, L.; Qu, Y.; Liu, N.; Liu, S.; Tang, H.; Liang, S. Preliminary evaluation of the long-term GLASS albedo product. Int. J. Digit. Earth 2013, 6, 69–95. [Google Scholar] [CrossRef]
- He, T.; Liang, S.; Wang, D.; Cao, Y.; Gao, F.; Yu, Y.; Feng, M. Evaluating land surface albedo estimation from Landsat MSS, TM, ETM+, and OLI data based on the unified direct estimation approach. Remote Sens. Environ. 2018, 204, 181–196. [Google Scholar] [CrossRef]
- Davin, E.L.; Seneviratne, S.I.; Ciais, P.; Olioso, A.; Wang, T. Preferential cooling of hot extremes from cropland albedo management. Proc. Natl. Acad. Sci. USA 2014, 111, 9757–9761. [Google Scholar] [CrossRef]
- Barnes, C.A.; Roy, D.P. Radiative forcing over the conterminous United States due to contemporary land cover land use albedo change. Geophys. Res. Lett. 2008, 35, 9. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Z.; Sun, Q.; Erb, A.M.; Li, Z.; Schaaf, C.B.; Zhang, X.; Román, M.O.; Scott, R.L.; Zhang, Q. Evaluation of the VIIRS BRDF, Albedo and NBAR products suite and an assessment of continuity with the long term MODIS record. Remote Sens. Environ. 2017, 201, 256–274. [Google Scholar] [CrossRef]
- Mira, M.; Weiss, M.; Baret, F.; Courault, D.; Hagolle, O.; Gallego-Elvira, B.; Olioso, A. The MODIS (collection V006) BRDF/albedo product MCD43D: Temporal course evaluated over agricultural landscape. Remote Sens. Environ. 2015, 170, 216–228. [Google Scholar] [CrossRef]
- Li, D.; Lu, X.; Walling, D.E.; Zhang, T.; Steiner, J.F.; Wasson, R.J.; Harrison, S.; Nepal, S.; Nie, Y.; Immerzeel, W.W. High Mountain Asia hydropower systems threatened by climate-driven landscape instability. Nat. Geosci. 2022, 15, 520–530. [Google Scholar] [CrossRef]
- Li, Z.; Erb, A.; Sun, Q.; Liu, Y.; Shuai, Y.; Wang, Z.; Boucher, P.; Schaaf, C. Preliminary assessment of 20-m surface albedo retrievals from sentinel-2A surface reflectance and MODIS/VIIRS surface anisotropy measures. Remote Sens. Environ. 2018, 217, 352–365. [Google Scholar] [CrossRef]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- You, D.; Wen, J.; Xiao, Q.; Liu, Q.; Liu, Q.; Tang, Y.; Dou, B.; Peng, J. Development of a high resolution BRDF/Albedo product by fusing airborne CASI reflectance with MODIS daily reflectance in the oasis area of the Heihe River Basin, China. Remote Sens. 2015, 7, 6784–6807. [Google Scholar] [CrossRef]
- Zhang, X.; Jiao, Z.; Dong, Y.; He, T.; Ding, A.; Yin, S.; Zhang, H.; Cui, L.; Chang, Y.; Guo, J. Development of the direct-estimation albedo algorithm for snow-free Landsat TM albedo retrievals using field flux measurements. IEEE Trans. Geosci. Remote Sens. 2019, 58, 1550–1567. [Google Scholar] [CrossRef]
- Bonafoni, S.; Sekertekin, A. Albedo retrieval from Sentinel-2 by new narrow-to-broadband conversion coefficients. IEEE Geosci. Remote Sens. Lett. 2020, 17, 1618–1622. [Google Scholar] [CrossRef]
- Liang, S. Narrowband to broadband conversions of land surface albedo I: Algorithms. Remote Sens. Environ. 2001, 76, 213–238. [Google Scholar] [CrossRef]
- Shuai, Y.; Masek, J.G.; Gao, F.; Schaaf, C.B.; He, T. An approach for the long-term 30-m land surface snow-free albedo retrieval from historic Landsat surface reflectance and MODIS-based a priori anisotropy knowledge. Remote Sens. Environ. 2014, 152, 467–479. [Google Scholar] [CrossRef]
- Shuai, Y.; Masek, J.G.; Gao, F.; Schaaf, C.B. An algorithm for the retrieval of 30-m snow-free albedo from Landsat surface reflectance and MODIS BRDF. Remote Sens. Environ. 2011, 115, 2204–2216. [Google Scholar] [CrossRef]
- Cao, C.; Lee, X.; Muhlhausen, J.; Bonneau, L.; Xu, J. Measuring landscape albedo using unmanned aerial vehicles. Remote Sens. 2018, 10, 1812. [Google Scholar] [CrossRef]
- Lewis, P.; Barnsley, M. Influence of the sky radiance distribution on various formulations of the earth surface albedo. In Proceedings of the 6th International Symposium on Physical Measurements and Signatures in Remote Sensing, ISPRS, Val D’Isere, France, 17–21 January 1994; pp. 707–715. [Google Scholar]
- Lin, X.; Wu, S.; Chen, B.; Lin, Z.; Yan, Z.; Chen, X.; Yin, G.; You, D.; Wen, J.; Liu, Q. Estimating 10-m land surface albedo from Sentinel-2 satellite observations using a direct estimation approach with Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 2022, 194, 1–20. [Google Scholar] [CrossRef]
- Lin, X.; Wu, S.; Hao, D.; Wen, J.; Xiao, Q.; Liu, Q. Sloping surface reflectance: The best option for satellite-based albedo retrieval over mountainous areas. IEEE Geosci. Remote Sens. Lett. 2021, 19, 1–5. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Baldocchi, D.; Falge, E.; Gu, L.; Olson, R.; Hollinger, D.; Running, S.; Anthoni, P.; Bernhofer, C.; Davis, K.; Evans, R. FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Am. Meteorol. Soc. 2001, 82, 2415–2434. [Google Scholar] [CrossRef]
- Chu, H.; Luo, X.; Ouyang, Z.; Chan, W.S.; Dengel, S.; Biraud, S.C.; Torn, M.S.; Metzger, S.; Kumar, J.; Arain, M.A. Representativeness of Eddy-Covariance flux footprints for areas surrounding AmeriFlux sites. Agric. For. Meteorol. 2021, 301, 108350. [Google Scholar] [CrossRef]
- Roy, D.P.; Li, J.; Zhang, H.K.; Yan, L.; Huang, H.; Li, Z. Examination of Sentinel-2A multi-spectral instrument (MSI) reflectance anisotropy and the suitability of a general method to normalize MSI reflectance to nadir BRDF adjusted reflectance. Remote Sens. Environ. 2017, 199, 25–38. [Google Scholar] [CrossRef]
- Zanaga, D.; Van De Kerchove, R.; Daems, D.; De Keersmaecker, W.; Brockmann, C.; Kirches, G.; Wevers, J.; Cartus, O.; Santoro, M.; Fritz, S. ESA WorldCover 10 m 2021 v200. 2022. Available online: https://pure.iiasa.ac.at/id/eprint/18478/ (accessed on 13 October 2022).
- Schaaf, C.B.; Gao, F.; Strahler, A.H.; Lucht, W.; Li, X.; Tsang, T.; Strugnell, N.C.; Zhang, X.; Jin, Y.; Muller, J.-P. First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sens. Environ. 2002, 83, 135–148. [Google Scholar] [CrossRef]
- Qu, Y.; Liu, Q.; Liang, S.; Wang, L.; Liu, N.; Liu, S. Direct-estimation algorithm for mapping daily land-surface broadband albedo from MODIS data. IEEE Trans. Geosci. Remote Sens. 2013, 52, 907–919. [Google Scholar] [CrossRef]
- Lucht, W.; Hyman, A.H.; Strahler, A.H.; Barnsley, M.J.; Hobson, P.; Muller, J.-P.J.R.S.O.E. A comparison of satellite-derived spectral albedos to ground-based broadband albedo measurements modeled to satellite spatial scale for a semidesert landscape. Remote Sens. Environ. 2000, 74, 85–98. [Google Scholar] [CrossRef]
- Lucht, W.; Schaaf, C.B.; Strahler, A.H. An algorithm for the retrieval of albedo from space using semiempirical BRDF models. IEEE Trans. Geosci. Remote Sens. 2000, 38, 977–998. [Google Scholar] [CrossRef]
- Strahler, A.H.; Muller, J.; Lucht, W.; Schaaf, C.; Tsang, T.; Gao, F.; Li, X.; Lewis, P.; Barnsley, M.J. MODIS BRDF/albedo product: Algorithm theoretical basis document version 5.0. MODIS Doc. 1999, 23, 42–47. [Google Scholar]
- Wang, J.; Zhang, L.; Liu, Q.; Zhang, B.; Yin, Q.; Li, P.; Zhao, G.; Gao, M.; Chang, C.; Wang, Z. Spectral Database System of Typical Objects in China. Beijing Sci. Press 2009, 1, 254. [Google Scholar]
- Liang, S. Quantitative Remote Sensing of Land Surfaces. In Agricultural Systems; Wiley & Sons: Hoboken, NJ, USA, 2006; Volume 90, pp. 349–350. [Google Scholar]
- Clark, R.N.; Swayze, G.A.; Wise, R.A.; Livo, K.E.; Hoefen, T.M.; Kokaly, R.F.; Sutley, S.J. USGS Digital Spectral Library splib06a; 2327-638X; US Geological Survey: Reston, VA, USA, 2007.
- Liang, S.; Fang, H.; Chen, M.; Shuey, C.J.; Walthall, C.; Daughtry, C.; Morisette, J.; Schaaf, C.; Strahler, A. Validating MODIS land surface reflectance and albedo products: Methods and preliminary results. Remote Sens. Environ. 2002, 83, 149–162. [Google Scholar] [CrossRef]
- Amazirh, A.; Bouras, E.H.; Olivera-Guerra, L.E.; Er-Raki, S.; Chehbouni, A. Retrieving crop albedo based on radar sentinel-1 and random forest approach. Remote Sens. 2021, 13, 3181. [Google Scholar] [CrossRef]
- Wang, J.; Wu, X.; Wen, J.; Xiao, Q.; Gong, B.; Ma, D.; Cui, Y.; Lin, X.; Bao, Y. Upscaling in situ site-based albedo using machine learning models: Main controlling factors on results. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–16. [Google Scholar] [CrossRef]
- Sarafanov, M.; Kazakov, E.; Nikitin, N.O.; Kalyuzhnaya, A.V. A machine learning approach for remote sensing data gap-filling with open-source implementation: An example regarding land surface temperature, surface albedo and NDVI. Remote Sens. 2020, 12, 3865. [Google Scholar] [CrossRef]
- Tariq, A.; Yan, J.; Gagnon, A.S.; Riaz Khan, M.; Mumtaz, F. Mapping of cropland, cropping patterns and crop types by combining optical remote sensing images with decision tree classifier and random forest. Geo-Spat. Inf. Sci. 2022, 1–19. [Google Scholar] [CrossRef]
- Elkadiri, R.; Sultan, M.; Youssef, A.M.; Elbayoumi, T.; Chase, R.; Bulkhi, A.B.; Al-Katheeri, M.M. A remote sensing-based approach for debris-flow susceptibility assessment using artificial neural networks and logistic regression modeling. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4818–4835. [Google Scholar] [CrossRef]
- Mas, J.F.; Flores, J.J. The application of artificial neural networks to the analysis of remotely sensed data. Int. J. Remote Sens. 2008, 29, 617–663. [Google Scholar] [CrossRef]
- Chirici, G.; Mura, M.; McInerney, D.; Py, N.; Tomppo, E.O.; Waser, L.T.; Travaglini, D.; McRoberts, R.E. A meta-analysis and review of the literature on the k-Nearest Neighbors technique for forestry applications that use remotely sensed data. Remote Sens. Environ. 2016, 176, 282–294. [Google Scholar] [CrossRef]
- Dong, J.; Chen, Y.; Yao, B.; Zhang, X.; Zeng, N. A neural network boosting regression model based on XGBoost. Appl. Soft Comput. 2022, 125, 109067. [Google Scholar] [CrossRef]
- Gascoin, S.; Grizonnet, M.; Bouchet, M.; Salgues, G.; Hagolle, O. Theia Snow collection: High-resolution operational snow cover maps from Sentinel-2 and Landsat-8 data. Earth Syst. Sci. Data 2019, 11, 493–514. [Google Scholar] [CrossRef]
- Kostadinov, T.S.; Schumer, R.; Hausner, M.; Bormann, K.J.; Gaffney, R.; McGwire, K.; Painter, T.H.; Tyler, S.; Harpold, A.A. Watershed-scale mapping of fractional snow cover under conifer forest canopy using lidar. Remote Sens. Environ. 2019, 222, 34–49. [Google Scholar] [CrossRef]
- Muhuri, A.; Gascoin, S.; Menzel, L.; Kostadinov, T.S.; Harpold, A.A.; Sanmiguel-Vallelado, A.; López-Moreno, J. Performance Assessment of Optical Satellite-Based Operational Snow Cover Monitoring Algorithms in Forested Landscapes. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 7159–7178. [Google Scholar] [CrossRef]
- Stillinger, T.; Rittger, K.; Raleigh, M.S.; Michell, A.; Davis, R.E.; Bair, E.H.J.T.C. Landsat, MODIS, and VIIRS snow cover mapping algorithm performance as validated by airborne lidar datasets. Cryosphere 2023, 17, 567–590. [Google Scholar] [CrossRef]
- Zhang, M.-L.; Zhou, Z.-H. ML-KNN: A lazy learning approach to multi-label learning. Pattern Recognit. 2007, 40, 2038–2048. [Google Scholar] [CrossRef]
- Zupan, J. Introduction to artificial neural network (ANN) methods: What they are and how to use them. Acta Chim. Slov. 1994, 41, 327. [Google Scholar]
- Friedjungová, M.; Jiřina, M.; Vašata, D. Missing features reconstruction and its impact on classification accuracy. In Proceedings of the International Conference on Computational Science, Faro, Portugal, 18–20 December 2019; pp. 207–220. [Google Scholar]
- Li, X.; Wu, C.; Meadows, M.E.; Zhang, Z.; Lin, X.; Zhang, Z.; Chi, Y.; Feng, M.; Li, E.; Hu, Y. Factors underlying spatiotemporal variations in atmospheric pm2. 5 concentrations in zhejiang province, china. Remote Sens. 2021, 13, 3011. [Google Scholar] [CrossRef]
Sentinel-2 Bands | Central Wavelength (µm) | Resolution (m) | Bandwidth (nm) |
---|---|---|---|
Blue (B2) | 0.490 | 10 | 65 |
Green (B3) | 0.560 | 10 | 35 |
Red (B4) | 0.665 | 10 | 30 |
NIR (B8) | 0.842 | 10 | 115 |
Input Variables | Target Variables | Number of Training Datasets | Number of Testing Datasets |
---|---|---|---|
SZA, VZA, and RAA | WSA | 1,360,355 | 270,648 |
Blue band reflectance | |||
Green band reflectance | |||
Red band reflectance | |||
NIR band reflectance | |||
SZA, VZA, RAA, and LSZA | BSA | 37,820,355 | 5,562,648 |
Blue band reflectance | |||
Green band reflectance | |||
Red band reflectance | |||
NIR band reflectance |
Input Variables | Target Variables | Number of Training Datasets | Number of Testing Datasets |
---|---|---|---|
Slope, aspect, SZA, VZA, and RAA | WSA | 1,048,576 | 248,103 |
Blue band reflectance | |||
Green band reflectance | |||
Red band reflectance | |||
NIR band reflectance | |||
Slope, aspect, SZA, VZA, and RAA | BSA | 1,048,576 | 248,103 |
Blue band reflectance | |||
Green band reflectance | |||
Red band reflectance | |||
NIR band reflectance |
Slope | Model | Bias | RMSE | R2 |
---|---|---|---|---|
0°–5° | ANN | 0.0003 | 0.0239 | 0.6204 |
KNN | −0.0062 | 0.0251 | 0.5938 | |
RF | −0.0023 | 0.0229 | 0.6367 | |
XGBT | −0.0041 | 0.0247 | 0.5832 | |
5°–10° | ANN | −0.0049 | 0.0243 | 0.7223 |
KNN | −0.0114 | 0.0277 | 0.6896 | |
RF | −0.0053 | 0.0252 | 0.7035 | |
XGBT | −0.0061 | 0.0257 | 0.695 | |
>10° | ANN | 0.0053 | 0.0309 | 0.3897 |
KNN | 0.0015 | 0.0302 | 0.4073 | |
RF | 0.0093 | 0.0306 | 0.4088 | |
XGBT | 0.0051 | 0.0297 | 0.4044 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Lin, X.; Sun, Y.; Wen, J.; Wu, X.; You, D.; Cheng, J.; Zhang, Z.; Zhang, Z.; Wu, C.; et al. Performance Assessment of Four Data-Driven Machine Learning Models: A Case to Generate Sentinel-2 Albedo at 10 Meters. Remote Sens. 2023, 15, 2684. https://doi.org/10.3390/rs15102684
Chen H, Lin X, Sun Y, Wen J, Wu X, You D, Cheng J, Zhang Z, Zhang Z, Wu C, et al. Performance Assessment of Four Data-Driven Machine Learning Models: A Case to Generate Sentinel-2 Albedo at 10 Meters. Remote Sensing. 2023; 15(10):2684. https://doi.org/10.3390/rs15102684
Chicago/Turabian StyleChen, Hao, Xingwen Lin, Yibo Sun, Jianguang Wen, Xiaodan Wu, Dongqin You, Juan Cheng, Zhenzhen Zhang, Zhaoyang Zhang, Chaofan Wu, and et al. 2023. "Performance Assessment of Four Data-Driven Machine Learning Models: A Case to Generate Sentinel-2 Albedo at 10 Meters" Remote Sensing 15, no. 10: 2684. https://doi.org/10.3390/rs15102684
APA StyleChen, H., Lin, X., Sun, Y., Wen, J., Wu, X., You, D., Cheng, J., Zhang, Z., Zhang, Z., Wu, C., Zhang, F., Yin, K., Jian, H., & Guan, X. (2023). Performance Assessment of Four Data-Driven Machine Learning Models: A Case to Generate Sentinel-2 Albedo at 10 Meters. Remote Sensing, 15(10), 2684. https://doi.org/10.3390/rs15102684