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Abstract: Wheat lodging has a significant impact on yields and quality, necessitating the accurate
acquisition of lodging information for effective disaster assessment and damage evaluation. This
study presents a novel approach for wheat lodging detection in large and heterogeneous fields
using UAV remote sensing images. A comprehensive dataset spanning an area of 2.3117 km2

was meticulously collected and labeled, constituting a valuable resource for this study. Through a
comprehensive comparison of algorithmic models, remote sensing data types, and model frameworks,
this study demonstrates that the Deeplabv3+ model outperforms various other models, including
U-net, Bisenetv2, FastSCN, RTFormer, Bisenetv2, and HRNet, achieving a noteworthy F1 score of
90.22% for detecting wheat lodging. Intriguingly, by leveraging RGB image data alone, the current
model achieves high-accuracy rates in wheat lodging detection compared to models trained with
multispectral datasets at the same resolution. Moreover, we introduce an innovative multi-branch
binary classification framework that surpasses the traditional single-branch multi-classification
framework. The proposed framework yielded an outstanding F1 score of 90.30% for detecting wheat
lodging and an accuracy of 86.94% for area extraction of wheat lodging, surpassing the single-branch
multi-classification framework by an improvement of 7.22%. Significantly, the present comprehensive
experimental results showcase the capacity of UAVs and deep learning to detect wheat lodging in
expansive areas, demonstrating high efficiency and cost-effectiveness under heterogeneous field
conditions. This study offers valuable insights for leveraging UAV remote sensing technology to
identify post-disaster damage areas and assess the extent of the damage.

Keywords: wheat lodging detection; UAV; deep learning; multispectral imagery; RGB imagery;
Deeplabv3+

1. Introduction

As one of the world’s three major food crops, wheat plays a crucial role in providing
phytochemicals that are essential for human health, such as vitamins, starch, protein, and
dietary fiber. In 2022, China’s wheat production reached approximately 1.38 × 109 tons,
accounting for about 20% of the country’s total grain production and highlighting the
strategic importance of securing wheat production for food security [1]. However, the
phenomenon of wheat lodging, which refers to the bending or breaking of wheat stems due
to adverse weather conditions or improper farming practices, poses a significant challenge
to wheat cultivation [2]. Wheat lodging adversely affects water and nutrient transport and
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photosynthesis and increases susceptibility to pests and diseases, hindering seed filling
and having a substantial impact on wheat yield. The degree of lodging intensifies if it
occurs during the late-ripening and late-filling stages of wheat growth, resulting in yield
reductions ranging from 10% to 20%. If lodging happens before or after wheat flowering,
the yield reduction can exceed 50%, leading to complete yield loss [3]. Given this situation,
leveraging computer technology to obtain timely and accurate regional wheat lodging
information is vital for predicting total wheat yields and promoting global grain production
regulation. Such efforts are crucial to supporting agricultural development and presenting
food security strategies. Numerous strategies have been pursued within the realm of inves-
tigations concerning expansive canopy systems. These encompass approaches that dissect
individual crops as distinct entities, utilizing visualization methodologies in tandem with
wind dynamics [4–6]. However, the methods centered on comprehensive measurements
at a significant scale stand out as preeminent among these strategies. Currently, the most
widely used methods for wheat lodging detection include manual field measurements
and high-throughput remote sensing measurements [7]. Manual measurements are sub-
ject to environmental variability and lack objectivity and uniform standards, resulting in
inefficiencies and low accuracy in wheat lodging detection [8,9].

In recent years, remote sensing technology has emerged as a critical tool in detecting
crop failure. Scholars have employed remote sensing techniques, including unmanned
aerial vehicles (UAVs) and satellite imagery, to analyze the spatial structures and color differ-
ences between areas with and without wheat lodging. They have utilized deep learning and
classical machine learning methods to advance wheat lodging detection research [10,11].
Despite its limitations regarding spatial and temporal resolution, satellite remote sensing
has been used to monitor wheat lodging information. However, with the rapid develop-
ment of UAV technology and data processing software, UAV remote sensing has gained
popularity in agriculture due to its cost-effectiveness, operability, and high spatial and
temporal resolutions [12,13]. Scholars have made significant progress in detecting wheat
lodging using UAV RGB remote sensing images. For instance, Li Guang et al. achieved
winter wheat lodging detection with an overall accuracy of 86.44% using textual methods,
support vector machines, neural networks, and maximum likelihood methods [14].

Zhang et al. extracted features from RGB images acquired using UAVs and evaluated
three classification methods: random forest, neural networks, and support vector machines.
They then incorporated the robust convolutional neural network, GoogLeNet, achieving
a final accuracy of 93% [15]. While classical machine learning methods have been widely
used in these studies, they rely heavily on traditional feature selection methods and lack
model robustness. With the advancement of computing power and the development of
deep learning network architecture, deep learning techniques have shown remarkable
results in agricultural disaster assessment and other areas. Based on UAV remote sensing
images capturing wheat at five developmental stages, Yu et al. incorporated the attention
module CBAM into the PSPNet model and employed the Tversky loss function, resulting
in an approximate overall accuracy of 95% [16]. In parallel, Zhang et al. presented a
novel approach that integrates transfer learning and the Deeplabv3+ network to extract the
lodging area of wheat during various growth stages [17]. Their findings demonstrated an
achieved dice coefficient of around 90%.

In practical applications, the wheat planting area data exhibit evident heterogeneity.
The aforementioned deep learning methods rely solely on a singular type of remote sensing
image data and are limited by a small data range, with most studies having data ranges of
less than 0.32 hectares [15–17], constraining their applicability to a restricted set of practical
scenarios. Therefore, it is crucial to conduct a meticulous comparative inquiry concerning
the identification of wheat lodging, imbuing the use of remote sensing image data with
conspicuous heterogeneity. This imperative arises because of the evolving landscape in
practical applications, whereby wheat cultivation regions exhibit overt disparities. Notably,
our study bears the distinction of being the first to achieve exceptional efficacy across an
expansive and heterogeneous field dataset.
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This study utilized a comprehensive dataset spanning 2.3117 km2 of unmanned aerial
vehicle (UAV) multispectral and RGB remote sensing images, comprising a total of six
images acquired from three distinct districts and counties within Xiangyang City. The
key objectives addressed in this research are as follows: (1) selecting the optimal model
for accurately segmenting wheat lodging in complex field conditions; (2) conducting a
comparative analysis of various remote sensing data types to identify the model with
superior performance; and (3) developing a novel classification framework to address land
affiliation variations and achieve the pixel-level classification of UAV images.

The rest of the paper is structured as follows: Section 2 outlines the study area, data
collection, and processing; Section 3 presents the methodology; Section 4 presents the
comparative results of the models and inputs; Section 5 contains the discussion; and
Section 6 concludes and offers future directions.

2. Materials
2.1. Description of Study Area

The study was conducted in Liangjiazhuang, Oumiao Town, Xiangcheng District,
Hubei Province (112◦09′12′′E, 31◦51′13′′N) (Figure 1), a region characterized by a humid
subtropical monsoon climate featuring cold and dry winters, hot and rainy summers,
and simultaneous precipitation and heat. The region experiences an average annual
temperature ranging from 15.2 to 16.0 ◦C, with an average annual sunshine duration of
1622 to 1841 h and a frost-free period of approximately 250 days. These favorable climatic
conditions provide an optimal environment for the robust growth of wheat. However, the
area frequently experiences wheat lodging due to the adverse impact of severe weather
conditions, including strong winds and heavy rainfall, coupled with suboptimal farming
practices during the middle and late stages of wheat growth [18].
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GS(2016)2923; (c) map and sample image projection of the study area in Oumiao Town: WGS84 UTM
ZONE 50N. Data produced by the authors.

2.2. Data Acquisition

The DJI M300 RTK multi-rotor UAV offers numerous advantages, including high
operational efficiency, flight stability, altitude maneuverability, versatility in capturing
various types of images, and minimal constraints on takeoff and landing, making it highly
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suitable for conducting rapid aerial photography operations in rural areas. Consequently,
the M300 RTK UAV manufactured by Shenzhen DJI Innovation Technology Co. (Shenzhen,
China) was utilized in this study. The UAV has a total weight of 6.3 kg (including the battery
and rotors), a wheelbase of 895 mm, a maximum flight speed of 23 m/s, a maximum takeoff
altitude of 7000 m, and exceptional hovering accuracy in the RTK mode: vertical ± 0.1 m;
horizontal ± 0.1 m.

Data collection was completed from 23 April to 29 April 2022, under clear weather
conditions with adequate illumination. The UAV was equipped with a Zenmuse H20
camera (DJI Technology Co., Shenzhen, China) and a RedEdge MX Dual dual-camera
multi-spectrometer (MicaSense, Seattle, WA, USA). DJI Pilot software was utilized to plan
the flight route, ensuring a flight altitude of 100 m with a heading overlap rate of 75%
and a collateral overlap rate of 80%. This setup allowed for the acquisition of RGB remote
sensing images with ground resolutions of 1.8 cm, as well as multispectral remote sensing
images with an 8 cm resolution. The resulting imagery depicted instances of wheat lodging
occurring during the middle and late stages of growth (Figure 2).
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2.3. DataSet Construction and Annotation

The images captured by the UAV underwent a series of processing steps using Agisoft
Metashape software to generate four images. These images were subjected to essential oper-
ations, including standardization, the construction of a dense cloud, network construction,
texture layer generation, and ortho-morph construction, using specialized photogrammetry
software. To ensure consistency, all image layers were projected onto the WGS 1984 UTM
Zone 50N projection coordinate system in the GeoTIFF format, based on the geographic
location of the image area.

For this study, semantic segmentation techniques in deep learning were employed,
requiring the data to be provided in the form of masks for the efficient labeling of classi-
fied regions. Manual labeling was conducted using ArcGIS Pro 2.5.2, with experienced
interpreters conducting visual interpretations. The images were categorized into “Oth-
ers” (including soil, weeds, canola, houses, etc.), “Health” (representing healthy wheat),
and “Lodging” (indicating wheat lodging). The detection of wheat lodging served as
a supervised classification task with three classes (Figure 2). The visual interpretation
of lodgings was cross-checked by two interpreters, with areas of uncertainty excluded
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from the subsequent classification. Furthermore, field visits were conducted to verify the
accuracy of the visual interpretation.

To facilitate comparisons between different types of remote sensing data when model-
ing, the nearest resampling method in ArcGIS 10.7 was employed to resample RGB remote
sensing images, multispectral remote sensing images, and their corresponding reference
masks to an 8 cm resolution. This ensured consistency in evaluating the differences across
various remote sensing data types.

2.4. Data Processing

Regarding the exported images, ensuring compliance with the criteria set forth by the
semantic segmentation module in deep learning necessitated the utilization of a sliding
cut approach. This approach effectively divided the images into non-repetitive segments
with dimensions of 512 × 512, ensuring optimal compatibility with the module while
maintaining a low repetition rate of 0.1.

The balance of the dataset plays a pivotal role in the performance of the deep learning
model [19]. This study employed a dataset balancing method, based on the pixel value ratio,
to select the most suitable model. Specifically, the proportion of each label value within
each image was initially computed. If the combined proportion of healthy or background
label values exceeded 60% and the total proportion of lodging label values was less than
1%, the image was removed. By using this approach, the dataset was balanced across
the three label types, leading to improved accuracy in evaluating the model performance.
Simultaneously, in order to retain the realism of the original dataset’s label proportions, no
balancing treatment was applied during the comparison of different frames and different
types of remote sensing images. Following these principles, the dataset was divided into
four distinct groups, with detailed information provided in Table 1.

Table 1. Details of datasets.

Dataset
Spatial

Resolution
(cm)

Data Types Data Balance Occurrence
Occurrences a Area-Related Shares b (%)

Other Health Lodging Other Health Lodging

a 1.8 cm RGB Imagery Balanced 2902 2210 2398 2028 30.97% 45.41% 23.62%
b 1.8 cm RGB Imagery Unbalanced 3101 2261 1556 163 58.65% 39.67% 1.68%
c 8.0 cm RGB Imagery Unbalanced 1728 1576 1264 316 57.39% 40.83% 1.78%

d 8.0 cm Multispectral
Imagery Unbalanced 1728 1576 1264 316 57.39% 40.83% 1.78%

a Occurrence of the class in the number of tiles. b Area-related share of the class in the dataset.

The four image blocks were randomly partitioned into training, validation, and test
datasets, with a ratio of 7:2:1. The training and validation sets were utilized during the
model training process, while the test set served as an independent dataset for evaluating
the performance of the trained deep learning model.

Furthermore, to enhance the generalization capability and training efficiency during
model training, a real-time data augmentation technique was employed in this study [20].
As a crucial component within the PaddleRS framework’s data preprocessing pipeline,
this technique encompassed several enhancements, including data normalization to the
range [−1, 1] and random horizontal flipping with a probability of 50%. These augmenta-
tions aimed to improve the model’s ability to generalize to unseen data and expedite the
training process.

3. Method
3.1. Training of Deep Neural Networks

Semantic segmentation is a comprehensive technique that integrates image classifica-
tion, target detection, and image segmentation, aiming to partition an image into distinct
regions with specific spatial extents while identifying the semantic class of each region.
Compared to traditional methods, convolutional neural network (CNN)-based semantic
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segmentation enables end-to-end training, exhibits superior adaptability and scalability,
and significantly enhances the accuracy of semantic segmentation models [21].

Deeplabv3+ is a widely used semantic segmentation model that is employed exten-
sively in various domains. Its overarching architecture encompasses two integral compo-
nents: the encoder and the decoder [22] (Figure 3). Deeplabv3+ extends the Deeplabv3
model by introducing a novel encoder–decoder network structure. The encoder module
retains the core features of Deeplabv3 and leverages atrous convolution to enhance model
detection capabilities for small targets, which is particularly beneficial for detecting small
lodging areas. Notably, the encoder incorporates atrous spatial pyramid pooling (ASPP), a
critical component that performs convolutions with various dilation rates, enabling the ex-
traction of feature representations with diverse perceptual fields. ASPP effectively exploits
multi-scale feature information to achieve superior object boundary segmentation. The
decoder involves the upsampling and fusion of feature maps, combining the advantages of
both methods to handle objects of different sizes and produce a robust model.
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In addition to Deeplabv3+, we employed several classical model architectures that
have been used in the field of semantic segmentation. These include U-net, Bisenetv2,
HRNet, FastSCN, and RTFormer. The U-net model, characterized by an encoder–decoder
structure, enables the precise recovery of edge information in the segmentation map via fea-
ture concatenation during upsampling [23]. Bisenetv2 constructs a bilateral segmentation
network with a two-way encoder that combines a lightweight network structure with a
densely connected residual network structure, achieving a balance between computational
speed and final accuracy [24]. HRNet employs a high-resolution feature pyramid structure,
leveraging multi-layer feature pyramids to handle objects at different scales and effectively
improve model performance [25]. The FastSCN model adopts a lightweight network struc-
ture that utilizes spatial context to enhance segmentation results [26]. RTFormer, based on
the Transformer architecture, utilizes the self-attentive mechanism to capture global con-
textual information while preserving spatial details, surpassing traditional convolutional
neural networks (CNN) in capturing contexts [27].

During the exploration of the optimal segmentation model, the six aforementioned
models were trained on Dataset A, a balanced ultra-high-resolution image dataset, to
maximize the model’s performance and generalization capabilities. Subsequently, a com-
parative analysis was conducted to select the most suitable semantic segmentation model
for detecting wheat lodging.
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3.2. Application of Multispectral Datasets

Multispectral image classification, an important application of hyperspectral technol-
ogy, aims to classify various features based on the differences in reflectance across different
wavelengths of light. Compared to traditional RGB images, multispectral data contain a
richer set of waveband information (Figure 4), enabling more detailed feature classification.
In recent years, UAV-based multispectral imaging has been extensively used in agricultural
disaster detection [28–31].
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In the context of semantic segmentation, the dataset plays a pivotal role in training and
evaluating the model’s performance. In this study, PaddleRS, an intelligent interpretation
development kit for remote sensing images, was employed to optimize the classification
model’s parameters, adjust the number of input bands, and utilize the pixel values from
each band of the multispectral images as inputs. These inputs were further processed by a
neural network model to identify the occurrence of wheat lodging. Unbalanced Datasets C
and D were employed to compare the RGB data with multispectral data, leveraging the
abundant spectral information present in multispectral data. Subsequently, the Deeplabv3+
model was employed to model the wheat lodging datasets, allowing for a comprehensive
comparison between RGB and multispectral data.

3.3. Multi-Branch Binary Classification Framework

In most classification problems, the conventional approach involves using a single
model for multi-classification, where the model extracts and transforms features from input
data using neural networks or other machine learning algorithms. The output layer of this
approach consists of nodes representing different classes, and the class of the input data is
determined based on the scores of these nodes.

However, traditional multi-classification methods encounter a significant limitation
when dealing with the special case of wheat lodging occurring only within wheat regions,
specifically related to class affiliation. This situation can lead to the incorrect classification
of other non-target regions such as wheat lodging, resulting in inaccurate classification
outcomes. Such inaccuracies can significantly impact the detection of wheat lodging areas
within the target region, necessitating a more refined classification method to address
this issue.

Hence, this study constructed an innovative multi-branch binary classification frame-
work [32]. In this framework, an additional branch was added to the existing single branch,
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transforming the problem into a binary classification task. One branch focused on dis-
tinguishing wheat areas (including healthy wheat and wheat lodging) from other areas,
while the other branch focused solely on identifying wheat lodging areas among other
areas. Subsequently, the logic depicted in Figure 5 was applied to the results obtained
from the two branches, ensuring that wheat lodging was exclusively included within the
wheat region.
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During the actual training process, this study utilized Dataset A and Dataset B for
image segmentation using the Deeplabv3+ model. The effectiveness of the multi-branch
binary classification framework under different dataset balancing scenarios was compared
to explore its performance across various situations.

3.4. Model Training

In this experiment, uniform hyperparameter settings were applied to all models. The
experiments were conducted using PaddlePaddle 2.4.1 and a CUDA-compatible NVIDIA
GPU (GeForce GTX 1080 Ti) with a CUDA11.7 library. As some datasets exhibited imbal-
anced class distributions, the lodging class contained a limited number of samples, thereby
restricting the optimization effect of a single loss function. Hence, a combination of two
loss functions, Dice and Cross Entropy, was employed for training to address this issue.

Regarding optimizer selection, the Momentum algorithm was utilized in this experi-
ment. As for the learning rate scheduler, the OneCycleLR method was adopted to linearly
increase the learning rate from a lower value to a higher value and subsequently linearly
decrease it to a value close to 0. This approach facilitates faster model convergence and
mitigates overfitting risks [33]. The initial learning rate was set to 0.01 and gradually
increased to 0.1 within the first 30% of the training cycles, followed by a gradual decrease
to 0.0001 for the remaining 70% of the cycles. A total of 100 training cycles were conducted.
Detailed parameter settings can be found in Table 2.
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Table 2. Architecture network parameters.

DL Framework Backbone Network Optimizer Loss Function

Paddle 2.4.1 Resnet50 Momentum Dice+CE
LR scheduler Training batch size Max Epochs Annual strategy
OneCycleLR 4 100 cos

Learn rate(LR) Max LR End LR Phase pct
0.01 0.1 0.0001 0.3

3.5. Evaluation Metrics

To evaluate the model’s performance in wheat lodging detection, multiple metrics
were employed, including recall, precision, intersection over union (IoU), and the F1 score.

Recall =
TP

TP + FN
(1)

Precision =
TP

TP + FP
(2)

IOU =
Area o f Overlap
Area o f Union

(3)

F1 = 2× Precision× Recall
Precision + Recall

(4)

These metrics assessed the model’s performance at the pixel level, where true posi-
tive (TP) represented a case in which both the actual class and the detection class were
positive (indicating a correct detection), false positive (TP) denoted a positive value for
an incorrect detection, and false negative (FN) indicated a negative value for an incorrect
detection. Among these metrics, particular emphasis was placed on the model’s ability
to accurately identify wheat lodging situations; thus, the F1 score was selected as the
evaluation metric [34].

PL =
AA
PA

(5)

Furthermore, in evaluating the model’s performance in wheat lodging detection, this
experiment devised a formula for quantifying the extraction accuracy. The area detected
by the model (PA) and the accurately extracted area (AA) were computed based on the
label map and detection results. Additionally, the extraction error was incorporated as
an evaluation metric, calculated by comparing the difference between the extracted area
and the actual area. This method enabled the measurement of the classifier’s accuracy and
reliability, facilitating a better understanding of its performance in real-world applications.

4. Results
4.1. Training Results of Various Segmentation Models

Table 3 presents the results of the experimental evaluation conducted on six distinct
semantic segmentation models. The results demonstrate that the different algorithmic
models exhibited commendable classification performance in terms of both health and
other classes. In particular, the Deeplabv3+ model attained F1 scores of 92.48% and 93.37%
for the health class and other classes, respectively. Notably, in terms of identifying lodging
classes, the RTFormer model showcased a significant recall rate of 92.89%, whereas the
Bisnetv2 model achieved an accuracy rate of 90.29%. All models obtained a high F1 score,
with the Deeplabv3+ model demonstrating the best precision, obtaining an F1 score of
90.22%.
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Table 3. Model accuracy when using different algorithmic frameworks.

Models U-Net FastSCN RTFormer Bisenetv2 HRNet Deeplabv3+

Recall (%)
Other 87.73% 89.03% 88.68% 89.96% 88.21% 91.56%
Health 92.77% 93.29% 92.40% 93.45% 94.46% 93.51%

Lodging 88.00% 89.69% 92.89% 88.87% 89.13% 91.19%

Precision (%)
Other 92.06% 92.83% 93.77% 92.63% 94.43% 93.41%
Health 89.22% 90.64% 91.92% 90.83% 89.99% 93.22%

Lodging 89.03% 89.63% 87.18% 90.29% 89.53% 89.26%

IOU (%)
Other 81.56% 83.30% 83.74% 83.96% 83.85% 86.01%
Health 83.41% 85.09% 85.45% 85.40% 85.48% 87.56%

Lodging 79.40% 81.25% 81.72% 81.12% 80.71% 82.18%

F1 score (%)
Other 89.84% 90.89% 91.15% 91.28% 91.21% 92.48%
Health 90.96% 91.95% 92.16% 92.13% 92.17% 93.37%

Lodging 88.51% 89.66% 89.94% 89.57% 89.33% 90.22%

Figure 6 illustrates the detection outcomes achieved by the six distinct semantic
segmentation models when applied to an original-resolution RGB image extracted from
the test area. Upon examining the classified images, it is clear that the Deeplabv3+ model
exhibits particularly good performance. Specifically, it effectively identified a small region
of wheat lodging while successfully capturing the edge characteristics associated with
wheat lodging.
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4.2. Training Outcomes for Multispectral and RGB Data

Table 4 presents a comprehensive comparison of the modeling performance of various
remote sensing image types. Notably, when considering images with equivalent resolutions,
the model trained on the multispectral Dataset D exhibited a notable recall rate of 82.93%
in accurately identifying the wheat lodging class. However, its overall accuracy was found
to be only 79.43%, with an F1 score of 81.14% for the lodging class, indicating suboptimal
performance compared to the model trained using the RGB Dataset C.

Figure 7 illustrates the comparative detection outcomes achieved by the model employ-
ing different waveband datasets. Based on the classification results, it was observed that,
at the same spatial resolution, the model trained on the multispectral dataset exhibited a
higher precision of wheat lodging in comparison to the RGB dataset. It effectively captured
more instances of actual wheat lodging. However, there were instances of misclassifica-
tion where healthy wheat was erroneously identified as wheat lodging. Furthermore, the
multispectral-dataset-trained model demonstrated the proficient discrimination of other
vegetation types, correctly assigning them to their respective classes. Each of these two
types of remote sensing images has its distinct advantages.
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Table 4. Model performance for the different dataset types.

Dataset c d

Recall (%)
Other 97.83% 98.03%
Health 97.29% 96.88%

Lodging 80.79% 82.93%

Precision (%)
Other 98.23% 98.40%
Health 96.06% 96.57%

Lodging 90.32% 79.43%

IOU (%)
Other 96.14% 96.49%
Health 93.56% 93.66%

Lodging 74.35% 68.27%

F1 score (%)
Other 98.03% 98.21%
Health 96.67% 96.73%

Lodging 85.29% 81.14%
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4.3. Utilization of Multi-Branch Binary Classification

Based on the findings presented in Table 5, the performance of the Deeplabv3+ al-
gorithm varied across different frameworks and balance conditions. Adopting the multi-
branch binary classification framework yields a trade-off between the recall rate and the
accuracy of the wheat lodging identification. Specifically, in unbalanced datasets, the
multi-branch binary classification framework shows more noticeable improvements com-
pared to the single-branch multi-classification framework, resulting in a noteworthy 2.19%
enhancement of the F1 score for the lodging class.

Furthermore, the multi-branch binary framework exhibited significant optimization
potential in the context of area detection. In balanced datasets, this framework enhanced
the accuracy of area extraction by 7.22% when contrasted with the single-branch multi-
classification model. Notably, in unbalanced datasets, the accuracy improvement became
even more substantial, reaching an impressive 11.53%. It is notable that the multi-branch
binary classification framework model effectively mitigates the error associated with area
extraction, irrespective of the dataset’s balance status.
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Table 5. Result of models with different frameworks.

Dataset a b

Framework
Single-Branch

Multi-Classification
Framework

Multi-Branch Binary
Classification
Framework

Single-Branch
Multi-Classification

Framework

Multi-Branch Binary
Classification
Framework

Recall (%)
Other 91.56% 90.38% 95.61% 88.14%
Health 93.51% 94.67% 95.86% 94.37%

Lodging 91.19% 89.19% 82.17% 71.58%

Precision
(%)

Other 93.41% 94.96% 97.23% 93.65%
Health 93.22% 90.38% 94.01% 88.12%

Lodging 89.26% 91.45% 70.09% 85.29%

IOU (%)
Other 86.01% 86.25% 93.08% 83.16%
Health 87.56% 86.00% 90.34% 83.72%

Lodging 82.18% 82.32% 60.84% 63.72%

F1 score (%)
Other 92.48% 92.61% 96.42% 90.81%
Health 93.37% 92.47% 94.93% 91.14%

Lodging 90.22% 90.30% 75.65% 77.84%
Label a/km2 0.0339 0.0339 0.0339 0.0339

PA/km2 0.0396 0.0353 0.0386 0.0313
AA/km2 0.0316 0.0307 0.0278 0.0262

Extraction error b/km2 0.0057 0.0013 0.0047 0.0026
PL (%) 79.72% 86.94% 72.03% 83.56%

a Label derived from visual interpretation. b Extraction error is PA minus label.

Upon examining the detection outcomes illustrated in Figure 8, it becomes clear that
the single-branch multi-classification framework model exhibited significant inaccuracy in
identifying areas of other vegetation. Specifically, it erroneously detected certain regions
of other vegetation as wheat lodging. In contrast, the multi-branch binary classification
framework model demonstrated superior accuracy when detecting other vegetation areas,
successfully circumventing such misclassifications. Consequently, the multi-branch binary
classification framework model enhanced the overall performance of the detection model.
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5. Discussion
5.1. Impact of Different Segmentation Models on Wheat Lodging Recognition Accuracy

It is imperative to tailor semantic segmentation algorithms to specific scenarios. Eval-
uating multiple semantic segmentation models (Deeplabv3+, U-net, FastSCN, RTFormer,
Bisenetv2, and HRnet) using the dataset revealed that the Deeplabv3+ model achieved the
highest F1 score. This model demonstrated remarkable proficiency in accurately detect-
ing small areas of wheat lodging and capturing the edge features of wheat lodging. The
Deeplabv3+ model’s superiority stems from its utilization of advanced techniques such as
null convolution and multi-scale feature fusion, enabling the effective semantic segmenta-
tion of small targets. Moreover, techniques such as global pooling and adaptive dilation
convolution that are employed by the Deeplabv3+ model enhance edge detection accu-
racy. With its outstanding performance and generalization capabilities in detecting wheat
lodging, the Deeplabv3+ model exhibits remarkable promise for practical applications.

5.2. Effect of Different Remote Sensing Data on Wheat Lodging Recognition Accuracy

The findings indicated that both types of remote sensing image data could be utilized
for wheat lodging detection, with the model trained on the RGB dataset outperforming the
model trained on the multispectral dataset. This observation aligns with the findings of a
study conducted by Zhao et al., where the U-net model accurately detected rice lodging
using vegetation indices extracted from both RGB and multispectral data, with the model
trained on the RGB dataset yielding superior results [35]. Although the multispectral
dataset offers richer spectral information, it also introduces additional noise and interfer-
ence, thereby complicating image processing and feature extraction. Consequently, the
multispectral dataset may exhibit a higher false positive rate compared to the model trained
on the RGB dataset, leading to decreased accuracy. However, the multispectral dataset can
provide supplementary information that enables the accurate detection of certain unidenti-
fied instances of wheat lodging, thereby enhancing the recall rate. In practical applications,
a higher recall rate signifies closer proximity between the detected wheat lodging area and
the actual one, arming farmers with more precise and effective information-based support
to safeguard crop growth and yields; multispectral remote sensing data boast their own
merits in practical applications. Both types of remote sensing images considered in the
study offer advantages in terms of cost-effectiveness, a large coverage area, and operational
efficiency, effectively addressing the practical requirements of wheat lodging detection.

5.3. Effect of Different Frameworks on Wheat Lodging Recognition Accuracy

The experimental results demonstrated that the adoption of a multi-branch binary
classification framework enhanced the model’s performance and area extraction accuracy.
Notably, the multi-branch binary classification framework exhibited superior outcomes
when confronted with non-equilibrium datasets, which has significant implications for
wheat lodging detection. Given the scarcity of wheat lodging samples relative to healthy
wheat samples and the presence of weeds and other plants with spectral and textural
similarities to wheat lodging, optimizing a single-branch multi-classification framework
model to a multi-branch binary classification framework model becomes imperative for
simplifying classification complexity. A related study conducted by Wen et al. revealed
that leveraging class-specific subnetworks for classification, each dedicated to a distinct
class, enabled more accurate segmentation and classification while reducing competition
among different classes, thereby enhancing the model performance [36].

5.4. Identification of Wheat Lodging Areas

The accurate determination of wheat lodging in various area ranges was achieved
using the raster transect function of ArcGIS10.7. The experimental results (Table 6) indi-
cated that, while the optimal model exhibited relatively high accuracy when detecting the
total area of wheat lodging, significant errors arose when identifying small lodging areas,
specifically those within the ranges of [0.01, 1], [1, 5], and [5, 10].
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Table 6. Area of wheat lodging in different ranges.

Size (m2) Label Deeplabv3+

Area

[0.01, 1] 40.77 748.40
[1, 5) 259.67 1232.05

[5, 10] 452.20 903.50
[10, 20] 978.95 971.25
[20, 50] 2096.74 1841.32
[50, +∞) 30,114.00 29,572.30

Total 33,942.33 35,268.82

By conducting a comparative analysis between the original image and the detection
image (Figure 9), it became evident that certain instances of weeds, trees, and houses were
erroneously classified as wheat lodging during the detection process. This misclassification
could be attributed to the similarities in the spectral information between these objects
and wheat lodging, an issue compounded by the dataset’s extensive range of land-cover
types, which introduces complexity to the classification task. In a study conducted by
Liu et al., a supervised classification approach demonstrated that favorable performance
was achieved in wheat lodging detection by incorporating spectral features, vegetation
index features, and texture features [37]. Building upon this research, further model
optimization could involve combining spectral features, vegetation index features, and
texture features to collectively construct classification features, thereby enhancing the
algorithm’s classification accuracy and mitigating misclassifications of other objects, such
as wheat lodging. By employing such an approach, the accurate detection of wheat lodging
areas could be achieved more reliably.
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5.5. Effect of Different External Environments on the Accuracy of Wheat Lodging Recognition

The Deeplabv3+ model, with its end-to-end feature, has the advantage of focusing
solely on the task’s input and output without the need for intricate feature extraction from
the input data. This facilitates swift iterations in processing the task, distinguishing it
from traditional machine learning algorithms. In contrast to previous studies, this research
included varying lighting conditions, diverse wheat varieties, different growth periods
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within the study area, and a range of land-cover types. Additionally, data augmentation
techniques were applied to the training dataset, resulting in a more heterogeneous and
diverse dataset. Consequently, the methodology proposed in this study demonstrates
strong adaptability to the actual environment, exhibiting good performance even in the
presence of complex external factors.

When using the semantic segmentation approach, the lodging class segmentation
model showcased exceptional performance, achieving an impressive F1 score of 90.30%.
This achievement demonstrates its potential to accurately detect both healthy and wheat
lodging areas in expansive farmland encompassing diverse land-cover types, using only
consumer-grade RGB data acquired through unmanned aerial vehicles (UAVs) in conjunc-
tion with deep learning neural network models.

6. Conclusions

The findings of this study highlighted the superior performance of the Deeplabv3+
model over five alternative semantic segmentation models in terms of recognition accuracy,
establishing its suitability for practical wheat lodging detection applications. Training the
model using both multispectral and RGB data yielded excellent results, with RGB data
proving particularly effective for wheat lodging detection in large-scale wheat fields. The
adoption of the multi-branch binary classification framework significantly enhanced the
area detection accuracy, particularly in non-equilibrium classes.

In summary, the utilization of consumer-grade UAV-captured ultra-high-resolution
RGB images combined with deep neural networks presents a viable approach for accurately
detecting wheat lodging under heterogeneous field conditions. This study involved a
comprehensive examination of different algorithms, remote sensing data types, and model
frameworks within the deep learning neural network model. The extensive experimental
results affirm the stability and effectiveness of the proposed deep neural network model
in large-scale data scenarios, characterized by varying location conditions, field types,
and lighting characteristics. This methodology provides a valuable solution for accurately
identifying wheat lodging across extensive areas, with a focus on high efficiency and
cost-effectiveness.
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