Monitoring Lightning Location Based on Deep Learning Combined with Multisource Spatial Data
<p>Geographical locations of Ningbo.</p> "> Figure 2
<p>Extraction of feature data with lightning.</p> "> Figure 3
<p>Residual learning unit.</p> "> Figure 4
<p>LM-ResNet model structure.</p> "> Figure 4 Cont.
<p>LM-ResNet model structure.</p> "> Figure 5
<p>Results of training with cross entropy and focal loss by the LM-ResNet model.</p> "> Figure 6
<p>Results of observations of lightning data and model monitoring results.</p> "> Figure 6 Cont.
<p>Results of observations of lightning data and model monitoring results.</p> "> Figure 6 Cont.
<p>Results of observations of lightning data and model monitoring results.</p> "> Figure 7
<p>The results are shown in different groups.</p> "> Figure 8
<p>Single factor sensitivity analysis by the LM-ResNet model.</p> "> Figure 9
<p>POD and FNR results of different data sources.</p> ">
Abstract
:1. Introduction
- (1)
- Multiple datasets (lightning location data, radar product data and land attribute data) are utilized to construct lightning feature datasets, especially considering the impact of land attribute data on the results of monitoring lightning locations.
- (2)
- Based on ResNet, LM-ResNet is proposed for lightning location monitoring, and the model result is compared with GoogLeNet and DenseNet.
- (3)
- The relative significance of each input variable in observing lightning locations is determined based on stepwise and single sensitivity analyses to provide support for subsequent practical application.
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Lightning Location Data
2.2.2. Weather Radar Data
2.2.3. Land Attributes Data
2.3. Methods
2.3.1. Establishing the Dataset
- (1)
- Set the size of the sliding window M ∗ N (the window size in this article is 5 ∗ 5).
- (2)
- Use the set window to slide the matched data. If the center position of the window contains lightning location data, the data have lightning features, and the position is marked as 1. In contrast, data without lightning features are marked as 0.
- (3)
- Combining the obtained data, we obtain N lightning feature datasets with size M ∗ N.
2.3.2. Focal Loss
2.3.3. Deep Learning Classification Algorithm
2.3.4. Sensitivity Analysis
3. Results and Analysis
3.1. Performance Criteria
3.2. Results Analysis
3.3. Case Study
3.4. Sensitivity Analysis of LM-ResNet Model Accuracy
4. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, F.; Liu, Y. Important meteorological predictors for long-range wildfires in China. For. Ecol. Manag. 2021, 499, 119638. [Google Scholar] [CrossRef]
- Holle, R.L.; Dewan, A.; Said, R.; Brooks, W.A.; Hossain, M.F.; Rafiuddin, M. Fatalities related to lightning occurrence and agriculture in Bangladesh. Int. J. Disaster Risk Reduct. 2019, 41, 101264. [Google Scholar] [CrossRef]
- Spano, S.J.; Campagne, D.; Stroh, G.; Shalit, M. A Lightning Multiple Casualty Incident in Sequoia and Kings Canyon National Parks. Wilderness Environ. Med. 2015, 26, 43–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooper, M.A.; Holle, R.L. Current Global Estimates of Lightning Fatalities and Injuries. In Reducing Lightning Injuries Worldwide; Springer: Berlin/Heidelberg, Germany, 2019; pp. 65–73. [Google Scholar] [CrossRef]
- Adekitan, A.I.; Rock, M. Analytical calculation of lightning strike probability for floating roof tanks. J. Physics Conf. Ser. 2021, 1878, 012001. [Google Scholar] [CrossRef]
- Johari, D.; Amir, M.F.A.M.; Hashim, N.; Baharom, R.; Haris, F.A. Positive Cloud-To-Ground Lightning Observed in Shah Alam, Malaysia based on SAFIR 3000 Lightning Location System. In Proceedings of the 2021 IEEE International Conference in Power Engineering Application (ICPEA), Virtual, 8–9 March 2021; pp. 178–182. [Google Scholar] [CrossRef]
- Dowden, R.L.; Brundell, J.B.; Rodger, C.J. VLF lightning location by time of group arrival (TOGA) at multiple sites. J. Atmos. Solar-Terrestrial Physics 2002, 64, 817–830. [Google Scholar] [CrossRef]
- Fata, A.L.; Tosi, I.; Brignone, M.; Procopio, R.; Delfino, F. A Review of Lightning Location Systems: Part I-Methodologies and Techniques. In Proceedings of the 2020 IEEE International Conference on Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Madrid, Spain, 9–12 June 2020. [Google Scholar]
- Visacro, S.; Guimaraes, M.; Vale, M.H.M. Striking Distance Determined From High-Speed Videos and Measured Currents in Negative Cloud-to-Ground Lightning. J. Geophys. Res. Atmos. 2017, 122, 356–369. [Google Scholar] [CrossRef] [Green Version]
- Mora, N.; Rachidi, F.; Rubinstein, M. Application of the time reversal of electromagnetic fields to locate lightning discharges. Atmos. Res. 2012, 117, 78–85. [Google Scholar] [CrossRef]
- Ghasemi, A.; Amanollahi, J. Evaluating and Forecasting the Probability of Lightning Occurrence in Rasht City. Geogr. Sustain. Environ. 2020, 10, 21–35. [Google Scholar] [CrossRef]
- Zhu, Y.; Bitzer, P.; Rakov, V.; Ding, Z. A Machine-Learning Approach to Classify Cloud-to-Ground and Intracloud Lightning. Geophys. Res. Lett. 2021, 48, 1–8. [Google Scholar] [CrossRef]
- Peng, C.; Liu, F.; Zhu, B.; Wang, W.; Peng, C.; Liu, F.; Zhu, B.; Wang, W. Lightning Waveform Classification Based on Deep Convolutional Neural Network. AGUFM 2018, 2018, AE11B-2705. [Google Scholar]
- Wang, J. Identification technology of substation lightning overvoltage based on wavelet transform research and application. In Proceedings of the 2020 5th Asia Conference on Power and Electrical Engineering (ACPEE), Chengdu, China, 4–7 June 2020; pp. 1746–1750. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.; Tan, Y.; Chen, Z.; Zheng, D.; Zhang, Y.; Fan, Y. Fast and Fine Location of Total Lightning from Low Frequency Signals Based on Deep-Learning Encoding Features. Remote Sens. 2021, 13, 2212. [Google Scholar] [CrossRef]
- Baker, M.B.; Christian, H.J.; Latham, J. A computational study of the relationships linking lightning frequency and other thundercloud parameters. Q. J. R. Meteorol. Soc. 1995, 121, 1525–1548. [Google Scholar] [CrossRef]
- Wang, C.; Wang, P.; Wang, P.; Xue, B.; Wang, D. Using Conditional Generative Adversarial 3-D Convolutional Neural Network for Precise Radar Extrapolation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 5735–5749. [Google Scholar] [CrossRef]
- Zheng, K.; Liu, Y.; Zhang, J.; Luo, C.; Tang, S.; Ruan, H.; Tan, Q.; Yi, Y.; Ran, X. A Generative Adversarial Model for Radar Echo Extrapolation Based on Convolutional Recurrent Units. Geosci. Model Dev. Discuss. 2022, 15, 1467–1475. [Google Scholar] [CrossRef]
- Cha, D.; Wang, X.; Kim, J.W. Assessing Lightning and Wildfire Hazard by Land Properties and Cloud to Ground Lightning Data with Association Rule Mining in Alberta, Canada. Sensors 2017, 17, 2413. [Google Scholar] [CrossRef] [Green Version]
- Biswasharma, R.; Roy, P.; Samanta, D.; Pramanik, G.P.; Sharma, S. Regional variation of electrical and lightning properties of thunderclouds during the pre-monsoon season over the north-eastern and eastern part of India. Atmos. Res. 2021, 260, 105683. [Google Scholar] [CrossRef]
- Wan, X.; Liu, F.; Tang, Y.; Liu, Y.; Xue, M. Study on measurement error analysis and correction method of ground flash data in Hunan. In Proceedings of the 2021 2nd International Conference on Artificial Intelligence and Information Systems, Chongqing, China, 28–30 May 2021. [Google Scholar] [CrossRef]
- Zhou, K.; Zheng, Y.; Dong, W.; Wang, T. A Deep Learning Network for Cloud-to-Ground Lightning Nowcasting with Multisource Data. J. Atmos. Ocean. Technol. 2020, 37, 927–942. [Google Scholar] [CrossRef]
- Yoshikawa, E.; Horishita, S.; Ushio, T. Aircraft Lightning Potential Area Detection Enhanced by Echo Top Height and its Evaluation with Winter Lightning Cases. J. Atmos. Electr. 2021, 39, 70–78. [Google Scholar] [CrossRef]
- Yin, W.; Jin, W.; Zhou, C.; Liu, Y.; Tang, Q.; Liu, M.; Chen, G.; Zhao, Z. Lightning Detection and Imaging Based on VHF Radar Interferometry. Remote Sens. 2021, 13, 2065. [Google Scholar] [CrossRef]
- Salvador, A.; Pineda, N.; Montanyà, J.; López, J.A.; Solà, G. Thunderstorm charge structures favouring cloud-to-ground lightning. Atmos. Res. 2021, 257, 105577. [Google Scholar] [CrossRef]
- Payne-Scott, R. The Visibility of Small Echoes on Radar PPI Displays. Proc. IRE 1948, 36, 180–196. [Google Scholar] [CrossRef]
- Franco, M.; Sánchez-Diezma, R.; Sempere-Torres, D. Article Improvements in weather radar rain rate estimates using a method for identifying the vertical profile of reflectivity from volume radar scans. Meteorol. Zeitschrift 2006, 15, 521–536. [Google Scholar] [CrossRef]
- Lu, M.; Chen, M.; Wang, X.; Yu, M.; Jiang, Y.; Yang, C. 3D modelling strategy for weather radar data analysis. Environ. Earth Sci. 2018, 77, 804. [Google Scholar] [CrossRef]
- Raghavan, S. Weather Radar Signal Processing and Display. In Radar Meteorology; Springer: Berlin/Heidelberg, Germany, 2003; pp. 93–160. [Google Scholar] [CrossRef]
- Cică, R.; Burcea, S.; Bojariu, R. Assessment of severe hailstorms and hail risk using weather radar data. Meteorol. Appl. 2015, 22, 746–753. [Google Scholar] [CrossRef] [Green Version]
- Lakshmanan, V.; Hondl, K.; Potvin, C.K.; Preignitz, D. An Improved Method for Estimating Radar Echo-Top Height. Weather Forecast. 2013, 28, 481–488. [Google Scholar] [CrossRef]
- Delobbe, L.; Holleman, I. Uncertainties in radar echo top heights used for hail detection. Meteorol. Appl. 2006, 13, 361–374. [Google Scholar] [CrossRef]
- Boudevillain, B.; Andrieu, H. Assessment of vertically integrated liquid (VIL) water content radar measurement. J. Atmos. Ocean. Technol. 2003, 20, 807–819. [Google Scholar] [CrossRef] [Green Version]
- Yanovsky, F.J.; Lekhovytskiy, D.I.; Atamanskiy, D.V. Advanced algorithm of velocity measurement for modern meteorological radar. In Proceedings of the 2012 9th European Radar Conference, Amsterdam, The Netherlands, 31 October–2 November 2012; pp. 134–137. [Google Scholar]
- Doviak, R.J.; Zrnic, D.S.; Sirmans, D.S. Doppler Weather Radar. Proc. IEEE 1979, 67, 1522–1553. [Google Scholar] [CrossRef]
- Han, W.; Zhang, D.; Zhao, H.; Wei, S.; Pang, S.; Pan, W. Research on the Variation of Lightning Activity Parameters with Land Types Based on Lightning Location System. In Proceedings of the 2021 IEEE 4th International Electrical and Energy Conference (CIEEC), Wuhan, China, 28–30 May 2021. [Google Scholar] [CrossRef]
- Nath, A.; Manohar, G.K.; Dani, K.K.; Devara, P.C.S. A study of lightning activity over land and oceanic regions of India. J. Earth Syst. Sci. 2009, 118, 467–481. [Google Scholar] [CrossRef] [Green Version]
- Tran, G.S.; Nghiem, T.P.; Nguyen, V.T.; Luong, C.M.; Burie, J.C.; Levin-Schwartz, Y. Improving Accuracy of Lung Nodule Classification Using Deep Learning with Focal Loss. J. Healthc. Eng. 2019, 2019, 5156416. [Google Scholar] [CrossRef]
- Romdhane, T.F.; Alhichri, H.; Ouni, R.; Atri, M. Electrocardiogram heartbeat classification based on a deep convolutional neural network and focal loss. Comput. Biol. Med. 2020, 123, 103866. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; Dollar, P. Focal Loss for Dense Object Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 318–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Szegedy, C.; Reed, S.; Sermanet, P.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 1–12. [Google Scholar]
- Huang, G.; Liu, Z.; van der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. arXiv 2017, arXiv:1608.06993, 4700–4708. [Google Scholar]
- Tian, H.; Wang, P.; Tansey, K.; Han, D.; Zhang, J.; Zhang, S.; Li, H. A deep learning framework under attention mechanism for wheat yield estimation using remotely sensed indices in the Guanzhong Plain, PR China. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102375. [Google Scholar] [CrossRef]
- Lu, M.; Zhang, Y.; Ma, Z.; Yu, M.; Chen, M.; Zheng, J.; Wang, M. Lightning Strike Location Identification Based on 3D Weather Radar Data. Front. Environ. Sci. 2021, 0, 329. [Google Scholar] [CrossRef]
- Caicedo, J.A.; Uman, M.A.; Pilkey, J.T. Lightning Evolution In Two North Central Florida Summer Multicell Storms and Three Winter/Spring Frontal Storms. J. Geophys. Res. Atmos. 2018, 123, 1155–1178. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.H.; King, P. Investigating the potential of using radar Echo reflectivity to nowcast cloud-to-ground lightning initiation over southern Ontario. Weather Forecast. 2010, 25, 1235–1248. [Google Scholar] [CrossRef]
- Smorgonskiy, A.; Rachidi, F.; Rubinstein, M.; Diendorfer, G. On the relation between lightning flash density and terrain elevation. In Proceedings of the 2013 International Symposium on Lightning Protection (XII SIPDA), Belo Horizonte, Brazil, 7–11 October 2013; pp. 62–66. [Google Scholar] [CrossRef]
Accuracy | POD | FNR | FPR | F-Measure | AUC | ETS | |
---|---|---|---|---|---|---|---|
GoogLeNet | 0.9445 | 0.636 | 0.364 | 0.301 | 0.714 | 0.809 | 0.487 |
LM-ResNet | 0.9456 | 0.728 | 0.272 | 0.272 | 0.728 | 0.855 | 0.551 |
DenseNet | 0.9447 | 0.727 | 0.273 | 0.333 | 0.696 | 0.853 | 0.511 |
Group | Data |
---|---|
1 | PPI, CR, ET, VIL, V, DEM, aspect, slope, land use, NDVI |
2 | PPI, CR, ET, VIL, V, DEM, aspect, slope, land use |
3 | PPI, CR, ET, VIL, V, DEM, aspect, slope |
4 | PPI, CR, ET, VIL, V, DEM, aspect |
5 | PPI, CR, ET, VIL, V, DEM |
6 | PPI, CR, ET, VIL, V |
7 | PPI, CR, ET, VIL |
8 | PPI, CR, ET |
9 | PPI, CR |
10 | PPI |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, M.; Zhang, Y.; Chen, M.; Yu, M.; Wang, M. Monitoring Lightning Location Based on Deep Learning Combined with Multisource Spatial Data. Remote Sens. 2022, 14, 2200. https://doi.org/10.3390/rs14092200
Lu M, Zhang Y, Chen M, Yu M, Wang M. Monitoring Lightning Location Based on Deep Learning Combined with Multisource Spatial Data. Remote Sensing. 2022; 14(9):2200. https://doi.org/10.3390/rs14092200
Chicago/Turabian StyleLu, Mingyue, Yadong Zhang, Min Chen, Manzhu Yu, and Menglong Wang. 2022. "Monitoring Lightning Location Based on Deep Learning Combined with Multisource Spatial Data" Remote Sensing 14, no. 9: 2200. https://doi.org/10.3390/rs14092200
APA StyleLu, M., Zhang, Y., Chen, M., Yu, M., & Wang, M. (2022). Monitoring Lightning Location Based on Deep Learning Combined with Multisource Spatial Data. Remote Sensing, 14(9), 2200. https://doi.org/10.3390/rs14092200