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Abstract

:

The construction of diverse dictionaries for sparse representation of hyperspectral image (HSI) classification has been a hot topic over the past few years. However, compared with convolutional neural network (CNN) models, dictionary-based models cannot extract deeper spectral information, which will reduce their performance for HSI classification. Moreover, dictionary-based methods have low discriminative capability, which leads to less accurate classification. To solve the above problems, we propose a deep learning-based structure dictionary for HSI classification in this paper. The core ideas are threefold, as follows: (1) To extract the abundant spectral information, we incorporate deep residual neural networks in dictionary learning and represent input signals in the deep feature domain. (2) To enhance the discriminative ability of the proposed model, we optimize the structure of the dictionary and design sharing constraint in terms of sub-dictionaries. Thus, the general and specific feature of HSI samples can be learned separately. (3) To further enhance classification performance, we design two kinds of loss functions, including coding loss and discriminating loss. The coding loss is used to realize the group sparsity of code coefficients, in which within-class spectral samples can be represented intensively and effectively. The Fisher discriminating loss is used to enforce the sparse representation coefficients with large between-class scatter. Extensive tests performed on hyperspectral dataset with bright prospects prove the developed method to be effective and outperform other existing methods.
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1. Introduction


Hyperspectral images (HSI) show specific spectral data through sampling from hundreds of contiguous narrow spectral bands [1]. HSI with significantly improved dimensionality of the data can show discriminative spectral information in each pixel, whereas it reveals that it is highly challenging to perform accurate analysis for various land covers in remote sensing [2,3,4], which is the curse of intrinsic or extrinsic spectral variability. HSI feature learning [5,6,7,8] aiming to extract invariable characteristics has become a crucial step in HSI analysis and has been widely used in different applications (e.g., classification, target detection, and image fusion). Therefore, the focus of our framework is extracting an effective spectral feature for HSI classification.



Generally, the existing HSI feature extraction (FE) can be classified into linear and nonlinear methods. The common linear FE models are band-clustering and merging-based approaches [9,10], which split the high-correlation spectral bands into several groups to acquire typical band or feature of a range of groups. In general, the above techniques have low computation cost and can be extensively used in real applications. Kumar et al. [9] calculated a band clustering approach based on discriminative bases by taking into account overall classes in the meantime. Rashwan et al. [10] used the Pearson correlation coefficient of adjacent bands to complete band splitting.



The other linear FE models are projection models that are developed for linearly projecting or transforming the spectral information into feature space with lower dimensions. Principal component analysis (PCA) [11] projects the samples on the eigenvectors of the covariance matrix to capture the maximum variance, which has been widely used for hyperspectral investigation [12]. Green et al. [13] proposed a maximum noise fraction (MNF) model that completed projection under the maximum signal-to-noise ratio (SNR). Despite the low complexity of the linear model, they face low representation capability and fails to process inherently nonlinear hyperspectral data.



A nonlinear model handles hyperspectral data with a nonlinear transformation. It is likely that such nonlinear features perform better than linear features due to the presence of nonlinear class boundaries. One of the widely used nonlinear models is the kernel-based method, which focuses on mapping the data into a higher-dimensional space to achieve better separability. The kernel versions of the abovementioned algorithms, i.e., kernel PCA (KPCA) [14] and kernel ICA (KICA) [15], were proposed and used for HSI classification [16] and change detection [17]. The support vector machine (SVM) [18] is a representative kernel-based approach and has shown effective performance in HSI classification [19]. Bruzzone et al. [20] proposed a hierarchical SVM to capture features in a semi-supervised manner. Recently, a spectral-spatial SVM-based multi-layer learning algorithm was designed for HSI classification [21]. However, the above methods usually have no theoretical foundation to select kernels and may not produce satisfying results in practical applications.



Deep learning is another nonlinear model with great potential for learning features [22]. Chen et al. designed complex frameworks [23,24], including PCA, deep learning architecture, and logistic regression, and used it to verify the eligibility of a stacked auto-encoder (SAE) and a deep belief network (DBN) for HSI classification. Recurrent neural networks (RNNs) [25,26] processed the whole spectral bands as a sequence and used a flexible network configuration for classifying HSIs. Rasti et al. [27] provided a technical overview of the existing techniques for HSI classification, in particular model for deep learning. Although deep learning models present powerful information extraction ability, discriminative ability needs to be improved by rational design of loss functions.



Dictionary-based methods have emerged in recent years for HSI feature learning. To extract features effectively, those methods represent high-dimensional spectral data as a complex combination of dictionary atoms, with a low reconstruction error and a high sparsity level in the abundance matrix. Sparse representation-based classification (SRC) [28] constructed an unsupervised dictionary that was used for HSI classification in [29], and it acts as one vanguard to open the prologue of classification with the help of dictionary coding. SRC operates impressively in face recognition and is robust to different noise [28]; moreover, redundant atoms and disorder structure making is unsuitable for intricate HSI classification [29,30]. Yang et al. [31] constructed a class-specific dictionary to overcome the shortcomings of SRC, but it does not consider the discriminative ability between different coefficients, resulting in low classification accuracy. Yang et al. [32] proposed a complicated model called Fisher discriminant dictionary learning (FDDL), which used the Fisher criterion to learn a structured dictionary, but this model is time consuming and the reconstructive ability needs to be improved. Gu et al. [33] designed an efficient dictionary pair learning (DPL) model that replaces the sparsity constraint with a block-diagonal constraint to reduces the computational cost but the linear projection of the analysis dictionary restricts the classification performance. Akhtar et al. [34] used the Bayesian framework for learning discriminative dictionaries for hyper-spectral classification. Tu et al. combined a discriminative sub-dictionary with a multi-scale super-pixel strategy and achieved a significant improvement in classification [35]. Dictionary-based methods are promising to represent HSI features. However, the above dictionaries encounter difficulty with extracting deeper spectral information and suffer from poor discriminative ability.



The latest works [36,37] tried to incorporate the deep learning module into a dictionary algorithm and achieve impressive results for target detection. Nevertheless, the code coefficients of the above models require more powerful constraints, and the combination form needs to be improved. To address the aforementioned issues, in this paper, we propose a deep learning-based structure dictionary model for HSI classification. The main novelties of this paper are threefold, as follows:




	(1)

	
We devise an effective feature learning framework that adopts convolutional neural networks (CNNs) to capture abundant spectral information and construct a structure dictionary to predict HSI samples.




	(2)

	
We design a novel shared constraint in terms of the sub-dictionaries. In this way, the common and specific feature of HSI samples will be learned separately to represent features in a more discriminative manner.




	(3)

	
We carefully design two kinds of loss functions,, i.e., coding loss and discriminating loss, for code coefficients to enhance the classification performance.




	(4)

	
Extensive experiments conducted on several hyperspectral datasets demonstrate the superiority of proposed method in terms of the performance and efficiency in comparison with the state-of-the-art techniques.









The rest of the paper is organized as follows. Section 2 presents a short description for the experimental datasets which are widely used in HSI classification applications at first. Afterwards, the proposed methods are detailed as illustrated subsequently. Furthermore, Section 3 and Section 4 present the experimental results and the corresponding discussions to better demonstrate the effectiveness of the proposed method. Finally, conclusions are drawn in Section 5.




2. Materials and Methodology


In this section, we first introduce the experimental datasets and then elaborate the framework for our deep learning-based structure dictionary method.



2.1. Experimental Datasets


Despite the research progress in designing robust algorithms in HSI classification applications, some researchers devoted themselves to constructing publicly available datasets, which could provide the community with fair comparisons across different algorithms. In this subsection, we give a brief review in terms of the band range, image resolution, and classes of interests for four popular datasets, which are also employed in this article for further compare our method with the other existing methods.



Center of Pavia [38]: This dataset is acquired by the reflective optics system imaging spectrometer (ROSIS) with 115 spectral bands ranging from 0.43 to 0.86 μm over the urban area in Pavia. It should be mentioned that the noisy and water absorption bands are discarded by the authors in [38] and finally obtaining HSIs with dimension of   1096 ×  492 ×  102   and nine land cover classes.



Botswana [39]: This dataset was captured by the NASA earth observing one (EO-1) with 145 bands ranging from 0.4 to 2.5 μm over the Okavango Delta, Botswana. The dataset contains   1476 ×  256   pixels and 14 classes of interests.



Houston 2013 [40]: This dataset was collected by the compact airborne spectrographic imager (CASI) with 144 bands ranging from 0.38 to 1.05 μm over the campus of the University of Houston and the neighboring urban area. The dataset contains   349 ×  1905   pixels and 15 classes of interest.



Houston 2018 [41]: This dataset was acquired by the same CASI sensor with 48 bands sampling the wavelength of between 0.38 and 1.05 μm over the same region as the Houston 2013. Houston 2018 contains   601 ×  2384   pixels and 20 classes of interest.




2.2. Methodology


Dictionary learning aims to learn a set of atoms, called visual words in the computer vision community, in which a few atoms can be linearly combined to approximate a given sample well [42]. However, the role of sparse coding in classification is still an open problem and the code coefficients of the recently models require more powerful constraints, and the combination form needs to be improved. Therefore, we propose a deep learning-based structure dictionary model in this paper.



Figure 1 presents the pipeline of the developed framework, with a CNN constructed to encode the spectral information, as well as a structured dictionary established to classify HSIs. Spectral data are first encoded by the CNN model, in which residual networks are used to optimize the main networks. We can acquire the group sparse code using the full connection layer. Meanwhile, two loss functions, i.e., coding loss and Fisher discriminating loss, are calculated to optimize code coefficients. More importantly, a discriminative dictionary is constructed by reconstruction loss to enhance the discriminative ability of the developed model.



2.2.1. Residual Networks Encoder


Compared with the common dictionary-based models using sparse constraints, the group sparsity models have more intensive and effective code coefficients, i.e., the coefficient values converge to the diagonal of the matrix [33] and achieve more effective results in classification applications. Therefore, we replace the sparsity constraint with a group sparsity constraint for the dictionary model and construct an encoder to acquire the group sparsity effect.



Suppose   Γ =  [  Γ 1  , … ,  Γ i  , … ,  Γ C  ]  ∈   R  (  (  N A  ·  C )  ×  N )     is coding coefficients of discriminative dictionary   D =  [  D 1  , … ,  D i  , … ,  D C  ]  ∈   R  L × (  N A  ·  C )     for spectral samples   X = [  X 1  , … ,  X i  , … ,     X C   ] ∈    R  L ×  N    . We want to construct an encoder   P =  [  P 1  , … ,  P j  , … ,  P C  ]  ∈   R  (  (  N A  ·  C )  ×  N )    , and apply   P j  , to project the spectral samples   X i   into to a nearly null space, i.e.,


   Γ  i j   =  P j   X i  ≈  0 , ∀  j ≠  i .  



(1)







Considering the poor performance of linear projection, a CNN encoder is designed to complete the transformation. Thus, the performance for dictionary learning will be enhanced greatly. He et al. [43] suggested that deeper networks encounter difficulties in the following degradation problem: as the network depth increases, accuracy becomes saturated and then degrades rapidly. Therefore, residual networks are used to address the degradation problem and increase the convergence rate. As depicted in Figure 2, the building block of residual networks (Figure 2a) contains two convolutional layers (Conv), two batch normalization layers (BN), and two leaky ReLU layers. The output   X i  ( k + 1 )    of residual networks is calculated as follows:


   X i  ( k + 1 )   =  X  i   ( k )   + F   X  i   ( k )    .  



(2)







We explicitly let the stacked nonlinear layers fit the residual function   F   X i  ( k )      and original mapping is recast into    X i  ( k )   + F   X i  ( k )     . The formulation of Equation (2) can be realized by feedforward neural networks with “shortcut connections” (Figure 2a). Shortcut connections [43,44] are those skipping one or more layers. The entire network can still be trained end-to-end by stochastic gradient descent (SGD) with backpropagation.



Based on the above block of residual networks, we construct a 15-layer encoder (in terms of convolutional layers) as presented in Figure 2b. We first employ a   1 ×  5   convolutional layer to capture large receptive field [45] and max pooling is used to select the remarkable values. Then, we design 7 pieces of residual block, in which a   1 × 3   convolutional layer is used to acquire effective receptive field. More importantly, feature maps corresponding to various convolutional kernel increase from 16 to 128 to acquire abundant spectral information. Finally, we adopt an average pooling to compress the spectral information and employ a fully connected (FC) layer to connect the coding coefficients. The output number of FC depends on the product of spectral band and sub-dictionary atom numbers. For backpropagation, we use SGD with a batch size of 8. The learning rate starts from 0.1 and epoch number is 500.



We apply the encoder P to extract spectral information from HSI and enforce the code coefficients  Γ  to be group sparsity. To enhance the discriminative ability of our model, we build a structured dictionary, where each sub-dictionary can be directly used to represent the specific-class samples, i.e., the dictionaries are interpretable. The structure dictionary can be calculated as follows:


   { Γ , D }  =   arg min   D , Γ    ∑  i = 1  C     X i  −  D i   Γ i    F  2  +  ∑  j = 1 , j ≠  i  C     Γ  i j     F  2  .  



(3)







The first term of Equation (3) is the reconstruction loss which is used to construct the structure dictionary. Each sub-dictionary   D i   is established and learned from ith class samples. The second term    ∑  i = 1  C    ∑  j = 1 , j ≠  i  C  λ   ∥  Γ  i j   ∥  F 2     for Equation (3) is the coding loss. However, the structure of existing dictionary needs optimization to learn common and specific features of HSI samples. As depicted in Figure 3, the test samples contain the common characteristics, i.e., the features they shared. To solve this problem, we design the shared constraint for sub-dictionaries. Our shared constraint (the com sub-dictionary) is built to describe duplicated information (common characteristics in Figure 3). Then, the discriminative characteristics will be “amplified” relative to the original characteristics.




2.2.2. Dictionary Learning


Here, we design a sub-dictionary   D  c o m    to calculate the class-shared characters as follows:


  D = {  D 1  ,  D 2  , … ,  D C  ,  D  c o m   } ,  



(4)




where   D  c o m    denotes the shared (common) sub-dictionary. Each sub-dictionary (both specific and common ones)    D i  ∈   R  L ×   N A      contains   N A   atoms, and each atom is   L ×  1   column vector.The matrix of specific and common sub-dictionaries is randomly initialized, and corresponding atoms are constantly updated according to the objective function. The corresponding objective function is modified as follows:


      { Γ , D }  =   arg min   D , Γ    ∑  i = 1  C     X i  −  D i   Γ i  −  D  c o m    Γ  c o m    F 2  +  ∑  j = 1 , j ≠  i  C     Γ  i j    F 2  ,     



(5)




where   Γ  c o m    is the coding coefficient for common sub-dictionary. With the calculation of term    D  c o m    Γ  c o m    , the results of term    ∑  i = 1  C   ∑  j = 1 , j ≠  i  C     Γ  i j     F  2    tend to be closer to zero, and the corresponding reconstructive ability of the structured dictionary will be improved. Meanwhile, the coding loss and discriminating loss will facilitate the construction of shared (common) sub-dictionaries.



In our framework, the dictionary is calculated by the single convolutional layer, and the convolutional weights serve as dictionary coefficients. Therefore, the dictionary is updated by the back-propagation (BP) algorithm. We design additional channels for shared (common) sub-dictionaries that will also be updated during BP processing. The main difference from the CNN model (end-to-end) is that we design a dictionary module, which contains various sub-dictionaries, to optimize the discriminative ability. Moreover, we design coding and discriminating loss for the middle variable (code coefficients  Γ ), which is a very different algorithm structure.




2.2.3. Loss Functions


To enhance the discriminative ability of the developed model, we design two kinds of loss functions for the proposed model. First, we design the coding loss    ∑  i = 1  C   ∑  j = 1 , j ≠  i  C     Γ  i j     F  2    to realize a fast and effective spectral data encoding.



Then, Fisher discriminative loss   ( t r  (  S W   ( Γ )  )  − t r  (  S B   ( Γ )  )  )   is designed to enhance the discriminative ability of our model. Meanwhile, a reconstruction loss    ∑  i = 1  C   | |   X i  −  D i   Γ i  −  D  c o m    Γ  c o m     | |   F  2    is also used to build the structure dictionary. Overall, we apply three loss functions to optimize the classification performance.



Two kinds of discriminative loss functions can be implemented by programming. One is Fisher discriminative loss   ( t r  (  S W   ( Γ )  )  − t r  (  S B   ( Γ )  )  )   and the other is cross-entropy loss   s o f t m a x ( Γ )  . Both loss functions have been implemented in the program, and we will provide two versions of the final program for researchers. In this paper, all of the results are calculated with cross-entropy loss. Figure 4 shows the variation trend of three loss function values and classification accuracy with increasing epoch. All loss functions are convergent, and our approach achieves excellent classification accuracy. Therefore, the final objective function is as follows:


      { Γ , D }  =   arg min   D , Γ    λ 1   ∑  i = 1  C     X i  −  D i   Γ i  −  D  c o m    Γ  c o m    F 2  +  λ 2   ∑  j = 1 , j ≠  i  C     Γ  i j    F 2  + s o f t m a x  ( Γ )  ,     



(6)




where    λ 1  = 100   and    λ 2  = 1   are the scalar constants and they will be discussed in experiments.






3. Experimental Results and Analysis


In this section, we quantitatively and qualitatively evaluate the classification performance of the proposed model on four public datasets, namely Pavia [38], Botswana [39], Houston 2013 [40], and Houston 2018 [41]. We compare the performance of the proposed method with other existing algorithms, including SVM [18,21], FDDL [32], DPL [33], ResNet [33], AE [27], RNN [27], CNN [27], and CRNN [27], for HSI classification. We report the overall accuracy (OA), average accuracy (AA) and kappa coefficient [46] of different datasets and present corresponding classification maps. Furthermore, we analyze the classification performance in detail, following each experimental dataset.



3.1. Sample Selection


We randomly choose 10% of the labeled samples in the dataset as the training data. To overcome the imbalance issue, we adopt a weighted sample generation strategy and make all trained samples per class equal to others as follows:


   x  n e w   = α   x 1  +  ( 1 − α )   x 2  ,  



(7)




where   x  n e w    is the new sample generated by combining of samples   x 1   and   x 2  , and  α  is a random constant between 0 and 1. Samples   x 1   and   x 2   are randomly selected from the same class of training data. All the methods in comparison are implemented on the balanced dataset in this strategy.




3.2. Parameter Setting


In the proposed model, two groups of free parameters need to be adjusted: (1) the number of dictionary atoms and (2) regularization parameters   λ 1   and   λ 2  . The above parameter settings are a critical factor to ensure the performance of the model and will be analyzed.



3.2.1. Number of Dictionary Atoms


We set all the subdictionaries    D i  ∈   {  D 1  ,  D 2  , … ,  D C  ,  D  c o m   }    to have the same number atoms. The number of atoms is adaptively estimated with Houston 2013 datasets, as depicted in Figure 5. The classification OA increases with the number of atoms for each sub-dictionary (atom number under 8), while the changes in OA are not enormous along with the variation in atom number beyond 10. We set the number of atoms to 8 for each dataset to efficiently train the developed model.




3.2.2. Constraint Coefficients   λ 1   and   λ 2  


  λ 1   and   λ 2   mainly balance reconstruction and coding loss in Equation (6). We test the proposed model with regularization parameters   λ 1   and   λ 2   ranging from 0 to   10 3  , and select the value of parameter with the highest accuracy. Figure 6 presents the visualized result on Houston 2013 datasets. The OA values will decrease greatly with the increasing of   λ 2   (beyond 10). This result demonstrates that our model is sensitive for coding loss. We set    λ 1  = 100   and    λ 2  = 1   for the classification of Houston 2013 dataset.





3.3. Classification Performance Analysis for Different Datasets


3.3.1. Center of Pavia


Table 1 shows the classification results of the compared algorithms. According to the presented score, our method outperforms other algorithms, especially on Water, Tiles, and Bare Soil surface regions. Benefiting from the designed deep and sub-dictionary framework, the proposed method is more outstanding than other dictionary learning-based method (i.e., FDDL). Compared with other CNN-based models, by involving dictionary structure, our method shows better deep feature extraction ability and achieves higher OA, AA, and kappa coefficients with   98.75 %  ,   96.55 %   and   97.85 %  , respectively. In addition, Figure 7 presents the confusion matrix of the developed model, which also indicates an effective discrimination ability for surface regions.



Figure 8 presents the classification maps acquired by various methods on the Center of Pavia data set. Figure 8a,h are the pseudo-color image and ground truth map, and Figure 8b–g depicts the corresponding classification maps of FDDL, DPL, ResNet, RNN, CNN, and the proposed model, respectively. It can be seen that our method shows better visual performance than the dictionary and CNN-based algorithms in both the smoothness in same material region and sharpness on the edges between different material one. For better comparison, we highlight river bank and building regions with red and yellow rectangles in Figure 8. In terms of the classification results in the red rectangle, all of the methods, except the CNN model and our method, incorrectly classify some water samples into Bare Soil class. As for the yellow rectangle region, our model achieved smoothest classification results on Bara Soil class in which CNN method confuses some samples into Bitumen class, which leads to a inferior score when comparing with our proposed algorithm.




3.3.2. Botswana


Table 2 presents the class-specific classification accuracy in terms of the Botswana data set, where our algorithm achieves the highest classification accuracy in over 50 percent of the classes (8 out of total 14 classes). In particular, our method performs better than other comparison methods in classes Reeds, Acacia Woodlands, and Exposed Soils. To be more specific, for the Reeds class our method is almost   6 %   higher than the others, and   9 %   higher than comparison methods for the Exposed Soils class. In addition, according to the corresponding confusion matrix in Figure 9, our algorithm outperforms other methods in terms of OA, AA, and kappa coefficients with   92.2 %  ,   92.71 %  , and   91.56 %  , respectively. Such performance could further demonstrate the superior discrimination classification capability for our model.



Figure 10 shows the classification maps for the Botswana dataset, where Figure 10a,h are the pseudo-color image and ground truth map, and Figure 10b–g are the corresponding classification results of FDDL, DPL, ResNet, RNN, CNN, and the proposed model. We mark the most misplaced regions with yellow and red rectangles for more obvious comparison. As shown in yellow rectangle region, Acacia Woodlands and Acacia Shrublands are wrongly classified into Exposed Soils or the Floodplain Grasses 1 class by other methods. As for the rectangles colored red, other methods almost lose the ability to distinguish between different land covers, i.e., the CNN method misclassified the Island Interior class into the Acacia Shrublands class. In contrast, our approach removed noisy scattered points and led to smoother classification results without blurring the boundaries. The superior performance could be owing to the effectiveness of the proposed structured dictionary learning model.




3.3.3. Houston 2013


The classification results achieved by the methods in comparison on the Houston 2013 dataset are presented in Table 3, and Figure 11 presents the confusion matrix relative to the developed model. As depicted in Table 3, the classification results is more than   5 %   higher than other methods on classes Commercial, Road, Highway and Parking Lot 1, while it performs competitively with other methods for other classes. Specifically, for Stressed Grass class, our method only is   0.4 %   lower than AE method and   0.1 %   lower than CNN method, but almost two percent in average higher than the other methods. It is noteworthy that the developed algorithm outperforms other operators in feature extraction generally for OA, AA and kappa with   95.39 %  ,   94.99 %  , and   95.02 %  , respectively. Furthermore, the confusion matrix in Figure 11 also reveals that the algorithm here can be effective to distinguish a surface region.



Figure 12 depicts the classification map generated by the approaches in comparison on Houston 2013 dataset. Figure 12a,h shows the pseudo-color image and ground truth map, and Figure 12b–g shows the corresponding classification results thereof. We label the misclassified regions which contain buildings and cars with yellow and red rectangles, respectively. According to the ground truth in yellow regions, there exists a small Parking Lot 1 class but this is misplaced by most of the methods. Specifically, the classification of DPL, RNN, and CNN contain many misclassified points which lead to an unsatisfactory classification effect. For the red one, the other algorithms show significant misclassification of the Parking Lot 2 class, FDDL, DPL and ResNet are unable to distinguish between Parking Lot 2 and Parking Lot 1 classes. In contrast, as impacted by the robust property within the spectra’s local variation, our method showed more complete and correct classification results. Besides that, our method also achieved an effective removal of salt-and-pepper noise effects from the classification map. Moreover, it maintains the significant objects or structures. The developed model acquires a classification map with higher accuracy around and in the parking lot due to the robust property in the spectra’s local variation.




3.3.4. Houston 2018


Table 4 and Figure 13 present the classification results and confusion matrix on Houston 2018 datasets in comparison with other algorithms, respectively. According to the results, one can see that the classification accuracy decreases for each method when compared to the one in the Houston 2013 dataset. This phenomenon is more obvious for sidewalk and crosswalk classes, where the highest scores are only   56.11 %   and   76.33 %  , respectively. We believe that the decrease could be attributed to the increase of land cover types and the reduction of spectral information (only 46 spectral bands). In addition, our method ranks first in 9 out of 20 total classes of land covers and our method also outperforms other algorithms at least two points in terms of OA, AA, and kappa indicators. Furthermore, our model also shows significant discriminative ability between 20 classes according to the confusion matrix as illustrated in Figure 13.



Figure 14 highlights the superiority of the proposed method by means of classification maps on Houston 2018 dataset. Figure 14a,h shows the pseudo-color image and ground truth map, and Figure 14b–g shows the corresponding classification results of FDDL, DPL, ResNet, RNN, CNN, and the proposed model. For better visualization, we marked the Commercial, Road, Major Thoroughfares, and Stressed grass with yellow and red rectangles. According to the yellow rectangles, FDDL and DPL classify the Commercial into the Seats class, and they fail to identify the Road class owing to their poor ability to extract deeper spectral information. For the region of the red rectangle, RNN and CNN misclassified small Road into Cars. Moreover, there also exist some noisy points in the Commercial class. In contrast, our models showed more smooth and complete classification results.



According to the experimental results above, our approach achieved the highest OA, AA, and kappa coefficient on four benchmark datasets which were collected by different sensors with various land covers. Compared with other dictionary-based and CNN-based models, our model generally achieves smoother and more accurate classification results, especially for the large area of homogeneous land cover and the irregular small area types. The aforementioned experiments verified that benefiting from the rationally designed structure classification layer (dictionary) and loss functions, our model has the capability to extract the intrinsic invariant spectral feature representation from the HSI and achieves more effective feature extraction.






4. Discussion


In the last section, we presented the result and analysis of experiments on each dataset. In this section, we analyze and discuss the key factors, which affect the performance of the algorithm and need to be considered in practical HSI classification applications.



4.1. Influence of Imbalanced Samples


Chang et al. [47] suggested that imbalanced data will be of great significance to the HSI classification. To explore the effect arising from imbalanced data on classification performance, we randomly choose 10% of the labeled sample of each class and performed an experiment on Houston 2013 dataset with imbalanced data, as listed in Table 5. The imbalanced data will reduce the classification performance, leading to a decrease of about 3∼4% in classification accuracy. Our model still achieves the best performance when the training data are imbalanced. The classification results confirm the powerful classification ability of our model.




4.2. Influence of Small Training Samples


To confirm the effectiveness of our framework in practical scenario with the absence of samples, we reduce the number of training samples into 10, 20, and 30 per class. As listed in Table 6, we observed that the models generally suffer from unstable classification performance for different classes. Overall, the proposed model can achieve the best results in most of the indices with an increase of at least 4% accuracy compared with CNN-based models. We will obtain a better classification result with the increasing training data which corresponds with the results.




4.3. Computational Cost


Another factor that affects the practical application of the HSI classification model is the efficiency of the algorithm. Therefore, we present the computational time-consuming for the comparison algorithms.



All the tests here are performed on an Intel Core i7-8700 CPU 3.20 GHz desktop with 16 GB memory and carried out by employing Python on the Windows 10 operating system. In Table 7, we can see that the developed model has a slower running speed than DPL, which applies linear projection to extract spectral features. However, the developed model achieves faster testing speed than CNN-based models due to its simpler convolutional structure.





5. Conclusions


In this paper, we propose a novel deep learning-based structure dictionary model to extract spectral features from HSIs. Specifically, a residual network is used with a dictionary learning framework to strengthen the feature representation for the original data. Afterwards, sub-dictionaries with shared constraints are introduced to extract the common feature for samples with different class label. Moreover, three kinds of loss functions are combined to enhance the discriminative ability for the overall model. Numerous tests were carried out on HSI datasets, and qualitatively and quantitatively results showed that the proposed feature learning model requires much less computation time when comparing with other SVM and CNN-based models, demonstrating its potential and superiority in HSI classification tasks.
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Figure 1. Workflow of the proposed feature extraction model. 
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Figure 2. Network architectures for our encoder: (a) a block of residual networks, (b) main structure of CNNs. 
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Figure 3. Overview of the built dictionary of the developed model. Shared constraints are used to describe the common features of all classes of HSI samples. 
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Figure 4. The loss function value of training samples and classification accuracy of the developed model versus the number of epochs. 
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Figure 5. The classification OA under different numbers of atoms for each sub-dictionary. 
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Figure 6. The classification OA under different regularization parameters   λ 1   and   λ 2  . 
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Figure 7. The confusion matrix of the developed model on the Center of Pavia dataset. 
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Figure 8. Classification maps of the Center of Pavia dataset with methods in comparison: (a) pseudo-color image; (b) FDDL; (c) DPL; (d) ResNet; (e) RNN; (f) CNN; (g) Ours; (h) ground truth. The yellow and red rectangles correspond to building and water areas. 
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Figure 9. Confusion matrix of the developed model on the Botswana dataset. 
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Figure 10. Classification map for the Botswana dataset with methods in comparison: (a) pseudo-color image; (b) FDDL; (c) DPL; (d) ResNet; (e) RNN; (f) CNN; (g) ours; (h) ground truth. Rectangles colored as red and yellow represent mountain and grassland areas. 
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Figure 11. Confusion matrix of the developed model on the Houston 2013 dataset. 
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Figure 12. Classification map generated by Houston 2013 dataset with approaches in comparison: (a) pseudo-color image; (b) FDDL; (c) DPL; (d) ResNet; (e) RNN; (f) CNN; (g) ours; (h) ground truth. The rectangles with the colors of red and yellow represent the parking lot space and building area. 






Figure 12. Classification map generated by Houston 2013 dataset with approaches in comparison: (a) pseudo-color image; (b) FDDL; (c) DPL; (d) ResNet; (e) RNN; (f) CNN; (g) ours; (h) ground truth. The rectangles with the colors of red and yellow represent the parking lot space and building area.
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Figure 13. The confusion matrix of our model on the Houston 2018 dataset. 
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Figure 14. Classification maps of the Houston 2018 dataset with compared methods: (a) pseudo-color image; (b) FDDL; (c) DPL; (d) ResNet; (e) RNN; (f) CNN; (g) Ours; (h) ground truth. The yellow and red rectangles are corresponding to grassland andbuilding areas. 
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Table 1. Classification Accuracy for Center of Pavia Dataset. The red bold fonts and blue italic fonts indicate the best and the second best performance.
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	Class
	SVM
	FDDL
	DPL
	ResNet
	AE
	RNN
	CNN
	CRNN
	Ours





	1
	0.9866
	0.9882
	0.9856
	0.9845
	0.9997
	0.9836
	0.9966
	0.9999
	1.0000



	2
	0.6302
	0.2319
	0.3743
	0.6641
	0.9752
	0.4118
	0.7496
	0.9861
	0.9662



	3
	0.9708
	0.9851
	0.9682
	0.9644
	0.8884
	0.9902
	0.9669
	0.8994
	0.9579



	4
	0.5055
	0.3760
	0.2568
	0.4877
	0.8675
	0.4646
	0.5256
	0.8500
	0.8619



	5
	0.9969
	0.9848
	0.9729
	0.9835
	0.9680
	0.9924
	0.9905
	0.9809
	0.9785



	6
	0.6659
	0.6944
	0.8576
	0.7035
	0.9597
	0.8335
	0.9331
	0.9696
	0.9776



	7
	0.9163
	0.8811
	0.9143
	0.9363
	0.9443
	0.9465
	0.9503
	0.9604
	0.9556



	8
	0.9416
	0.9595
	0.9711
	0.9504
	0.9812
	0.9794
	0.9904
	0.9961
	0.9925



	9
	0.9965
	0.9643
	0.9825
	0.9895
	0.9980
	0.9930
	0.9874
	0.9980
	0.9995



	OA
	0.9234
	0.9057
	0.9244
	0.9289
	0.9828
	0.9331
	0.9663
	0.9864
	0.9875



	AA
	0.8456
	0.7850
	0.8093
	0.8515
	0.9535
	0.8439
	0.8989
	0.9600
	0.9655



	kappa
	0.8927
	0.8677
	0.8937
	0.9004
	0.9704
	0.9060
	0.9524
	0.9767
	0.9785
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Table 2. Classification Accuracy for Botswana Dataset. The red bold fonts and blue italic fonts indicate the best and the second best performance.
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	Class
	SVM
	FDDL
	DPL
	ResNet
	AE
	RNN
	CNN
	CRNN
	Ours





	1
	0.9465
	0.9712
	0.9794
	0.9835
	0.8934
	0.9346
	0.9492
	0.9529
	1.0000



	2
	1.0000
	0.8571
	0.9341
	0.9890
	0.7126
	0.9189
	0.8333
	0.9048
	0.9136



	3
	0.8451
	0.7920
	0.8496
	0.8274
	0.9426
	0.8366
	0.9264
	0.9770
	0.9701



	4
	0.8918
	0.7887
	0.9175
	0.8918
	0.6111
	0.7846
	0.9323
	0.9479
	0.9709



	5
	0.7037
	0.6831
	0.7284
	0.7572
	0.7880
	0.7704
	0.8219
	0.8200
	0.8935



	6
	0.6831
	0.6461
	0.6379
	0.6214
	0.6552
	0.6250
	0.7861
	0.7471
	0.7222



	7
	0.9615
	0.7479
	0.9316
	0.9017
	0.9462
	0.9234
	0.9607
	0.9735
	0.9808



	8
	0.8852
	0.9126
	0.9836
	0.9781
	0.7784
	0.8214
	0.9005
	0.9394
	0.9816



	9
	0.7279
	0.7032
	0.6784
	0.7739
	0.7877
	0.7651
	0.7651
	0.8750
	0.9405



	10
	0.7321
	0.4777
	0.8348
	0.8527
	0.7919
	0.7704
	0.8071
	0.8768
	0.8543



	11
	0.7418
	0.7564
	0.8945
	0.8836
	0.7233
	0.8404
	0.8517
	0.8897
	0.9221



	12
	0.9080
	0.8037
	0.8834
	0.9816
	0.7353
	0.7746
	0.8580
	0.7927
	0.9379



	13
	0.5785
	0.7810
	0.8554
	0.7397
	0.8522
	0.7371
	0.8966
	0.8899
	0.8930



	14
	0.9070
	0.6628
	0.7907
	0.7907
	0.7468
	0.7404
	0.8901
	0.7900
	1.0000



	OA
	0.8017
	0.7515
	0.8420
	0.8444
	0.7884
	0.8017
	0.8676
	0.8846
	0.9220



	AA
	0.8223
	0.7560
	0.8500
	0.8552
	0.7832
	0.8031
	0.8699
	0.8840
	0.9271



	kappa
	0.7854
	0.7311
	0.8289
	0.8316
	0.7706
	0.7850
	0.8566
	0.8751
	0.9156
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Table 3. Classification Accuracy for Houston 2013 Dataset. The red bold fonts and blue italic fonts indicate the best and the second best performance.
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	Class
	SVM
	FDDL
	DPL
	ResNet
	AE
	RNN
	CNN
	CRNN
	Ours





	1
	0.8890
	0.9076
	0.9831
	0.9387
	0.9166
	0.9538
	0.9224
	0.9659
	0.9920



	2
	0.9353
	0.9477
	0.9814
	0.9752
	0.9856
	0.9628
	0.9824
	0.9443
	0.9811



	3
	0.9586
	0.9984
	0.9825
	0.9904
	1.0000
	0.9857
	0.9888
	0.9952
	0.9892



	4
	0.8875
	0.9446
	0.8634
	0.9598
	0.9480
	0.9714
	0.9435
	0.9962
	0.9980



	5
	0.9284
	0.9776
	0.9902
	0.9723
	0.9563
	0.9785
	0.9663
	0.9779
	0.9930



	6
	0.8703
	0.9829
	0.9693
	0.9590
	0.9288
	0.9249
	0.9691
	0.9898
	0.9846



	7
	0.6261
	0.7881
	0.6996
	0.7977
	0.8341
	0.7820
	0.8567
	0.9389
	0.9369



	8
	0.7250
	0.5188
	0.6571
	0.5634
	0.7907
	0.4223
	0.7945
	0.8488
	0.9578



	9
	0.5510
	0.6557
	0.7329
	0.7063
	0.7158
	0.7045
	0.7269
	0.8580
	0.9152



	10
	0.6389
	0.4244
	0.8462
	0.7747
	0.7982
	0.7738
	0.7808
	0.8489
	0.9460



	11
	0.5117
	0.4317
	0.5926
	0.7752
	0.7840
	0.8354
	0.7889
	0.8781
	0.9008



	12
	0.5396
	0.5315
	0.6595
	0.6036
	0.7023
	0.7450
	0.7348
	0.8550
	0.9422



	13
	0.2766
	0.5414
	0.2884
	0.6430
	0.7911
	0.5745
	0.4879
	0.6250
	0.7313



	14
	0.9689
	0.9948
	0.9896
	0.9896
	0.9450
	0.9908
	0.9721
	0.9807
	0.9854



	15
	0.9545
	0.9882
	0.9848
	0.9562
	0.9966
	0.9781
	0.9351
	0.9866
	0.9943



	OA
	0.7409
	0.7476
	0.8103
	0.8255
	0.8600
	0.8280
	0.8549
	0.9127
	0.9539



	AA
	0.7508
	0.7756
	0.8147
	0.8404
	0.8729
	0.8381
	0.8579
	0.9126
	0.9499



	kappa
	0.7199
	0.7271
	0.7949
	0.8114
	0.8485
	0.8142
	0.8431
	0.9056
	0.9502
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Table 4. Classification Accuracy for Houston 2018 Dataset. The red bold fonts and blue italic fonts indicate the best and the second best performance.






Table 4. Classification Accuracy for Houston 2018 Dataset. The red bold fonts and blue italic fonts indicate the best and the second best performance.





	Class
	SVM
	FDDL
	DPL
	ResNet
	AE
	RNN
	CNN
	CRNN
	Ours





	1
	0.9922
	0.9295
	0.9813
	0.9486
	0.8319
	0.7925
	0.6037
	0.8157
	0.9399



	2
	0.9371
	0.8008
	0.9064
	0.7504
	0.9275
	0.9277
	0.9305
	0.8898
	0.9288



	3
	0.9821
	1.0000
	1.0000
	1.0000
	0.9968
	0.9951
	0.9968
	0.9952
	0.9984



	4
	0.9717
	0.8972
	0.9647
	0.9367
	0.9028
	0.8421
	0.8520
	0.8738
	0.9653



	5
	0.8774
	0.8387
	0.8902
	0.7701
	0.7485
	0.5942
	0.4048
	0.7697
	0.8604



	6
	0.9670
	0.8305
	0.9784
	0.9754
	0.9143
	0.9493
	0.8131
	0.9073
	0.9847



	7
	0.9208
	0.9958
	0.9958
	0.9625
	0.8885
	0.9424
	0.8131
	0.9795
	0.9625



	8
	0.7535
	0.6829
	0.7247
	0.8043
	0.6741
	0.7473
	0.6975
	0.8328
	0.8802



	9
	0.6341
	0.4107
	0.6423
	0.8066
	0.9432
	0.9380
	0.9835
	0.9262
	0.9277



	10
	0.4501
	0.2693
	0.3757
	0.4452
	0.6765
	0.6803
	0.6394
	0.6583
	0.7109



	11
	0.4591
	0.3753
	0.4358
	0.4852
	0.6809
	0.6073
	0.4301
	0.6844
	0.6975



	12
	0.5091
	0.4499
	0.5611
	0.3416
	0.2762
	0.2680
	0.1945
	0.2513
	0.3738



	13
	0.4700
	0.2544
	0.4235
	0.4389
	0.7362
	0.7378
	0.6273
	0.7633
	0.7184



	14
	0.8117
	0.7870
	0.8380
	0.7528
	0.7166
	0.7144
	0.6478
	0.6986
	0.8308



	15
	0.9643
	0.7154
	0.9387
	0.9366
	0.9409
	0.9223
	0.8968
	0.9090
	0.9819



	16
	0.8934
	0.8179
	0.8843
	0.8129
	0.8468
	0.7942
	0.7226
	0.8878
	0.9080



	17
	0.9621
	0.8939
	0.9848
	0.9924
	0.8618
	0.9754
	0.9034
	0.9470
	1.0000



	18
	0.8203
	0.6360
	0.7125
	0.7161
	0.5774
	0.5450
	0.4096
	0.6660
	0.8003



	19
	0.8912
	0.6545
	0.8899
	0.6725
	0.7739
	0.7704
	0.3747
	0.8632
	0.9185



	20
	0.9531
	0.9438
	0.9424
	0.8110
	0.9205
	0.8817
	0.6037
	0.8902
	0.9824



	OA
	0.6646
	0.4938
	0.6498
	0.7193
	0.8352
	0.8298
	0.7433
	0.8451
	0.8667



	AA
	0.8110
	0.7092
	0.8035
	0.7679
	0.7918
	0.7813
	0.6773
	0.8105
	0.8685



	kappa
	0.5988
	0.4277
	0.5825
	0.6478
	0.7874
	0.7798
	0.6849
	0.7979
	0.8281
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Table 5. Classification Results for Imbalanced Data on Houston 2013. The red bold fonts and blue italic fonts indicate the best and the second best performance.






Table 5. Classification Results for Imbalanced Data on Houston 2013. The red bold fonts and blue italic fonts indicate the best and the second best performance.





	Class No.
	AE
	RNN
	CNN
	CRNN
	Ours





	1
	0.9449
	0.9059
	0.9230
	0.9654
	0.9654



	2
	0.9610
	0.9442
	0.9521
	0.9731
	0.9734



	3
	0.9777
	0.9984
	0.9823
	0.9952
	1.0000



	4
	0.9893
	0.9571
	0.9502
	0.9595
	0.9866



	5
	0.9776
	0.9857
	0.9338
	0.9879
	0.9839



	6
	0.8805
	0.9795
	0.9727
	0.9861
	0.9966



	7
	0.7539
	0.8914
	0.7038
	0.9203
	0.9247



	8
	0.6223
	0.5955
	0.7475
	0.7830
	0.9125



	9
	0.7232
	0.7143
	0.6891
	0.7823
	0.8784



	10
	0.8389
	0.6769
	0.7188
	0.7935
	0.9258



	11
	0.8156
	0.5414
	0.7443
	0.7694
	0.8687



	12
	0.7622
	0.5595
	0.6189
	0.7658
	0.8991



	13
	0.2931
	0.4090
	0.5517
	0.6459
	0.3191



	14
	0.9508
	0.7332
	0.8843
	0.9343
	0.9793



	15
	0.9832
	0.9916
	0.9848
	0.9609
	0.9916



	OA
	0.8387
	0.7892
	0.8155
	0.9754
	0.9213



	AA
	0.8316
	0.7922
	0.8238
	0.8815
	0.9070



	kappa
	0.8255
	0.7720
	0.8002
	0.8653
	0.9148
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Table 6. Classification Results for a Small Number of Training Samples on Houston 2013. The red bold fonts and blue italic fonts indicate the best and the second best performance.
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Class No.

	
10 Samples per Class

	
20 Samples per Class

	
30 Samples per Class




	
AE

	
RNN

	
CNN

	
CRNN

	
Ours

	
AE

	
RNN

	
CNN

	
CRNN

	
Ours

	
AE

	
RNN

	
CNN

	
CRNN

	
Ours






	
1

	
0.33

	
0.57

	
0.77

	
0.82

	
0.84

	
0.73

	
0.92

	
0.77

	
0.93

	
0.96

	
0.89

	
0.72

	
0.86

	
0.94

	
0.99




	
2

	
0.39

	
0.46

	
0.92

	
0.95

	
0.96

	
0.59

	
0.74

	
0.81

	
0.81

	
0.94

	
0.87

	
0.86

	
0.98

	
0.84

	
0.93




	
3

	
0.56

	
0.26

	
0.52

	
0.99

	
0.99

	
0.93

	
0.90

	
0.98

	
0.94

	
0.99

	
0.99

	
0.84

	
0.99

	
0.95

	
0.99




	
4

	
0.75

	
0.84

	
0.88

	
0.96

	
0.91

	
0.77

	
0.85

	
0.97

	
0.92

	
0.86

	
0.97

	
0.91

	
0.97

	
0.97

	
0.86




	
5

	
0.86

	
0.74

	
0.90

	
0.95

	
0.96

	
0.96

	
0.89

	
0.97

	
0.99

	
0.98

	
0.96

	
0.88

	
0.98

	
0.98

	
0.97




	
6

	
0.69

	
0.41

	
0.92

	
0.87

	
0.97

	
0.83

	
0.80

	
0.76

	
0.75

	
0.97

	
0.97

	
0.96

	
0.89

	
0.90

	
0.98




	
7

	
0.49

	
0.35

	
0.60

	
0.81

	
0.80

	
0.50

	
0.52

	
0.49

	
0.80

	
0.75

	
0.56

	
0.40

	
0.71

	
0.78

	
0.74




	
8

	
0.23

	
0.24

	
0.55

	
0.49

	
0.66

	
0.45

	
0.32

	
0.41

	
0.65

	
0.67

	
0.66

	
0.60

	
0.81

	
0.75

	
0.75




	
9

	
0.46

	
0.35

	
0.41

	
0.48

	
0.63

	
0.61

	
0.61

	
0.65

	
0.68

	
0.78

	
0.64

	
0.53

	
0.66

	
0.68

	
0.76




	
10

	
0.18

	
0.00

	
0.61

	
0.57

	
0.61

	
0.41

	
0.26

	
0.48

	
0.66

	
0.85

	
0.61

	
0.45

	
0.71

	
0.72

	
0.83




	
11

	
0.51

	
0.30

	
0.52

	
0.67

	
0.69

	
0.48

	
0.65

	
0.53

	
0.75

	
0.74

	
0.62

	
0.54

	
0.60

	
0.75

	
0.79




	
12

	
0.38

	
0.26

	
0.31

	
0.45

	
0.38

	
0.19

	
0.34

	
0.63

	
0.64

	
0.65

	
0.58

	
0.50

	
0.61

	
0.67

	
0.80




	
13

	
0.15

	
0.57

	
0.15

	
0.26

	
0.46

	
0.18

	
0.12

	
0.22

	
0.36

	
0.52

	
0.19

	
0.10

	
0.43

	
0.39

	
0.51




	
14

	
0.72

	
0.89

	
0.85

	
0.86

	
0.93

	
0.90

	
0.66

	
0.95

	
0.93

	
0.96

	
0.83

	
0.83

	
0.90

	
0.85

	
0.95




	
15

	
0.96

	
0.66

	
0.96

	
0.97

	
0.99

	
0.96

	
0.66

	
0.96

	
0.95

	
0.99

	
0.93

	
0.92

	
0.98

	
0.93

	
0.99




	
OA

	
0.53

	
0.45

	
0.63

	
0.72

	
0.77

	
0.62

	
0.63

	
0.68

	
0.79

	
0.83

	
0.74

	
0.64

	
0.80

	
0.81

	
0.85




	
AA

	
0.51

	
0.46

	
0.66

	
0.74

	
0.79

	
0.63

	
0.62

	
0.70

	
0.78

	
0.84

	
0.75

	
0.67

	
0.80

	
0.81

	
0.86




	
kappa

	
0.49

	
0.41

	
0.61

	
0.70

	
0.75

	
0.61

	
0.61

	
0.66

	
0.77

	
0.82

	
0.72

	
0.61

	
0.78

	
0.79

	
0.84
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Table 7. Computational Costs for Different Classification Methods (In Seconds).
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	Class
	SVM
	FDDL
	DPL
	ResNet
	AE
	RNN
	CNN
	CRNN
	Ours





	Pavia center
	6.8
	346.1
	3.4   ×   10  − 3    
	16.1
	3.5
	67.2
	8.7
	52.8
	3.6



	Botswana
	1.8
	40.2
	2.9   ×   10  − 4    
	0.8
	0.3
	3.5
	0.4
	3.5
	0.2



	Houston 2013
	2.1
	69.1
	4.5   ×   10  − 4    
	2.5
	0.8
	13.8
	1.6
	13.8
	0.5



	Houston 2018
	16.3
	3310.8
	1.3   ×   10  − 2    
	79.1
	32.2
	155.2
	51.6
	137.7
	10.9
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