On Turbulent Features of E × B Plasma Motion in the Auroral Topside Ionosphere: Some Results from CSES-01 Satellite
<p>Electric (solid lines on the left vertical axes) and magnetic (dashed lines on the right vertical axes) field measurements collected by CSES-01 EFD and HPM instruments for the time interval under consideration. The three components are in the geographic coordinate system.</p> "> Figure 2
<p>Drift velocity (<math display="inline"><semantics> <mrow> <msub> <mi mathvariant="bold">v</mi> <mi>D</mi> </msub> <mo>=</mo> <mfenced separators="" open="(" close=")"> <mi mathvariant="bold">E</mi> <mo>×</mo> <mi mathvariant="bold">B</mi> </mfenced> <mo>/</mo> <msup> <mi>B</mi> <mn>2</mn> </msup> </mrow> </semantics></math>) in the geographic coordinate system.</p> "> Figure 3
<p>The two components of drift velocity (<math display="inline"><semantics> <mrow> <msub> <mi mathvariant="bold">v</mi> <mi>D</mi> </msub> <mo>=</mo> <mfenced separators="" open="(" close=")"> <mi mathvariant="bold">E</mi> <mo>×</mo> <mi mathvariant="bold">B</mi> </mfenced> <mo>/</mo> <msup> <mi>B</mi> <mn>2</mn> </msup> </mrow> </semantics></math>) perpendicular to the local magnetic field direction.</p> "> Figure 4
<p>On the <b>top</b>: the instantaneous convection cells as reconstructed from SuperDARN observations in Antarctica. Green arrows show the overall plasma convection. On the <b>bottom</b>: a zoom of the region of the CSES-01 trajectory. Colored lines refer to the velocity vector field in the <math display="inline"><semantics> <mrow> <mi>X</mi> <mi>Y</mi> </mrow> </semantics></math>-plane. Colors (from red to light violet) indicate the time.</p> "> Figure 5
<p>Motion of the velocity vector tip in the plane perpendicular to the magnetic field. The color is associated with the universal time UT (see the color bar).</p> "> Figure 6
<p>The trace, <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>(</mo> <mi>f</mi> <mo>)</mo> </mrow> </semantics></math>, of the PSD of the perpendicular components of the <math display="inline"><semantics> <mrow> <mi mathvariant="bold">E</mi> <mo>×</mo> <mi mathvariant="bold">B</mi> </mrow> </semantics></math> drift velocity. The two power laws are that expected for K41 theory (∼<math display="inline"><semantics> <msup> <mi>f</mi> <mrow> <mo>−</mo> <mn>5</mn> <mo>/</mo> <mn>3</mn> </mrow> </msup> </semantics></math>) and that observed for 2D <math display="inline"><semantics> <mrow> <mi mathvariant="bold">E</mi> <mo>×</mo> <mi mathvariant="bold">B</mi> </mrow> </semantics></math> convective turbulence (∼<math display="inline"><semantics> <msup> <mi>f</mi> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> </semantics></math>) in a quasi-steady state [<a href="#B40-remotesensing-14-01936" class="html-bibr">40</a>].</p> "> Figure 7
<p>The generalized structure functions, <math display="inline"><semantics> <mrow> <msup> <mi>S</mi> <mrow> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> </msup> <mrow> <mo>(</mo> <mi>τ</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>, of the velocity field components perpendicular to the magnetic field direction. The black line refers to a linear scaling, i.e., <math display="inline"><semantics> <mrow> <msup> <mi>S</mi> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </msup> <mrow> <mo>(</mo> <mi>τ</mi> <mo>)</mo> </mrow> <mo>≃</mo> <mi>τ</mi> </mrow> </semantics></math>.</p> "> Figure 8
<p>The compensated generalized structure functions, <math display="inline"><semantics> <mrow> <msup> <mi>τ</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> <msup> <mi>S</mi> <mrow> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> </msup> <mrow> <mo>(</mo> <mi>τ</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>, of the velocity field components perpendicular to the magnetic field direction for <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mspace width="4pt"/> <mn>3</mn> </mrow> </semantics></math> and 4. The black lines refer to power law fits.</p> "> Figure 9
<p>The relative scaling of <span class="html-italic">q</span>th-order structure functions, <math display="inline"><semantics> <mrow> <msup> <mi>S</mi> <mrow> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> </msup> <mrow> <mo>(</mo> <mi>τ</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>, of the velocity field components perpendicular to the magnetic field direction versus the corresponding 3rd-order one. The black dashed lines are power-law fits.</p> "> Figure 10
<p>The relative scaling exponents <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> </semantics></math> as a function of the moment order <span class="html-italic">q</span>. The dashed line is the expected trend of <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> </semantics></math> for the K41 theory of turbulence (<math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>(</mo> <mi>q</mi> <mo>)</mo> <mo>=</mo> <mi>q</mi> <mo>/</mo> <mn>3</mn> </mrow> </semantics></math> being <math display="inline"><semantics> <mrow> <mi>ζ</mi> <mo>(</mo> <mn>3</mn> <mo>)</mo> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>). The blue solid line is a nonlinear best fit done using the Meneveau and Sreenivasan <span class="html-italic">P-model</span> [<a href="#B44-remotesensing-14-01936" class="html-bibr">44</a>]. The solid green line is the <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> </semantics></math> trend for the She-Leveque model of Equation (<a href="#FD12-remotesensing-14-01936" class="html-disp-formula">12</a>) [<a href="#B45-remotesensing-14-01936" class="html-bibr">45</a>].</p> "> Figure 11
<p>The generalized kurtosis <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="sans-serif">Γ</mi> <mn>4</mn> </msub> <mrow> <mo>(</mo> <mi>τ</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>. The solid curve is a guide for eye. The vertical dashed line indicates the expected timescale <math display="inline"><semantics> <mrow> <msubsup> <mi>τ</mi> <mi>η</mi> <msup> <mi>O</mi> <mo>+</mo> </msup> </msubsup> <mo>≃</mo> <mn>0.3</mn> </mrow> </semantics></math> s corresponding to the <span class="html-italic">O</span><math display="inline"><semantics> <msup> <mrow/> <mo>+</mo> </msup> </semantics></math> inertial length, <math display="inline"><semantics> <mi>η</mi> </semantics></math>, assuming a density in the range <math display="inline"><semantics> <mrow> <mrow> <mo>[</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>]</mo> </mrow> <mo>×</mo> <msup> <mn>10</mn> <mn>5</mn> </msup> </mrow> </semantics></math> cm<math display="inline"><semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </msup> </semantics></math>.</p> "> Figure 12
<p>The PDFs of the velocity increments in the time scale interval from 4 ms to ∼0.5 s. Data are rescaled by the corresponding standard deviation.</p> "> Figure 13
<p>The Kullback–Leibler (<math display="inline"><semantics> <mrow> <mi>K</mi> <mi>L</mi> </mrow> </semantics></math>) distance between the PDFs. The vertical dashed line is in correspondence of the timescale <math display="inline"><semantics> <mrow> <msubsup> <mi>τ</mi> <mi>η</mi> <msup> <mi>O</mi> <mo>+</mo> </msup> </msubsup> <mo>∼</mo> <mn>0.35</mn> </mrow> </semantics></math> s associated with the <math display="inline"><semantics> <msup> <mi>O</mi> <mo>+</mo> </msup> </semantics></math> inertial length <math display="inline"><semantics> <mi>η</mi> </semantics></math> for a density of ∼<math display="inline"><semantics> <msup> <mn>10</mn> <mn>5</mn> </msup> </semantics></math> cm<math display="inline"><semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </msup> </semantics></math>. The solid horizontal line indicate the 95% critical threshold, <math display="inline"><semantics> <mrow> <mi>K</mi> <msup> <mi>L</mi> <mo>*</mo> </msup> <mo>=</mo> <mn>1</mn> <mo>×</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </msup> </mrow> </semantics></math>, below which the <math display="inline"><semantics> <mrow> <mi>K</mi> <mi>L</mi> </mrow> </semantics></math>-distance between PDFs is not significant (grey region).</p> ">
Abstract
:1. Introduction
2. Data Description
3. Methods
4. Results
5. Discussion
6. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
1D | One dimensional |
2D | Two dimensional |
3D | Three dimensional |
AE | Auroral Electrojet index |
CSES-01 | Chinese Seismo-Electromagnetic Satellite |
EFD | Electric Field Detector |
ESS | Extended Self-Similarity |
GEO | Geographical Reference System |
HPM | High Precision Magnetometer |
K41 | Kolmogorov 1941 |
KL | Kullback-Leibler |
MHD | Magnetohydrodynamic |
Probability Density Function | |
PSD | Power Spectral Density |
SCM | Search-Coil Magnetometer |
SH | She-Leveque |
SuperDARN | Super Dual Auroral Radar Network |
References
- Kintner, P.M., Jr. Observations of velocity shear driven plasma turbulence. J. Geophys. Res. 1976, A28, 5114–5122. [Google Scholar] [CrossRef] [Green Version]
- Kintner, P.M.; Seyler, C.E. The status of observations and theory of high latitude ionospheric and magnetospheric plasma turbulence. Space Sci. Rev. 1985, 41, 1572–9672. [Google Scholar] [CrossRef]
- Basu, S.; Basu, S.; MacKenzie, E.; Fougere, P.F.; Coley, W.R.; Maynard, N.C.; Winningham, J.D.; Sugiura, M.; Hanson, W.B.; Hoegy, W.R. Simultaneous density and electric field fluctuation spectra associated with velocity shears in the auroral oval. J. Geophys. Res. Space Phys. 1988, 93, 115–136. [Google Scholar] [CrossRef]
- Tam, S.W.Y.; Chang, T.; Kintner, P.M.; Klatt, E. Intermittency analyses on the SIERRA measurements of the electric field fluctuations in the auroral zone. Geophys. Res. Lett. 2005, 32, L05109. [Google Scholar] [CrossRef] [Green Version]
- Golovchanskaya, I.V.; Ostapenko, A.A.; Kozelov, B.V. Relationship between the high-latitude electric and magnetic turbulence and the Birkeland field-aligned currents. J. Geophys. Res. Space Phys. 2006, 111, A12301. [Google Scholar] [CrossRef]
- Golovchanskaya, I.V.; Kozelov, B.V. On the origin of electric turbulence in the polar cap ionosphere. J. Geophys. Res. Space Phys. 2010, 115, A09321. [Google Scholar] [CrossRef] [Green Version]
- Golovchanskaya, I.V.; Kozelov, B.V. Properties of electric turbulence in the polar cap ionosphere. Geomagn. Aeron. 2010, 50, 576–587. [Google Scholar] [CrossRef]
- Kozelov, B.V.; Golovchanskaya, I.V. Scaling of electric field fluctuations associated with the aurora during northward IMF. Geophys. Res. Lett. 2006, 33, L20109. [Google Scholar] [CrossRef]
- Kozelov, B.V.; Golovchanskaya, I.V.; Ostapenko, A.A.; Fedorenko, Y.V. Wavelet analysis of high-latitude electric and magnetic fluctuations observed by the Dynamic Explorer 2 satellite. J. Geophys. Res. Space Phys. 2008, 113, A03308. [Google Scholar] [CrossRef]
- Kintner, P.M.; Franz, J.; Schuck, P.; Klatt, E. Interferometric coherency determination of wavelength or what are broadband ELF waves? J. Geophys. Res. 2000, 105, 21237–21250. [Google Scholar] [CrossRef] [Green Version]
- Chang, T. Colloid-like Behavior and Topological Phase Transitions in Space Plasmas: Intermittent Low Frequency Turbulence in the Auroral Zone. Phys. Scr. 2001, 89, 80–83. [Google Scholar] [CrossRef]
- Chang, T.; Tam, S.W.Y.; Wu, C.C. Complexity induced anisotropic bimodal intermittent turbulence in space plasmas. Phys. Plasmas 2004, 11, 1287–1299. [Google Scholar] [CrossRef] [Green Version]
- Tam, S.W.Y.; Chang, T.; Kintner, P.M.; Klatt, E.M. Rank-ordered multifractal analysis for intermittent fluctuations with global crossover behavior. Phys. Rev. E 2010, 81, 036414. [Google Scholar] [CrossRef]
- Tam, S.W.Y.; Chang, T. Double rank-ordering technique of ROMA (Rank-Ordered Multifractal Analysis) for multifractal fluctuations featuring multiple regimes of scales. Nonlinear Process. Geophys. 2011, 18, 405–414. [Google Scholar] [CrossRef]
- Fejer, B.G.; Kelley, M.C. Ionospheric irregularities. Rev. Geophys. Space Phys. 1980, 18, 401–454. [Google Scholar] [CrossRef]
- Fejer, B.G. Low latitude electrodynamic plasma drifts—A review. J. Atmos. Terr. Phys. 1991, 53, 677–693. [Google Scholar] [CrossRef]
- Anderson, D.; Anghel, A.; Yumoto, K.; Ishitsuka, M.; Kudeki, E. Estimating daytime vertical ExB drift velocities in the equatorial F-region using ground-based magnetometer observations. Geophys. Res. Lett. 2002, 29, 1596. [Google Scholar] [CrossRef]
- Horvath, I.; Essex, E.A. Vertical E × B drift velocity variations and associated low-latitude ionospheric irregularities investigated with the TOPEX and GPS satellite data. Ann. Geophys. 2003, 21, 1017–1030. [Google Scholar] [CrossRef] [Green Version]
- Paschmann, G.; Haaland, S.; Treumann, R. Auroral Plasma Physics. Space Sci. Rev. 2002, 103. [Google Scholar] [CrossRef]
- Shen, X.; Zhang, X.; Yuan, S.; Wang, L.; Cao, J.; Huang, J.; Zhu, X.; Piergiorgio, P.; Dai, J. The state-of-the-art of the China Seismo-Electromagnetic Satellite mission. Sci. China E Technol. Sci. 2018, 61, 634–642. [Google Scholar] [CrossRef]
- Shen, X.; Zong, Q.G.; Zhang, X. Introduction to special section on the China Seismo-Electromagnetic Satellite and initial results. Earth Planet. Phys. 2018, 2, 439. [Google Scholar] [CrossRef]
- Huang, J.; Lei, J.; Li, S.; Zeren, Z.; Li, C.; Zhu, X.; Yu, W. The Electric Field Detector (EFD) onboard the ZH-1 satellite and first observational results. Earth Planet. Phys. 2018, 2, 469–478. [Google Scholar] [CrossRef]
- Diego, P.; Huang, J.; Piersanti, M.; Badoni, D.; Zeren, Z.; Yan, R.; Rebustini, G.; Ammendola, R.; Candidi, M.; Guan, Y.B.; et al. The Electric Field Detector on Board the China Seismo Electromagnetic Satellite—In-Orbit Results and Validation. Instruments 2021, 5, 1. [Google Scholar] [CrossRef]
- Cheng, B.; Zhou, B.; Magnes, W.; Lammegger, R.; Pollinger, A. High precision magnetometer for geomagnetic exploration onboard of the China Seismo-Electromagnetic Satellite. Sci. China E Technol. Sci. 2018, 61, 659–668. [Google Scholar] [CrossRef]
- Consolini, G.; Quattrociocchi, V.; D’Angelo, G.; Alberti, T.; Piersanti, M.; Marcucci, M.F.; De Michelis, P. Electric Field Multifractal Features in the High-Latitude Ionosphere: CSES-01 Observations. Atmosphere 2021, 12, 646. [Google Scholar] [CrossRef]
- Cicone, A.; Piersanti, M.; Consolini, G.; Materassi, M.; D’Angelo, G.; Diego, P.; Ubertini, P. Auroral oval layers detection by using CSES plasma and electric field data. Il Nuovo Cimento 2021, 44, 117. [Google Scholar] [CrossRef]
- Greenwald, R.A.; Baker, K.B.; Dudeney, J.R.; Pinnock, M.; Jones, T.B.; Thomas, E.C.; Villain, J.P.; Cerisier, J.C.; Senior, C.; Hanuise, C.; et al. Darn/Superdarn: A Global View of the Dynamics of High-Lattitude Convection. Space Sci. Rev. 1995, 71, 761–796. [Google Scholar] [CrossRef]
- Chisham, G.; Lester, M.; Milan, S.E.; Freeman, M.P.; Bristow, W.A.; Grocott, A.; McWilliams, K.A.; Ruohoniemi, J.M.; Yeoman, T.K.; Dyson, P.L.; et al. A decade of the Super Dual Auroral Radar Network (SuperDARN): Scientific achievements, new techniques and future directions. Surv. Geophys. 2007, 28, 33–109. [Google Scholar] [CrossRef] [Green Version]
- Nishitani, N.; Ruohoniemi, J.M.; Lester, M.; Baker, J.B.H.; Koustov, A.V.; Shepherd, S.G.; Chisham, G.; Hori, T.; Thomas, E.G.; Makarevich, R.A.; et al. Review of the accomplishments of mid-latitude Super Dual Auroral Radar Network (SuperDARN) HF radars. Prog. Earth Planet. Sci. 2019, 6, 27. [Google Scholar] [CrossRef] [Green Version]
- Ruohoniemi, J.M.; Baker, K.B. Large-scale imaging of high-latitude convection with Super Dual Auroral Radar Network HF radar observations. J. Geophys. Res. 1998, 103, 20797–20811. [Google Scholar] [CrossRef]
- Shepherd, S.G.; Ruohoniemi, J.M. Electrostatic potential patterns in the high-latitude ionosphere constrained by SuperDARN measurements. J. Geophys. Res. Space Phys. 2000, 105, 23005–23014. [Google Scholar] [CrossRef]
- Thomas, E.G.; Shepherd, S.G. Statistical Patterns of Ionospheric Convection Derived From Mid-latitude, High-Latitude, and Polar SuperDARN HF Radar Observations. J. Geophys. Res. Space Phys. 2018, 123, 3196–3216. [Google Scholar] [CrossRef]
- Group, S.D.A.W.; Thomas, E.G.; Ponomarenko, P.V.; Billett, D.D.; Bland, E.C.; Burrell, A.G.; Kotyk, K.; Reimer, A.S.; Schmidt, M.T.; Shepherd, S.G.; et al. SuperDARN Radar Software Toolkit (RST) 4.2. 2018. Available online: https://www.research.lancs.ac.uk/portal/en/publications/superdarn-radar-software-toolkit-rst-42(f02d5a1a-5e6b-40a7-88ea-35e2133a0d65).html (accessed on 11 February 2022).
- Frisch, U. Turbulence; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Benzi, R.; Ciliberto, S.; Tripiccione, R.; Baudet, C.; Massaioli, F.; Succi, S. Extended self-similarity in turbulent flows. Phys. Rev. E 1993, 48, R29–R32. [Google Scholar] [CrossRef]
- Biferale, L. A note on the fluctuation of dissipative scale in turbulence. Phys. Fluids 2008, 20, 031703. [Google Scholar] [CrossRef] [Green Version]
- Benzi, R.; Biferale, L. Homogeneous and Isotropic Turbulence: A Short Survey on Recent Developments. J. Stat. Phys. 2015, 161, 1351–1365. [Google Scholar] [CrossRef] [Green Version]
- Chevillard, L.; Roux, S.G.; Lévêque, E.; Mordant, N.; Pinton, J.F.; Arnéodo, A. Intermittency of Velocity Time Increments in Turbulence. Phys. Rev. Lett. 2005, 95, 064501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benzi, R.; Ciliberto, S.; Baudet, C.; Ruiz Chavarria, G.; Tripiccione, R. Extended self-similarity in the dissipation range of fully developed turbulence. Europhys. Lett. 1993, 24, 275. [Google Scholar] [CrossRef]
- Gruzinov, A.V.; Kukharkin, N.; Sudan, R.N. Two-Dimensional Convective Turbulence. Phys. Rev. Lett. 1996, 76, 1260–1263. [Google Scholar] [CrossRef]
- Biskamp, D.; Bremer, U. Dynamics and statistics of inverse cascade processes in 2D magnetohydrodynamic turbulence. Phys. Rev. Lett. 1994, 72, 3819–3822. [Google Scholar] [CrossRef] [Green Version]
- Tchen, C.M.; Pecseli, H.L.; Larsen, S.E. Strong turbulence in low-β plasmas. Plasma Phys. 1980, 22, 817–829. [Google Scholar] [CrossRef]
- Basu, S.; MacKenzie, E.; Basu, S.; Coley, W.R.; Sharber, J.R.; Hoegy, W.R. Plasma structuring by the gradient drift instability at high latitudes and comparison with velocity shear driven processes. J. Geophys. Res. 1990, 95, 7799–7818. [Google Scholar] [CrossRef]
- Meneveau, C.; Sreenivasan, K.R. Simple multifractal cascade model for fully developed turbulence. Phys. Rev. Lett. 1987, 59, 1424–1427. [Google Scholar] [CrossRef] [PubMed]
- She, Z.S.; Leveque, E. Universal scaling laws in fully developed turbulence. Phys. Rev. Lett. 1994, 72, 336–339. [Google Scholar] [CrossRef] [PubMed]
- Politano, H.; Pouquet, A. Model of intermittency in magnetohydrodynamic turbulence. Phys. Rev. E 1995, 52, 636–641. [Google Scholar] [CrossRef] [PubMed]
- Biskamp, D.; Müller, W.C. Scaling properties of three-dimensional isotropic magnetohydrodynamic turbulence. Phys. Plasmas 2000, 7, 4889–4900. [Google Scholar] [CrossRef]
- Ruiz-Chavarria, G.; Baudet, C.; Ciliberto, S. Scaling laws and dissipation scale of a passive scalar in fully developed turbulence. Phys. D Nonlinear Phenom. 1996, 99, 369–380. [Google Scholar] [CrossRef]
- Benzi, R.; Massaioli, F.; Succi, S.; Tripiccione, R. Scaling Behaviour of the Velocity and Temperature Correlation Functions in 3D Convective Turbulence. Europhys. Lett. 1994, 28, 231–236. [Google Scholar] [CrossRef]
- Biskamp, D.; Schwarz, E. On two-dimensional magnetohydrodynamic turbulence. Phys. Plasmas 2001, 8, 3282–3292. [Google Scholar] [CrossRef] [Green Version]
- Giannattasio, F.; De Michelis, P.; Consolini, G.; Quattrociocchi, V.; Coco, I.; Tozzi, R. Characterising the electron density fluctuations in the high-latitude ionosphere at Swarm altitude in response to the geomagnetic activity. Ann. Geophys. 2019, 62, GM453. [Google Scholar] [CrossRef] [Green Version]
- Kelley, M.C.; Kintner, P.M. Evidence for two-dimensional inertial turbulence in a cosmic-scale low-beta plasma. Astrophys. J. 1978, 220, 339–343. [Google Scholar] [CrossRef]
- Cerisier, J.C.; Berthelier, J.J.; Beghin, C. Unstable density gradients in the high-latitude ionosphere. Radio Sci. 1985, 20, 755–761. [Google Scholar] [CrossRef]
- Hulot, G.; Leger, J.M.; Clausen, L.B.N.; Deconinck, F.; Coïsson, P.; Vigneron, P.; Alken, P.; Chulliat, A.; Finlay, C.C.; Grayver, A.; et al. NanoMagSat, a 16U nanosatellite constellation high-precision magnetic project to initiate permanent low-cost monitoring of the Earth’s magnetic field and ionospheric environment. In Proceedings of the Abstracts of the EGU21—The EGU General Assembly 2021, Vienne, Austria, 19–30 April 2021. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Consolini, G.; Quattrociocchi, V.; Benella, S.; De Michelis, P.; Alberti, T.; Piersanti, M.; Marcucci, M.F. On Turbulent Features of E × B Plasma Motion in the Auroral Topside Ionosphere: Some Results from CSES-01 Satellite. Remote Sens. 2022, 14, 1936. https://doi.org/10.3390/rs14081936
Consolini G, Quattrociocchi V, Benella S, De Michelis P, Alberti T, Piersanti M, Marcucci MF. On Turbulent Features of E × B Plasma Motion in the Auroral Topside Ionosphere: Some Results from CSES-01 Satellite. Remote Sensing. 2022; 14(8):1936. https://doi.org/10.3390/rs14081936
Chicago/Turabian StyleConsolini, Giuseppe, Virgilio Quattrociocchi, Simone Benella, Paola De Michelis, Tommaso Alberti, Mirko Piersanti, and Maria Federica Marcucci. 2022. "On Turbulent Features of E × B Plasma Motion in the Auroral Topside Ionosphere: Some Results from CSES-01 Satellite" Remote Sensing 14, no. 8: 1936. https://doi.org/10.3390/rs14081936
APA StyleConsolini, G., Quattrociocchi, V., Benella, S., De Michelis, P., Alberti, T., Piersanti, M., & Marcucci, M. F. (2022). On Turbulent Features of E × B Plasma Motion in the Auroral Topside Ionosphere: Some Results from CSES-01 Satellite. Remote Sensing, 14(8), 1936. https://doi.org/10.3390/rs14081936