Hyperspectral Image Classification Based on Spectral Multiscale Convolutional Neural Network
"> Figure 1
<p>The overall framework of the proposed SFBMSN network.</p> "> Figure 2
<p>The schematic diagram of spectral self-attention module.</p> "> Figure 3
<p>The schematic diagram of DenseNet.</p> "> Figure 4
<p>The schematic diagram of 3D-Softpool.</p> "> Figure 5
<p>Schematic diagram of spatial self-attention module.</p> "> Figure 6
<p>(<b>a</b>) The OA effect of <math display="inline"><semantics> <mi>n</mi> </semantics></math> on the four hyperspectral image data sets. (<b>b</b>) The OA effect of spatial size on the four hyperspectral image data sets.</p> "> Figure 7
<p>Classification maps of IN data set using 3% training samples: (<b>a</b>) false color image, (<b>b</b>) ground truth map (GT) and (<b>c</b>–<b>j</b>) the classification map and overall accuracy of different algorithms.</p> "> Figure 8
<p>Classification maps of UP data set using 0.3% training samples: (<b>a</b>) false color image, (<b>b</b>) ground truth map (GT) and (<b>c</b>–<b>j</b>) classification map and overall accuracy of different algorithms.</p> "> Figure 9
<p>Classification maps of SV data set using 0.5% training samples: (<b>a</b>) false color image, (<b>b</b>) ground truth map (GT) and (<b>c</b>–<b>j</b>) the classification map and overall accuracy of different algorithms.</p> "> Figure 10
<p>Classification maps of KSC data set using 5% training samples: (<b>a</b>) false color image, (<b>b</b>) ground truth map (GT) and (<b>c</b>–<b>j</b>) the classification map and overall accuracy of different algorithms.</p> "> Figure 11
<p>Ablation experiments of three modules of the proposed method on different data sets: (<b>a</b>) attention mechanism, (<b>b</b>) FBMB, (<b>c</b>) 3D-Softpool and (<b>d</b>) dense connection.</p> "> Figure 12
<p>Schematic diagram of FBMB.</p> "> Figure 13
<p>Comparative experiments results of FBMB, FBSSB, C1, C2, C3 and C4 on different data sets.</p> "> Figure 14
<p>The classification performance of different methods is compared under different training sample ratios in IN, UP, SV and KSC data sets. (<b>a</b>) Classification performance of different methods on IN data set, (<b>b</b>) classification performance of different methods on UP data set, (<b>c</b>) classification performance of different methods on SV data set and (<b>d</b>) classification performance of different methods on KSC data set.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overall Structure of the Proposed Method
2.2. FBMB and Spectral Self-Attention Module
2.3. Dense Connection Network
2.4. Spatial Dense Connection Network with 3D-Softpool
2.5. Spatial Self-Attention Mechanism
3. Experiment and Results
3.1. Data Set and Parameter Setting
3.2. Experimental Results and Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chang, C.I. Hyperspectral Data Exploitation: Theory and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar] [CrossRef] [Green Version]
- Patel, N.K.; Patnaik, C.; Dutta, S.; Shekh, A.M.; Dave, A.J. Study of crop growth parameters using airborne imaging spectrometer data. Int. J. Remote Sens. 2001, 22, 2401–2411. [Google Scholar] [CrossRef]
- Goetz, A.F.; Vane, G.; Solomon, J.E.; Rock, B.N. Imaging Spectrometry for Earth Remote Sensing. Science 1985, 228, 1147–1153. [Google Scholar] [CrossRef] [PubMed]
- Civco, D.L. Artifificial neural networks for land-cover classification and mapping. Int. J. Geogr. Inf. Syst. 1993, 7, 173–186. [Google Scholar] [CrossRef]
- Wang, X.; Kong, Y.; Gao, Y.; Cheng, Y. Dimensionality reduction for hyperspectral data based on pairwise constraint discriminative analysis and nonnegative sparse divergence. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 1552–1562. [Google Scholar] [CrossRef]
- Ghamisi, P.; Benediktsson, J.A.; Ulfarsson, M.O. Spectral–Spatial Classification of Hyperspectral Images Based on Hidden Markov Random Fields. IEEE Trans. Geosci. Remote Sens. 2013, 52, 2565–2574. [Google Scholar] [CrossRef] [Green Version]
- Farrugia, R.A.; Debono, C.J. A Robust Error Detection Mechanism for H.264/AVC Coded Video Sequences Based on Support Vector Machines. IEEE Trans. Circuits Syst. Video Technol. 2008, 18, 1766–1770. [Google Scholar] [CrossRef] [Green Version]
- Zhong, P.; Wang, R. Jointly Learning the Hybrid CRF and MLR Model for Simultaneous Denoising and Classification of Hyperspectral Imagery. IEEE Trans. Neural Netw. Learn. Syst. 2014, 25, 1319–1334. [Google Scholar] [CrossRef]
- Fang, L.; Li, S.; Kang, X.; Benediktsson, J.A. Spectral-spatial classification of hyperspectral images with a superpixel-based discriminative sparse model. IEEE Trans. Geosci. Remote Sens. 2015, 53, 4186–4201. [Google Scholar] [CrossRef]
- Fu, W.; Li, S.; Fang, L. Spectral-spatial hyperspectral image classification via superpixel merging and sparse representation. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 4971–4974. [Google Scholar] [CrossRef]
- Fang, L.; Li, S.; Duan, W.; Ren, J.; Benediktsson, J.A. Classification of Hyperspectral Images by Exploiting Spectral–Spatial Information of Superpixel via Multiple Kernels. IEEE Trans. Geosci. Remote Sens. 2015, 53, 6663–6674. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Li, L.; Zhu, H.; Liu, X.; Jiao, L. Adaptive Multiscale Deep Fusion Residual Network for Remote Sensing Image Classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 8506–8521. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In International Conference on Medical Image Computing and Computer-Assisted Intervention; Springer: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.J.; Li, X.; Ling, C.X. Pelee: A Real-Time Object Detection System on Mobile Devices. arXiv 2018, arXiv:1804.06882. [Google Scholar]
- Zeng, D.; Liu, K.; Chen, Y.; Zhao, J. Distant Supervision for Relation Extraction via Piecewise Convolutional Neural Networks. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, Lisbon, Portugal, 17–21 September 2015; pp. 1753–1762. [Google Scholar] [CrossRef]
- Gehring, J.; Auli, M.; Grangier, D.; Yarats, D.; Dauphin, Y.N. Convolutional Sequence to Sequence Learning. arXiv 2017, arXiv:1705.03122. [Google Scholar]
- He, H.; Gimpel, K.; Lin, J. Multi-Perspective Sentence Similarity Modeling with Convolutional Neural Networks. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, Milan, Italy, 26–31 July 2015; pp. 1576–1586. [Google Scholar] [CrossRef]
- He, L.; Li, J.; Liu, C.; Li, S. Recent advances on spectral–spatial hyperspectral image classification: An overview and new guidelines. IEEE Trans. Geosci. Remote Sens. 2018, 56, 1579–1597. [Google Scholar] [CrossRef]
- Shen, L.; Jia, S. Three-dimensional Gabor wavelets for pixel-based hyperspectral imagery classification. IEEE Trans. Geosci. Remote Sens. 2011, 49, 5039–5046. [Google Scholar] [CrossRef]
- Tang, Y.; Lu, Y.; Yuan, H. Hyperspectral image classification based on three-dimensional scattering wavelet transform. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2467–2480. [Google Scholar] [CrossRef]
- Phillips, R.D.; Blinn, C.E.; Watson, L.T.; Wynne, R.H. An adaptive noise-fifiltering algorithm for AVIRIS data with implications for classi- fification accuracy. IEEE Trans. Geosci.Remote Sens. 2009, 47, 3168–3179. [Google Scholar] [CrossRef]
- Palmason, J.A.; Benediktsson, J.A.; Sveinsson, J.R.; Chanussot, J. Classification of hyperspectral data from urban areas using morphological preprocessing and independent component analysis. In Proceedings of the 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS ’05, Seoul, Korea, 29 July 2005; p. 4. [Google Scholar] [CrossRef]
- Li, J.; Marpu, P.R.; Plaza, A.; Bioucas-Dias, J.M.; Benediktsson, J.A. Generalized composite kernel framework for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2013, 51, 4816–4829. [Google Scholar] [CrossRef]
- Hong, D.; Wu, X.; Ghamisi, P.; Chanussot, J.; Yokoya, N.; Zhu, X.X. Invariant attribute profifiles: A spatial-frequency joint feature extractor for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2020, 58, 3791–3808. [Google Scholar] [CrossRef] [Green Version]
- Duan, P.; Kang, X.; Li, S.; Ghamisi, P.; Benediktsson, J.A. Fusion of multiple edge-preserving operations for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 10336–10349. [Google Scholar] [CrossRef]
- Sun, L.; Wu, Z.; Liu, J.; Xiao, L.; Wei, Z. Supervised spectral–spatial hyperspectral image classification with weighted Markov random fifields. IEEE Trans. Geosci. Remote Sens. 2015, 53, 1490–1503. [Google Scholar] [CrossRef]
- Li, F.; Xu, L.; Siva, P.; Wong, A.; Clausi, D.A. Hyperspectral image classification with limited labeled training samples using enhanced ensemble learning and conditional random fifields. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2427–2438. [Google Scholar] [CrossRef]
- Chen, Y.; Nasrabadi, N.M.; Tran, T.D. Hyperspectral image classification using dictionary-based sparse representation. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3973–3985. [Google Scholar] [CrossRef]
- Gao, L.; Hong, D.; Yao, J.; Zhang, B.; Gamba, P.; Chanussot, J. Spectral superresolution of multispectral imagery with joint sparse and lowrank learning. IEEE Trans. Geosci. Remote Sens. 2020, 59, 2269–2280. [Google Scholar] [CrossRef]
- Ghamisi, P.; Couceiro, M.S.; Martins, F.M.L.; Benediktsson, J.A. Multilevel image segmentation based on fractional-order Darwinian particle swarm optimization. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2382–2394. [Google Scholar] [CrossRef] [Green Version]
- Hong, D.; Gao, L.; Yokoya, N.; Yao, J.; Chanussot, J.; Du, Q.; Zhang, B. More diverse means better: Multimodal deep learning meets remote-sensing imagery classification. IEEE Trans. Geosci. Remote Sens. 2020, 59, 4340–4354. [Google Scholar] [CrossRef]
- Zheng, K.; Gao, L.; Liao, W.; Hong, D.; Zhang, B.; Cui, X.; Chanussot, J. Coupled convolutional neural network with adaptive response function learning for unsupervised hyperspectral superresolution. IEEE Trans. Geosci. Remote Sens. 2020, 59, 2487–2502. [Google Scholar] [CrossRef]
- Chen, Y.; Lin, Z.; Zhao, X.; Wang, G.; Gu, Y. Deep learning-based classification of hyperspectral data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2094–2107. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, X.; Jia, X. Spectral–Spatial classification of hyperspectral data based on deep belief network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2381–2392. [Google Scholar] [CrossRef]
- Mou, L.; Ghamisi, P.; Zhu, X.X. Deep recurrent neural networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3639–3655. [Google Scholar] [CrossRef] [Green Version]
- Hang, R.; Liu, Q.; Hong, D.; Ghamisi, P. Cascaded recurrent neural networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 5384–5394. [Google Scholar] [CrossRef] [Green Version]
- Hong, D.; Gao, L.; Yao, J.; Zhang, B.; Plaza, A.; Chanussot, J. Graph convolutional networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2020, 59, 5966–5978. [Google Scholar] [CrossRef]
- Tao, C.; Pan, H.; Li, Y.; Zou, Z. Unsupervised spectral-spatial feature learning with stacked sparse autoencoder for hyperspectral imagery classification. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2438–2442. [Google Scholar] [CrossRef]
- Ma, X.; Wang, H.; Geng, J. Spectral-spatial classification of hyperspectral image based on deep auto-encoder. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 4073–4085. [Google Scholar] [CrossRef]
- Zhang, X.; Liang, Y.; Li, C.; Hu, N.; Jiao, L.; Zhou, H. Recursive autoencoders-based unsupervised feature learning for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1928–1932. [Google Scholar] [CrossRef] [Green Version]
- Hu, W.; Huang, Y.; Wei, L.; Zhang, F.; Li, H.-C. Deep Convolutional Neural Networks for Hyperspectral Image Classification. J. Sens. 2015, 2015, 258619. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Wu, G.; Zhang, F.; Du, Q. Hyperspectral Image Classification Using Deep Pixel-Pair Features. IEEE Trans. Geosci. Remote Sens. 2016, 55, 844–853. [Google Scholar] [CrossRef]
- Fang, L.; Liu, Z.; Song, W. Deep Hashing Neural Networks for Hyperspectral Image Feature Extraction. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1412–1416. [Google Scholar] [CrossRef]
- Chen, Y.; Li, C.; Ghamisi, P.; Jia, X.; Gu, Y. Deep Fusion of Remote Sensing Data for Accurate Classification. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1253–1257. [Google Scholar] [CrossRef]
- Zhang, M.; Li, W.; Du, Q. Diverse Region-Based CNN for Hyperspectral Image Classification. IEEE Trans. Image Process. 2018, 27, 2623–2634. [Google Scholar] [CrossRef]
- Zhu, J.; Fang, L.; Ghamisi, P. Deformable Convolutional Neural Networks for Hyperspectral Image Classification. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1254–1258. [Google Scholar] [CrossRef]
- Ding, X.; Zhang, X.; Han, J.; Ding, G. Diverse Branch Block: Building a Convolution as an Inception-like Unit.Computer Science.Computer Vision and Pattern Recognition. arXiv 2021, arXiv:2103.13425v2. [Google Scholar]
- Stergiou, A.; Poppe, R.; Kalliatakis, G. Refining activation downsampling with SoftPool. Computer Science.Computer Vision and Pattern Recognition. arXiv 2021, arXiv:2101.00440v3. [Google Scholar]
- Li, R.; Zheng, S.; Duan, C.; Yang, Y.; Wang, X. Classification of hyperspectral image based on double-branch dual-attention mechanism network. Remote Sens. 2020, 12, 582. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Jiang, H.; Li, C.; Jia, X.; Ghamisi, P. Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6232–6251. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Yu, X.; Zhang, P.; Tan, X.; Wang, R.; Zhi, L. Spectral-spatial classification of hyperspectral image using three-dimensional convolution network. J. Appl. Remote Sens. 2018, 12, 016005. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H.; Shen, Q. Spectral-Spatial Classification of Hyperspectral Imagery with 3D Convolutional Neural Network. Remote Sens. 2017, 9, 67. [Google Scholar] [CrossRef] [Green Version]
- Paoletti, M.E.; Haut, J.M.; Fernandez-Beltran, R.; Plaza, J.; Plaza, A.J.; Pla, F. Deep pyramidal residual networks for spectral–spatial hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 740–754. [Google Scholar] [CrossRef]
- Wang, W.; Dou, S.; Jiang, Z.; Sun, L. A fast dense spectral–spatial convolution network framework for hyperspectral images classification. Remote Sens. 2018, 10, 1068. [Google Scholar] [CrossRef] [Green Version]
- Feng, J.; Wu, X.; Shang, R.; Sui, C.; Li, J.; Jiao, L.; Zhang, X. Attention Multibranch Convolutional Neural Network for Hyperspectral Image Classification Based on Adaptive Region Search. IEEE Trans. Geosci. Remote Sens. 2021, 59, 5054–5070. [Google Scholar] [CrossRef]
- Dundar, T.; Ince, T. Sparse Representation-Based Hyperspectral Image Classification Using Multiscale Superpixels and Guided Filter. IEEE Trans. Geosci. Remote Sens. 2019, 16, 246–250. [Google Scholar] [CrossRef]
- Cao, X.; Wang, X.; Wang, D.; Zhao, J.; Jiao, L. Spectral–Spatial Hyperspectral Image Classification Using Cascaded Markov Random Fields. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 4861–4872. [Google Scholar] [CrossRef]
- Ma, W.; Yang, Q.; Wu, Y.; Zhao, W.; Zhang, X. Double-Branch Multi-Attention Mechanism Network for Hyperspectral Image Classification. Remote Sens. 2019, 11, 1307. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Ma, C.; Chen, Y.; Zheng, Y.; Shim, H.J.; Wu, Z.; Jeon, B. Low Rank Component Induced Spatial-Spectral Kernel Method for Hyperspectral Image Classification. IEEE Trans. Circuits Syst. Video Technol. 2020, 30, 3829–3842. [Google Scholar] [CrossRef]
- Sun, L.; Zhao, G.; Zheng, Y.; Wu, Z. Spectral-Spatial Feature Tokenization Transformer for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5522214. [Google Scholar] [CrossRef]
- Aletti, G.; Benfenati, A.; Naldi, G. A Semi-Supervised Reduced-Space Method for Hyperspectral Imaging Segmentation. J. Imaging 2021, 7, 267. [Google Scholar] [CrossRef]
- Bampis Christos, G.; Maragos, P.; Bovik, A.C. Graph-Driven Diffusion and Random Walk Schemes for Image Segmentation. IEEE Trans. Image Process. 2017, 26, 35–50. [Google Scholar] [CrossRef]
- Huang, G.; Liu, Z.; van der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269. [Google Scholar] [CrossRef] [Green Version]
- Sinha, B.; Yimprayoon, P.; Tiensuwan, M. Cohen’s Kappa Statistic: A Critical Appraisal and Some Modifications. Math. Calcutta Stat. Assoc. Bull. 2006, 58, 151–170. [Google Scholar] [CrossRef]
- Bell, S.; Zitnick, C.L.; Bala, K.; Girshick, R. Inside-Outside Net: Detecting Objects in Context with Skip Pooling and Recurrent Neural Networks. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 2874–2883. [Google Scholar]
- Kong, T.; Yao, A.; Chen, Y.; Sun, F. HyperNet: Towards Accurate Region Proposal Generation and Joint Object Detection. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 845–853. [Google Scholar]
- Liu, C.; Wechsler, H. A shape- and texture-based enhanced Fisher classifier for face recognition. IEEE Trans. Image Process. 2001, 10, 598–608. [Google Scholar]
Class | Number of Samples | |||
---|---|---|---|---|
NO. | Color | Name | Training | Test |
C1 | | Alfalfa | 3 | 43 |
C2 | | Corn-notill | 42 | 1386 |
C3 | | Corn-mintill | 24 | 806 |
C4 | | Corn | 7 | 230 |
C5 | | Grass-pasture | 14 | 469 |
C6 | | Grass–Tress | 21 | 709 |
C7 | | Grass-pasture-mowed | 3 | 25 |
C8 | | Hay-windrowed | 14 | 464 |
C9 | | Oats | 3 | 17 |
C10 | | Soybean-notill | 29 | 943 |
C11 | | Soybean-mintill | 73 | 2382 |
C12 | | Soybean-clean | 17 | 576 |
C13 | | Wheat | 6 | 199 |
C14 | | Woods | 37 | 1228 |
C15 | | Buildings–Grass–Trees–Drives | 11 | 375 |
C16 | | Stone–Steel–Towers | 3 | 90 |
Total | 307 | 9942 |
Class | Number of Samples | |||
---|---|---|---|---|
NO. | Color | Name | Training | Test |
C1 | | Asphalt | 33 | 6598 |
C2 | | Meadows | 93 | 18,556 |
C3 | | Gravel | 10 | 2089 |
C4 | | Trees | 15 | 3049 |
C5 | | Painted metal sheets | 6 | 1339 |
C6 | | Bare soil | 25 | 5004 |
C7 | | Bitumen | 6 | 1324 |
C8 | | Self-blocking bricks | 18 | 3664 |
C9 | | Shadows | 4 | 943 |
Total | 210 | 42,566 |
Class | Number of Samples | |||
---|---|---|---|---|
NO. | Color | Name | Training | Test |
C1 | | Scrub | 38 | 723 |
C2 | | Willow swamp | 12 | 231 |
C3 | | CP hammock | 12 | 244 |
C4 | | Slash pine | 12 | 240 |
C5 | | Oakbroadleaf | 8 | 153 |
C6 | | Hard wood | 11 | 218 |
C7 | | Swamp | 5 | 100 |
C8 | | Graminoid marsh | 21 | 410 |
C9 | | Spartina marsh | 26 | 494 |
C10 | | Cattail marsh | 20 | 384 |
C11 | | Sait marsh | 20 | 399 |
C12 | | Mud flats | 25 | 478 |
C13 | | Water | 46 | 881 |
Total | 256 | 4955 |
Class | Number of Samples | |||
---|---|---|---|---|
NO. | Color | Name | Training | Test |
C1 | | Brocoli_green_weeds_1 | 10 | 1999 |
C2 | | Brocoli_green_weeds_2 | 18 | 3708 |
C3 | | Fallow | 9 | 1967 |
C4 | | Fallow_rough_plow | 6 | 1388 |
C5 | | Fallow_smooth | 13 | 2665 |
C6 | | Stubble | 19 | 3940 |
C7 | | Celery | 17 | 3562 |
C8 | | Graps_untrained | 56 | 11,215 |
C9 | | Soil_vinyard_develop | 31 | 6172 |
C10 | | Corn_cenesced_green_weed | 16 | 3262 |
C11 | | Lettuce_romaine_4wk | 5 | 1063 |
C12 | | Lettuce_romaine_5wk | 9 | 1833 |
C13 | | Lettuce_romaine_6wk | 4 | 912 |
C14 | | Lettuce_romaine_7wk | 5 | 1065 |
C15 | | Vinyard_untrained | 36 | 7232 |
C16 | | Vinyard_vertical_trellis | 9 | 1798 |
Total | 263 | 53,886 |
Laryer Setting | Input Size | Kernel Size | Output Size | |
---|---|---|---|---|
Spectral branch | Input-3D-Conv | - | - | 9 × 9 × 200 |
DiverseBranchBlock | (9 × 9 × n, 24) | - | (9 × 9 × 97, 24) | |
BN-Relu-3D-Conv1 | (9 × 9 × n, 24) | , stride = [1, 1, 1] | (9 × 9 × 97, 12) | |
Concatenate | - | - | (9 × 9 × 97, 36) | |
BN-Relu-3D-Conv2 | (9 × 9 × n, 36) | , stride = [1, 1, 1] | (9 × 9 × 97, 12) | |
Concatenate | - | - | (9 × 9 × 97, 48) | |
BN-Relu-3D-Conv3 | (9 × 9 × n, 48) | , stride = [1, 1, 1] | (9 × 9 × 97, 12) | |
Concatenate | - | - | (9 × 9 × 97, 60) | |
Channel Attention Block | (9 × 9 × n, 60) | - | (9 × 9 × 97, 60) | |
BN-Dropout-GAP | (9 × 9 × n, 60) | - | (1 × 60) | |
Spatail branch | input | - | - | 9 × 9 × 200 |
CONV | 1 × 1 × 200 | , stride = [1, 1, 1] | (9 × 9 × 1, 24) | |
BN-Relu-3DSoftPool-3DConv | (9 × 9 × 1, 24) | , stride = [1, 1, 1] | (9 × 9 × 1, 12) | |
Concatenate | - | - | (9 × 9 × 1, 36) | |
BN-Relu-3D-Conv1 | (9 × 9 × 1, 36) | , stride = [1, 1, 1] | (9 × 9 × 1, 12) | |
Concatenate | - | - | (9 × 9 × 1, 48) | |
BN-Relu-3D-Conv2 | (9 × 9 × 1, 48) | , stride = [1, 1, 1] | (9 × 9 × 1, 12) | |
Concatenate | - | - | (9 × 9 × 1, 60) | |
Spatail Attention Block | (9 × 9 × 1, 60) | , stride = [1, 1, 1] | (9 × 9 × 1, 60) | |
BN-Dropout-GAP | (9 × 9 × 1, 60) | , stride = [1, 1, 1] | (1 × 60) | |
Fc_Linear | Concatenate-full_connection | 260 |
Class | SVM | CDCNN | pResNet | SSRN | DBMA | FDSSC | DBDA | Proposed |
---|---|---|---|---|---|---|---|---|
C1 | 35.61 | 48.56 | 27.06 | 81.53 | 82.25 | 83.52 | 96.49 | 98.41 |
C2 | 56.48 | 66.86 | 81.72 | 88.18 | 85.93 | 90.44 | 92.25 | 92.05 |
C3 | 61.56 | 33.13 | 80.42 | 86.68 | 88.64 | 87.60 | 91.6 | 95.77 |
C4 | 41.55 | 54.91 | 61.07 | 83.27 | 87.99 | 91.24 | 92.63 | 94.41 |
C5 | 83.06 | 87.35 | 91.65 | 96.78 | 95.05 | 98.31 | 97.76 | 99.69 |
C6 | 84.34 | 91.16 | 94.74 | 95.44 | 97.53 | 98.25 | 96.85 | 99.14 |
C7 | 57.86 | 57.25 | 20.04 | 85.98 | 51.11 | 87.70 | 65.62 | 77.70 |
C8 | 88.68 | 92.92 | 99.28 | 95.75 | 98.62 | 98.45 | 98.75 | 99.95 |
C9 | 37.46 | 48.08 | 68.99 | 72.16 | 53.31 | 72.11 | 83.42 | 80.73 |
C10 | 63.33 | 64.95 | 83.24 | 84.93 | 86.22 | 83.95 | 86.47 | 91.76 |
C11 | 64.74 | 67.74 | 88.71 | 88.26 | 89.51 | 95.72 | 93.12 | 96.91 |
C12 | 51.56 | 41.31 | 60.21 | 85.34 | 83.18 | 90.50 | 91.22 | 92.72 |
C13 | 84.75 | 85.68 | 79.58 | 98.15 | 96.8 | 98.99 | 96.69 | 98.39 |
C14 | 89.68 | 87.25 | 97.47 | 94.53 | 96.52 | 95.95 | 96.15 | 99.41 |
C15 | 63.83 | 86.64 | 85.01 | 88.65 | 85.19 | 92.51 | 92.37 | 95.31 |
C16 | 97.67 | 91.43 | 89.26 | 94.48 | 95.47 | 98.01 | 90.83 | 94.91 |
OA (%) | 67.77 ± 0 | 71.42 ± 2.56 | 86.13 ± 1.36 | 89.24 ± 0.41 | 89.95 ± 1.06 | 92.29 ± 2.56 | 92.58 ± 0.53 | 96.03 ± 0.03 |
AA (%) | 68.74 ± 0 | 71.35 ± 1.21 | 75.31 ± 2.21 | 88.69 ± 0.95 | 86.80 ± 0.59 | 91.45 ± 2.56 | 91.17 ± 0.22 | 94.58 ± 0.41 |
Kappa (%) | 64.97 ± 0 | 67.22 ± 2.74 | 84.11 ± 0.92 | 87.88 ± 0.47 | 88.24 ± 1.19 | 91.24 ± 2.56 | 91.6 ± 0.63 | 95.34 ± 0.61 |
Class | SVM | CDCNN | pResNet | SSRN | DBMA | FDSSC | DBDA | Proposed |
---|---|---|---|---|---|---|---|---|
C1 | 82.27 | 87.78 | 87.21 | 94.10 | 88.83 | 91.64 | 92.52 | 97.28 |
C2 | 83.54 | 94.73 | 98.02 | 96.66 | 97.07 | 97.06 | 98.07 | 99.16 |
C3 | 57.55 | 65.28 | 31.22 | 76.75 | 77.08 | 86.22 | 87.86 | 94.35 |
C4 | 93.33 | 96.13 | 85.36 | 99.29 | 96.71 | 96.75 | 96.27 | 98.27 |
C5 | 94.37 | 97.53 | 95.57 | 99.64 | 97.46 | 99.74 | 97.84 | 99.17 |
C6 | 81.66 | 89.62 | 55.37 | 93.85 | 93.66 | 96.83 | 98.47 | 98.98 |
C7 | 48.14 | 78.28 | 37.99 | 86.48 | 87.73 | 71.04 | 92.62 | 94.64 |
C8 | 72.15 | 78.53 | 76.32 | 83.71 | 81.17 | 77.84 | 89.43 | 87.07 |
C9 | 98.96 | 92.05 | 92.48 | 98.97 | 95.37 | 98.73 | 97.47 | 97.84 |
OA (%) | 83.03 ± 0 | 87.94 ± 0.13 | 82.2 ± 1.98 | 92.50 ± 1.32 | 91.8 ± 0.56 | 93.16 ± 2.56 | 96.01 ± 0.03 | 97.13 ± 0.04 |
AA (%) | 78.24 ± 0 | 85.32 ± 0.19 | 72.91 ± 2.15 | 92.16 ± 1.31 | 90.01 ± 2.64 | 90.58 ± 2.56 | 94.72 ± 0.59 | 96.31 ± 0.39 |
Kappa (%) | 76.45 ± 0 | 83.95 ± 0.16 | 77.71 ± 3.01 | 90.89 ± 1.61 | 89.04 ± 0.75 | 90.88 ± 2.56 | 94.71 ± 0.04 | 96.19 ± 0.05 |
Class | SVM | CDCNN | pResNet | SSRN | DBMA | FDSSC | DBDA | Proposed |
---|---|---|---|---|---|---|---|---|
C1 | 99.41 | 97.75 | 89.22 | 96.17 | 97.53 | 100 | 98.74 | 99.24 |
C2 | 97.89 | 97.47 | 94.93 | 97.85 | 98.63 | 96.99 | 98.18 | 99.43 |
C3 | 88.99 | 88.54 | 86.13 | 95.26 | 95.82 | 98.01 | 96.48 | 96.84 |
C4 | 96.59 | 94.56 | 94.25 | 98.66 | 91.16 | 96.96 | 95.31 | 95.57 |
C5 | 96.08 | 95.09 | 99.33 | 97.25 | 95.75 | 99.58 | 97.15 | 99.66 |
C6 | 99.91 | 96.35 | 98.99 | 98.95 | 98.33 | 99.66 | 98.85 | 97.40 |
C7 | 96.62 | 93.88 | 98.63 | 98.33 | 96.69 | 92.07 | 99.33 | 92.45 |
C8 | 73.17 | 81.45 | 84.67 | 87.26 | 88.39 | 99.56 | 92.84 | 99.32 |
C9 | 97.09 | 97.59 | 98.7 | 99.37 | 98.16 | 97.03 | 98.06 | 96.99 |
C10 | 86.37 | 85.83 | 97.07 | 96.37 | 94.88 | 97.30 | 98.53 | 95.17 |
C11 | 86.97 | 83.66 | 89.64 | 96.82 | 92.63 | 96.06 | 96.74 | 99.34 |
C12 | 96.21 | 96.77 | 98.94 | 97.42 | 96.78 | 98.41 | 97.85 | 100 |
C13 | 92.45 | 97.87 | 99.06 | 97.24 | 97.28 | 99.90 | 98.48 | 99.91 |
C14 | 93.02 | 93.22 | 97.34 | 97.81 | 96.96 | 96.75 | 97.56 | 97.98 |
C15 | 76.02 | 73.85 | 88.95 | 84.33 | 84.03 | 88.87 | 84.23 | 85.98 |
C16 | 98.82 | 96.81 | 95.26 | 99.54 | 98.04 | 99.66 | 98.96 | 99.67 |
OA (%) | 86.98 ± 0 | 88.36 ± 0.28 | 92.82 ± 2.1 | 92.04 ± 0.96 | 92.95 ± 0.33 | 95.79 ± 0.36 | 93.74 ± 0.74 | 97.23 ± 0.55 |
AA (%) | 91.56 ± 0 | 91.95 ± 0.66 | 94.32 ± 0.72 | 95.95 ± 0.21 | 95.68 ± 0.2 | 97.50 ± 0.54 | 96.76 ± 0.17 | 98.11 ± 0.31 |
Kappa (%) | 85.45 ± 0 | 87.05 ± 0.3 | 91.84 ± 2.08 | 91.14 ± 1.08 | 92.16 ± 0.34 | 95.31 ± 0.32 | 93.05 ± 0.8 | 96.91 ± 0.75 |
Class | SVM | CDCNN | pResNet | SSRN | DBMA | FDSSC | DBDA | Proposed |
---|---|---|---|---|---|---|---|---|
C1 | 92.43 | 96.81 | 99.61 | 98.4 | 99.39 | 99.73 | 99.67 | 99.71 |
C2 | 87.14 | 83.65 | 92.64 | 94.52 | 93.8 | 93.99 | 96.58 | 99.67 |
C3 | 72.47 | 83.92 | 82.37 | 85.2 | 80.2 | 82.50 | 88.72 | 88.32 |
C4 | 54.45 | 58.61 | 45.73 | 74.55 | 75.31 | 78.78 | 80.82 | 91.07 |
C5 | 64.11 | 52.83 | 73.06 | 75.13 | 69.6 | 68.55 | 78.14 | 92.29 |
C6 | 65.23 | 77.17 | 90.22 | 94.35 | 95.06 | 93.31 | 97.75 | 99.25 |
C7 | 75.5 | 75.34 | 97.44 | 84.64 | 87.08 | 88.69 | 95.15 | 95.52 |
C8 | 87.33 | 85.83 | 96.93 | 96.97 | 95.4 | 98.83 | 99.08 | 99.84 |
C9 | 87.94 | 91.65 | 99.81 | 97.83 | 96.21 | 99.80 | 99.98 | 100 |
C10 | 96.01 | 93.87 | 97.14 | 98.84 | 96.13 | 100 | 99.92 | 98.98 |
C11 | 96.03 | 98.77 | 98.26 | 99.14 | 99.64 | 99.15 | 98.92 | 99.17 |
C12 | 93.75 | 94.08 | 99.13 | 99.17 | 98.19 | 99.07 | 98.95 | 100 |
C13 | 99.72 | 99.8 | 100 | 100 | 100 | 1.00 | 99.97 | 99.51 |
OA (%) | 87.96 ± 0 | 89.33 ± 0.65 | 94.04 ± 2.55 | 94.52 ± 0.9 | 94.12 ± 0.27 | 95.62 ± 0.03 | 96.76 ± 0.51 | 98.83 ± 0.52 |
AA (%) | 82.55 ± 0 | 84.03 ± 0.95 | 90.17 ± 23.73 | 92.15 ± 1.87 | 91.23 ± 0.75 | 92.49 ± 0.06 | 94.9 ± 0.2 | 97.72 ± 0.21 |
Kappa (%) | 86.59 ± 0 | 88.13 ± 0.73 | 93.68 ± 2.71 | 93.9 ± 1 | 93.45 ± 0.31 | 95.12 ± 0.03 | 96.4 ± 0.57 | 98.58 ± 0.7 |
Strategy | IN | UP | SV | KSC |
---|---|---|---|---|
With fusion | 96.03 | 97.13 | 97.23 | 98.83 |
Without fusion | 94.21 | 95.27 | 95.39 | 97.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, C.; Sun, J.; Wang, L. Hyperspectral Image Classification Based on Spectral Multiscale Convolutional Neural Network. Remote Sens. 2022, 14, 1951. https://doi.org/10.3390/rs14081951
Shi C, Sun J, Wang L. Hyperspectral Image Classification Based on Spectral Multiscale Convolutional Neural Network. Remote Sensing. 2022; 14(8):1951. https://doi.org/10.3390/rs14081951
Chicago/Turabian StyleShi, Cuiping, Jingwei Sun, and Liguo Wang. 2022. "Hyperspectral Image Classification Based on Spectral Multiscale Convolutional Neural Network" Remote Sensing 14, no. 8: 1951. https://doi.org/10.3390/rs14081951
APA StyleShi, C., Sun, J., & Wang, L. (2022). Hyperspectral Image Classification Based on Spectral Multiscale Convolutional Neural Network. Remote Sensing, 14(8), 1951. https://doi.org/10.3390/rs14081951