Novel Index for Hydrological Drought Monitoring Using Remote Sensing Approach: Standardized Water Surface Index (SWSI)
<p>Distribution of five tanks, climatological and topographical, and topographical setting of Sri Lanka.</p> "> Figure 2
<p>Flow chart that reflects the overall methodology followed in this study.</p> "> Figure 3
<p>Surface water area dynamic of Tank D during drought (2019) and non-drought year (2015).</p> "> Figure 4
<p>Spatial pattern of water monthly water dynamics in Tank A, Tank E, Tank C, and Tank B in drought year (2017) and wet year (2020).</p> "> Figure 5
<p>Water surface area changes through drought years and non-drought years (Tank D—Senanayaka Samudraya).</p> "> Figure 6
<p>Water surface area changes through drought years and non-drought years (Tank A), with dark black for observed water in SAR image and blue color for extracted water.</p> "> Figure 7
<p>Rainfall and tank water level changes from 2001 to 2020. (<b>a</b>)—Tank A (Iranamadu), (<b>b</b>)—Tank B (Mahavilachchiya), (<b>c</b>)—Tank C (Kanthale), (<b>d</b>)—Tank D (Senanayaka Samudraya), (<b>e</b>)—Tank E (Udavalawa).</p> "> Figure 8
<p>Observed SWSI from 2001 to 2020. (<b>a</b>)—Tank A (Iranamadu), (<b>b</b>)—Tank B (Mahavilachchiya), (<b>c</b>)—Tank C (Kanthale), (<b>d</b>)—Tank D (Senanayaka Samudraya), (<b>e</b>)—Tank E (Udavalawa).</p> "> Figure 9
<p>Standardized Precipitation Index (SPI) calculated for different time frames. (<b>a</b>) 3, (<b>b</b>) 6, (<b>c</b>) 12, and (<b>d</b>) 24 months for the period of 2001 to 2020 for Tank C, Tank A, and Tank D. Green bars mark positive and red bars mark negative SPI values.</p> "> Figure 10
<p>Variation in SPI and SWSI over time in five tanks. (<b>a</b>)—Tank A (Iranamadu), (<b>b</b>)—Tank B (Mahavilach-chiya), (<b>c</b>)—Tank C (Kanthale), (<b>d</b>)—Tank D (Senanayaka Samudraya), (<b>e</b>)—Tank E (Udavalawa). The green and red bars in the graph represent positive and negative SPI values, respectively.</p> "> Figure 11
<p>Pearson correlation coefficients between SPI and SWSI in 1, 3, 6, 9, 12, and 24 timeframes.</p> "> Figure 12
<p>Pearson’s correlation coefficient between VCI and SWSI. (<b>a</b>)—Tank A (Iranamadu), (<b>b</b>)—Tank B (Mahavilachchiya), (<b>c</b>)—Tank C (Kanthale), (<b>d</b>)—Tank D (Senanayaka Samudraya), (<b>e</b>)—Tank E (Udavalawa).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Landsat Data
2.2.2. Sentinel-1 Data
2.2.3. Rainfall Data (CHIRPS)
2.3. Methodology
2.3.1. The Novel Hydrological Drought Index: Standardized Water Surface Index (SWSI)
2.3.2. Water Surface Area Extraction from Optical Satellite Data
2.3.3. Water Surface Extraction with SAR Satellite Data
2.3.4. SPI Calculation and SWSI Validation
2.3.5. Vegetation Condition Index (VCI) Calculation
3. Results
3.1. Landsat Base Reservior Water Dynamics
3.2. SAR Base Reservior Water Dynamics
3.3. Water Surface Area and Rainfall Dynamics
3.4. Water Surface Area and Rainfall Dynamics
3.5. Standardized Precipitation Index (SPI)
4. Discussion
4.1. SPI and SWSI Relationship
4.2. VCI and SWSI Relationship
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maybank, J.; Bonsai, B.; Jones, K.; Lawford, R.; O’brien, E.G.; Ripley, E.A.; Wheaton, E. Drought as a natural disaster. Atmosphere-Ocean 1995, 33, 195–222. [Google Scholar] [CrossRef]
- Joyce, C.B.; Simpson, M.; Casanova, M. Future wet grasslands: Ecological implications of climate change. Ecosyst. Health Sustain. 2016, 2, 01240. [Google Scholar] [CrossRef] [Green Version]
- Bi, W.; Weng, B.; Yuan, Z.; Yang, Y.; Xu, T.; Yan, D.; Ma, J. Evolution of drought–flood abrupt alternation and its impacts on surface water quality from 2020 to 2050 in the Luanhe River Basin. Int. J. Environ. Res. Public Health 2016, 16, 691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quiring, S.M. Monitoring drought: An evaluation of meteorological drought indices. Geogr. Compass 2009, 3, 64–88. [Google Scholar] [CrossRef]
- Raible, C.C.; Bärenbold, O.; Gomez-Navarro, J.J. Drought indices revisited—Improving and testing of drought indices in a simulation of the last two millennia for Europe. Tellus A Dyn. Meteorol. Oceanogr. 2017, 69, 1287492. [Google Scholar] [CrossRef] [Green Version]
- Hazaymeh, K.; Hassan, Q.K. Remote sensing of agricultural drought monitoring: A state of art review. AIMS Environ. Sci. 2016, 3, 604–630. [Google Scholar] [CrossRef]
- Payus, C.; Ann Huey, L.; Adnan, F.; Besse Rimba, A.; Mohan, G.; Kumar Chapagain, S.; Roder, G.; Gasparatos, A.; Fukushi, K. Impact of extreme drought climate on water security in North Borneo: Case study of Sabah. Water 2020, 12, 1135. [Google Scholar] [CrossRef]
- Saraiva Okello, A.M.L.; Masih, I.; Uhlenbrook, S.; Jewitt, G.P.W.; Van der Zaag, P.; Riddell, E. Drivers of spatial and temporal variability of streamflow in the Incomati River basin. Hydrol. Earth Syst. Sci. 2015, 19, 657–673. [Google Scholar] [CrossRef] [Green Version]
- Wilhite, D.A. Chapter 1 Drought as a natural hazard: Concepts and definitions. In Drought Mitigation Center Faculty Publications; Routledge: London, UK, 2000; pp. 3–18. [Google Scholar]
- Krogulec, E.; Małecki, J.J.; Porowska, D.; Wojdalska, A. Assessment of causes and effects of groundwater level change in an urban area (Warsaw, Poland). Water 2020, 12, 3107. [Google Scholar] [CrossRef]
- Hasan, H.H.; Mohd Razali, S.F.; Muhammad, N.S.; Ahmad, A. Research trends of hydrological drought: A systematic review. Water 2019, 11, 2252. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The Relation of Drought Frequency and Duration to Time Scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; pp. 179–184. [Google Scholar]
- Bhuiyan, C. Various Drought Indices for Monitoring Drought Condition in Aravalli Terrain of India. In Proceedings of the ISPRS Archives—Volume XXXV Part B7, 2004, XXth ISPRS Congress, Technical Commission VII, Proceedings of the XXth ISPRS Congress, Istanbul, Turkey, 12–23 July 2004; pp. 12–23. [Google Scholar]
- Gusyev, M.; Hasegawa, A.; Magome, J.; Kuribayashi, D.; Sawano, H.; Lee, S. Drought assessment in the Pampanga River basin, the Philippines–Part 1: Characterizing a role of dams in historical droughts with standardized indices. In Proceedings of the 21st International Congress on Modelling and Simulation (MODSIM 2015), Queensland, Australia, 29 November–4 December 2015. [Google Scholar]
- Liu, X.; Xu, X.; Yu, M.; Lu, J. Hydrological drought forecasting, and assessment based on the standardized stream index in the Southwest China. Procedia Eng. 2016, 154, 733–737. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Zhang, M.; Zhu, L.; Liu, W.; Han, J.; Yang, Y. Influence of large reservoir operation on water-levels and flows in reaches below dam: Case study of the Three Gorges Reservoir. Sci. Rep. 2017, 7, 15640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alahacoon, N.; Edirisinghe, M. A comprehensive assessment of remote sensing and traditional based drought monitoring indices at global and regional scale. Geomat. Nat. Hazards Risk 2022, 13, 762–799. [Google Scholar] [CrossRef]
- Bhaga, T.D.; Dube, T.; Shekede, M.D.; Shoko, C. Impacts of climate variability and drought on surface water resources in Sub-Saharan Africa using remote sensing: A review. Remote Sens. 2020, 12, 4184. [Google Scholar] [CrossRef]
- Li, M.; Liang, X.; Xiao, C.; Cao, Y. Quantitative evaluation of groundwater–Surface water interactions: Application of cumulative exchange fluxes method. Water 2020, 12, 259. [Google Scholar] [CrossRef] [Green Version]
- Somasundaram, D.; Zhang, F.; Ediriweera, S.; Wang, S.; Li, J.; Zhang, B. Spatial and temporal changes in surface water area of Sri Lanka over a 30-year period. Remote Sens. 2020, 12, 3701. [Google Scholar] [CrossRef]
- Huang, C.; Chen, Y.; Zhang, S.; Wu, J. Detecting, extracting, and monitoring surface water from space using optical sensors: A review. Rev. Geophys. 2018, 56, 333–360. [Google Scholar] [CrossRef]
- Ghaleb, F.; Mario, M.; Sandra, A.N. Regional landsat-based drought monitoring from 1982 to 2014. Climate 2015, 3, 563–577. [Google Scholar] [CrossRef] [Green Version]
- Arekhi, M.; Saglam, S.; Ozkan, U.Y. Drought monitoring and assessment using Landsat TM/OLI data in the agricultural lands of Bandar-e-Turkmen and Gomishan cities, Iran. Environ. Dev. Sustain. 2020, 22, 6691–6708. [Google Scholar] [CrossRef]
- Fan, J.; Zheng, Z. Drought monitoring with VHI computed from the improved MODIS LST. In Proceedings of the 2012 First International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Shanghai, China, 2–4 August 2012; pp. 1–5. [Google Scholar]
- Bo, Y.; Su, M.; Jing, L.; Yufang, L.; Bin, Z.; Kuenzer, C. Agricultural drought monitoring in Dongting Lake Basin by MODIS data. In Proceedings of the 2012 First International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Shanghai, China, 2–4 August 2012; pp. 1–7. [Google Scholar]
- Cai, G.; Du, M.; Liu, Y. Regional drought monitoring and analyzing using MODIS data; A case study in Yunnan Province. In International Conference on Computer and Computing Technologies in Agriculture; Springer: Berlin/Heidelberg, Germany, 2010; pp. 243–251. [Google Scholar]
- Rojas, O.; Vrieling, A.; Rembold, F. Assessing drought probability for agricultural areas in Africa with coarse resolution remote sensing imagery. Remote Sens. Environ. 2011, 115, 343–352. [Google Scholar] [CrossRef]
- Tkcker, C.J. Comparing SMMR and AVHRR data for drought monitoring. Int. J. Remote Sens. 1989, 10, 1663–1672. [Google Scholar] [CrossRef]
- Gómez, C.; White, J.C.; Wulder, M.A. Optical remotely sensed time series data for land cover classification: A review. ISPRS J. Photogramm. Remote Sens. 2016, 116, 55–72. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Guo, J.; Tan, H.; Wang, J. Automated extraction of urban water bodies from ZY-3 multi-spectral imagery. Water 2017, 9, 144. [Google Scholar] [CrossRef]
- Yang, X.; Qin, Q.; Grussenmeyer, P.; Koehl, M. Urban surface water body detection with suppressed built-up noise based on water indices from Sentinel-2 MSI imagery. Remote Sens. Environ. 2018, 219, 259–270. [Google Scholar] [CrossRef]
- Marapareddy, R.; Aanstoos, J.V.; Younan, N.H. Accuracy analysis comparison of supervised classification methods for anomaly detection on levees using SAR imagery. Electronics 2017, 6, 83. [Google Scholar] [CrossRef] [Green Version]
- Asokan, A.; Anitha, J. Machine learning based image processing techniques for satellite image analysis-a survey. In Proceedings of the 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), Faridabad, India, 14–16 February 2019; pp. 119–124. [Google Scholar]
- Hwang, J.I.; Jung, H.S. Automatic ship detection using the artificial neural network and support vector machine from X-band SAR satellite images. Remote Sens. 2018, 10, 1799. [Google Scholar] [CrossRef] [Green Version]
- Pritt, M.; Chern, G. Satellite Image Classification with Deep Learning. In Proceedings of the 2017 IEEE Applied Imagery Pattern Recognition Workshop (AIPR), Washington, DC, USA, 10–12 October 2017; pp. 1–7. [Google Scholar]
- Feyisa, G.L.; Meilby, H.; Fensholt, R.; Proud, S.R. Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sens. Environ. 2014, 140, 23–35. [Google Scholar] [CrossRef]
- Acharya, T.D.; Subedi, A.; Lee, D.H. Evaluation of water indices for surface water extraction in a Landsat 8 scene of Nepal. Sensors 2018, 18, 2580. [Google Scholar] [CrossRef] [Green Version]
- Mishra, K.; Prasad, P. Automatic extraction of water bodies from Landsat imagery using perceptron model. J. Comput. Environ. Sci. 2015, 2015, 903465. [Google Scholar] [CrossRef] [Green Version]
- Runge, A.; Grosse, G. Mosaicking Landsat and Sentinel-2 data to enhance LandTrendr time series analysis in northern high latitude permafrost regions. Remote Sens. 2000, 12, 2471. [Google Scholar] [CrossRef]
- Belward, A.S.; Skøien, J.O. Who launched what, when and why; trends in global land-cover observation capacity from civilian earth observation satellites. ISPRS J. Photogramm. Remote Sens. 2015, 103, 115–128. [Google Scholar] [CrossRef]
- Gomes, V.C.; Queiroz, G.R.; Ferreira, K.R. An overview of platforms for big earth observation data management and analysis. Remote Sens. 2020, 12, 1253. [Google Scholar] [CrossRef] [Green Version]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Wu, C.; Chen, X.; Gao, Y.; Xie, S.; Zhang, B. Development of a global 30 m impervious surface map using multisource and multitemporal remote sensing datasets with the Google Earth Engine platform. Earth Syst. Sci. Data 2020, 12, 1625–1648. [Google Scholar] [CrossRef]
- Oliphant, A.J.; Thenkabail, P.S.; Teluguntla, P.; Xiong, J.; Gumma, M.K.; Congalton, R.G.; Yadav, K. Mapping cropland extent of Southeast and Northeast Asia using multi-year time-series Landsat 30-m data using a random forest classifier on the Google Earth Engine Cloud. Int. J. Appl. Earth Obs. Geoinf. 2019, 81, 110–124. [Google Scholar] [CrossRef]
- Hu, Y.; Hu, Y. Detecting Forest disturbance and recovery in Primorsky Krai, Russia, using annual Landsat time series and multi–source land cover products. Remote Sens. 2020, 12, 129. [Google Scholar] [CrossRef] [Green Version]
- Soulard, C.E.; Rigge, M. Application of empirical land-cover changes to construct climate change scenarios in federally managed lands. Remote Sens. 2020, 12, 2360. [Google Scholar] [CrossRef]
- Mueller, N.; Lewis, A.; Roberts, D.; Ring, S.; Melrose, R.; Sixsmith, J.; Lymburner, L.; McIntyre, A.; Tan, P.; Curnow, S.; et al. Water observations from space: Mapping surface water from 25 years of Landsat imagery across Australia. Remote Sens. Environ. 2016, 174, 341–352. [Google Scholar] [CrossRef] [Green Version]
- Alahacoon, N.; Edirisinghe, M. Spatial variability of rainfall trends in Sri Lanka from 1989 to 2019 as an indication of climate change. ISPRS Int. J. Geo-Inf. 2021, 10, 84. [Google Scholar] [CrossRef]
- UNESCO (United Nations Educational, Scientific and Cultural Organization); MoAIMD (UNESCO and Ministry of Agriculture, Irrigation and Mahaweli Development). Sri Lanka Water Development Report. 2006. Available online: http://unesdoc.unesco.org/images/0014/001476/147683E.pdf (accessed on 25 January 2021).
- MENR; UNEP (United Nations Environment Programme). Sri Lanka Environment Outlook 2009, Battaramulla. 2009. Available online: https://www.ajne.org/sites/default/files/event/2040/session-materials/sri-lanka-envi-outlook-20091.pdf (accessed on 14 September 2022).
- Villholth, K.G.; Rajasooriyar, L.D. Groundwater resources and management challenges in Sri Lanka—An overview. Water Resour. Manag. 2010, 24, 1489–1513. [Google Scholar] [CrossRef]
- Nandalal, K.D.W. Groundwater Resources. In Proceedings of the National Forum on Water Research Identification of Gaps and Priorities, Colombo, Sri Lanka, 16–17 September 2010. [Google Scholar]
- Alahacoon, N.; Edirisinghe, M.; Ranagalage, M. Satellite-based meteorological and agricultural drought monitoring for agricultural sustainability in Sri Lanka. Sustainability 2021, 13, 3427. [Google Scholar] [CrossRef]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 1–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Svoboda, M.; Hayes, M.; Wood, D. Standardized Precipitation Index: User Guide; World Meteorological Organization: Geneva, Switzerland, 2012. [Google Scholar]
- Li, W.; Du, Z.; Ling, F.; Zhou, D.; Wang, H.; Gui, Y.; Sun, B.; Zhang, X. A comparison of land surface water mapping using the normalized difference water index from TM, ETM+ and ALI. Remote Sens. 2013, 5, 5530–5549. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.; Zhang, Y.; Ling, F.; Wang, Q.; Li, W.; Li, X. Water bodies’ mapping from Sentinel-2 imagery with modified normalized difference water index at 10-m spatial resolution produced by sharpening the SWIR band. Remote Sens. 2016, 8, 354. [Google Scholar] [CrossRef] [Green Version]
- Lu, S.; Wu, B.; Yan, N.; Wang, H. Water body mapping method with HJ-1A/B satellite imagery. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 428–434. [Google Scholar] [CrossRef]
- Ji, L.; Zhang, L.; Wylie, B. Analysis of dynamic thresholds for the normalized difference water index. Photogramm. Eng. Remote Sens. 2009, 75, 1307–1317. [Google Scholar] [CrossRef]
- Pham-Duc, B.; Prigent, C.; Aires, F. Surface water monitoring within Cambodia and the Vietnamese Mekong Delta over a year, with Sentinel-1 SAR observations. Water 2017, 9, 366. [Google Scholar] [CrossRef] [Green Version]
- Kogan, F.N. Remote sensing of weather impacts on vegetation in non-homogeneous areas. Int. J. Remote Sens. 1990, 11, 1405–1419. [Google Scholar] [CrossRef]
- Goumehei, E.; Tolpekin, V.; Stein, A.; Yan, W. Surface water body detection in polarimetric SAR data using contextual complex Wishart classification. Water Resour. Res. 2019, 55, 7047–7059. [Google Scholar] [CrossRef] [Green Version]
- Carreño Conde, F.; De Mata Muñoz, M. Flood Monitoring Based on the Study of Sentinel-1 SAR Images: The Ebro River Case Study. Water 2019, 11, 2454. [Google Scholar] [CrossRef]
- Mehravar, S.; Amani, M.; Moghimi, A.; Javan, F.D.; Samadzadegan, F.; Ghorbanian, A.; Stein, A.; Mohammadzadeh, A.; Mirmazloumi, S.M. Temperature-Vegetation-soil Moisture-Precipitation Drought Index (TVMPDI); 21-year drought monitoring in Iran using satellite imagery within Google Earth Engine. Adv. Space Res. 2021, 68, 4573–4593. [Google Scholar] [CrossRef]
Reservoir/Tank Name | Maximum Capacity (MCM) | Maximum Surface Area (km2) | Depth (m) |
---|---|---|---|
Tank A—Iranamadu | 111 | 23 | 10 |
Tank B—Mahavilachchiya tank | 40 | 11.5 | 6.75 |
Tank C—Kantale tank | 135 | 25 | 15 |
Tank D—Senanayak Samudhraya | 950 | 91 | 43 |
Tank E—Udawalawa | 267 | 41 | 36 |
Reservoir/Tank Name | Cloud Cover in Percentage (%) over the Tanks | |||||
---|---|---|---|---|---|---|
100 | 100–75 | 75–50 | 50–25 | 25–10 | Less than 10 | |
Tank A—Iranamadu | 10 | 6 | 6 | 9 | 9 | 59 |
Tank B—Mahavilacchchiya | 8 | 12 | 12 | 6 | 13 | 49 |
Tank C—Kantale | 11 | 5 | 6 | 8 | 15 | 55 |
Tank D—Senanayak Samudraya | 10 | 5 | 5 | 7 | 8 | 65 |
Tank E—Udawalava | 10 | 12 | 6 | 14 | 18 | 41 |
Tank/Month | Tank A | Tank B | Tank C | Tank D | Tank E | |||||
---|---|---|---|---|---|---|---|---|---|---|
2017 | 2020 | 2017 | 2020 | 2017 | 2020 | 2015 | 2019 | 2017 | 2020 | |
January | 7.9 | 21.2 | 4.5 | 12.2 | 11.5 | 19.5 | 83.8 | 48.8 | 19.1 | 39.3 |
February | 7.7 | 21.1 | 4.6 | 12.9 | 13.9 | 19.1 | 81.2 | 36.7 | 11.6 | 38.9 |
March | 9.5 | 21.0 | 4.3 | 11.1 | 12.9 | 17.5 | 81.7 | 47.3 | 21.8 | 36.9 |
April | 12.7 | 22.0 | 4.0 | 11.0 | 13.8 | 23.7 | 90.1 | 50.4 | 25.2 | 32.9 |
May | 11.8 | 20.5 | 3.2 | 10.1 | 13.6 | 21.3 | 79.9 | 36.1 | 26.9 | 28.6 |
June | 13.4 | 20.1 | 3.4 | 8.8 | 11.9 | 17.8 | 84.2 | 5.2 | 22.6 | 20.8 |
July | 13.0 | 16.9 | 3.4 | 8.5 | 11.5 | 15.2 | 79.6 | 9.3 | 5.2 | 17.9 |
August | 10.5 | 16.6 | 2.9 | 7.3 | 10.2 | 15.0 | 74.4 | 4.4 | 8.3 | 18.8 |
September | 8.1 | 15.8 | 3.0 | 6.3 | 10.3 | 14.2 | 79.3 | 6.5 | 10.4 | 19.2 |
October | 9.2 | 15.9 | 3.0 | 6.6 | 11.9 | 14.0 | 76.4 | 6.2 | 17.0 | 19.5 |
November | 13.4 | 13.7 | 2.7 | 7.7 | 11.2 | 13.8 | 74.7 | 26.1 | 21.5 | 23.3 |
December | 15.4 | 20.9 | 3.9 | 10.7 | 13.3 | 16.2 | 78.7 | 56.2 | 33.3 | 27.7 |
Maximum recorded WSA (2001–2021) | 23.1 | 13.1 | 25.2 | 90.3 | 40.2 |
Tank/Month | Tank A—Iranamadu | Tank D—Senanayak Samudhraya | ||
---|---|---|---|---|
2016 | 2019 | 2017 | 2020 | |
Jan | 19.9 | 21.2 | 30.9 | 64.1 |
Feb | 18.7 | 21.0 | 32.1 | 66.0 |
Mar | 12.5 | 21.0 | 38.5 | 79.2 |
Apr | 11.8 | 21.0 | 38.6 | 62.7 |
May | 16.7 | 20.8 | 35.1 | 62.1 |
Jun | 10.4 | 19.0 | 32.7 | 58.8 |
Jul | 9.0 | 16.3 | 26.8 | 50.9 |
Aug | 6.5 | 13.2 | 15.8 | 50.7 |
Sep | 4.8 | 9.0 | 14.1 | 52.1 |
Oct | 5.2 | 11.4 | 14.1 | 46.4 |
Nov | 13.4 | 12.8 | 23.0 | 41.1 |
Dec | 14.4 | 21.1 | 27.6 | 40.6 |
Maximum recorded WSA 2015 to 2020 | 23.8 | 89.8 |
Values | SWSI Category | Event Probability (%) | Cumulative Probability |
---|---|---|---|
+2.0 < SWSI ≤ MAX | Extreme wet | 2.5 | 0.975–1.000 |
+1.5 < SWSI ≤ +2.0 | Severe wet | 4.3 | 0.932–0.975 |
+1.0 < SWSI ≤ +1.5 | Moderate wet | 10.3 | 0.829–0.932 |
−1.0 < SWSI ≤ +1.0 | Normal | 65.8 | 0.171–0.829 |
−1.5 < SWSI ≤ −1.0 | Moderate drought | 10.5 | 0.066–0.171 |
−2.0 < SWSI ≤ −1.5 | Severe drought | 4.1 | 0.025–0.066 |
MIN ≤ SWSI ≤ −2.0 | Extreme drought | 2.5 | 0.000–0.025 |
Drought Class/SPI Time Frame/Tank | Tank A—Iranamadu | Tank C—Kantale | Tank D—Senanayaka Samudraya | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
3 M | 6 M | 12 M | 24 M | 3 M | 6 M | 12 M | 24 M | 3 M | 6 M | 12 M | 24 M | |
Extreme drought | 7 | 8 | 4 | 10 | 11 | 8 | 8 | 11 | 4 | 3 | 3 | 3 |
Severe drought | 17 | 11 | 15 | 4 | 19 | 21 | 24 | 5 | 8 | 10 | 10 | 5 |
Moderate drought | 22 | 20 | 15 | 13 | 18 | 20 | 10 | 13 | 23 | 22 | 28 | 29 |
Normal | 143 | 159 | 155 | 145 | 167 | 166 | 151 | 136 | 165 | 163 | 153 | 149 |
Moderate Wet | 27 | 17 | 23 | 22 | 21 | 16 | 36 | 52 | 18 | 16 | 22 | 8 |
Severe wet | 16 | 16 | 15 | 22 | 2 | 4 | 0 | 0 | 11 | 14 | 2 | 13 |
Extreme wet | 6 | 4 | 2 | 1 | 0 | 0 | 0 | 0 | 9 | 7 | 11 | 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alahacoon, N.; Edirisinghe, M. Novel Index for Hydrological Drought Monitoring Using Remote Sensing Approach: Standardized Water Surface Index (SWSI). Remote Sens. 2022, 14, 5324. https://doi.org/10.3390/rs14215324
Alahacoon N, Edirisinghe M. Novel Index for Hydrological Drought Monitoring Using Remote Sensing Approach: Standardized Water Surface Index (SWSI). Remote Sensing. 2022; 14(21):5324. https://doi.org/10.3390/rs14215324
Chicago/Turabian StyleAlahacoon, Niranga, and Mahesh Edirisinghe. 2022. "Novel Index for Hydrological Drought Monitoring Using Remote Sensing Approach: Standardized Water Surface Index (SWSI)" Remote Sensing 14, no. 21: 5324. https://doi.org/10.3390/rs14215324
APA StyleAlahacoon, N., & Edirisinghe, M. (2022). Novel Index for Hydrological Drought Monitoring Using Remote Sensing Approach: Standardized Water Surface Index (SWSI). Remote Sensing, 14(21), 5324. https://doi.org/10.3390/rs14215324