Analyzing the Application of X-Band Radar for Improving Rainfall Observation and Flood Forecasting in Yeongdong, South Korea
<p>Accumulated rainfall distribution from 15 to 16 August 2019. (<b>a</b>) Distributed rainfall field by ground rain-gauge network; (<b>b</b>) Rainfall field by S-band radar network.</p> "> Figure 2
<p>X-band dual-polarization radar location and hydrological observation network in the Samcheok region.</p> "> Figure 3
<p>Prior and post application of the distributed specific differential phase estimation method, and the rainfall estimation results (30 June 2020, at 2:18): (<b>a</b>) <span class="html-italic">K<sub>DP</sub></span> (JRC); (<b>b</b>) Surface Rainfall (SAM_SRI); (<b>c</b>) <span class="html-italic">K<sub>DP</sub></span> (new); (<b>d</b>) Rainfall (SAM_RR).</p> "> Figure 4
<p>Distribution of accumulated rainfall over 1 h period distribution for maximum rainfall in each rain event: (<b>a</b>) 3 October 2019, 00:00; (<b>b</b>) 30 June 2020, 03:00; (<b>c</b>) 24 July 2020, 07:00; (<b>d</b>) 3 September 2020, 06:00; (<b>e</b>) 7 September 2020, 11:00.</p> "> Figure 4 Cont.
<p>Distribution of accumulated rainfall over 1 h period distribution for maximum rainfall in each rain event: (<b>a</b>) 3 October 2019, 00:00; (<b>b</b>) 30 June 2020, 03:00; (<b>c</b>) 24 July 2020, 07:00; (<b>d</b>) 3 September 2020, 06:00; (<b>e</b>) 7 September 2020, 11:00.</p> "> Figure 5
<p>Scatterplots of observed ground rain gauge vs. various radar rainfall (red dots: rainfall in 10 km radius, black dots: rainfall in 40-km radius): (<b>a</b>) Event 1 (00:00–23:00 2–3 October 2019); (<b>b</b>) Event 2 (00:00–23:00 30 June 2020); (<b>c</b>) Event 3 (00:00–23:00 24 July 2020); (<b>d</b>) Event 4 (00:00–23:00 2–3 September 2020); (<b>e</b>) Event 5 (00:00–23:00 7 September 2020).</p> "> Figure 5 Cont.
<p>Scatterplots of observed ground rain gauge vs. various radar rainfall (red dots: rainfall in 10 km radius, black dots: rainfall in 40-km radius): (<b>a</b>) Event 1 (00:00–23:00 2–3 October 2019); (<b>b</b>) Event 2 (00:00–23:00 30 June 2020); (<b>c</b>) Event 3 (00:00–23:00 24 July 2020); (<b>d</b>) Event 4 (00:00–23:00 2–3 September 2020); (<b>e</b>) Event 5 (00:00–23:00 7 September 2020).</p> "> Figure 6
<p>Simulated discharge and water level using rainfall scenarios for 360 min duration: (<b>a</b>) Rainfall scenarios; (<b>b</b>) Simulated discharge scenarios; (<b>c</b>) Simulated water level scenarios.</p> "> Figure 7
<p>The criteria of flood risk and flow nomograph. (<b>a</b>) Cross-section and criteria of flood risk; (<b>b</b>) Flow nomograph at station 12; (<b>c</b>) Stations of flow nomograph development.</p> "> Figure 8
<p>Mean areal precipitation of the Samcheok-osib stream (3 October 2019, at 01:50): (<b>a</b>) Ground rain gauge; (<b>b</b>) CMP_HFC; (<b>c</b>) SAM_RR.</p> "> Figure 9
<p>Calculation results of the flood forecast information for October 3 2019, at 01:50: (<b>a</b>) Ground rain gauge; (<b>b</b>) CMP_HFC; (<b>c</b>) SAM_RR.</p> "> Figure 10
<p>Observed water level and timeseries data of the mean real precipitation between 2 and 3 October 2019.</p> "> Figure 11
<p>Calculation results of the flood forecast information for 7 September 2020, at 08:30: (<b>a</b>) Ground rain gauge; (<b>b</b>) CMP_HFC; (<b>c</b>) SAM_RR.</p> "> Figure 12
<p>Calculation results of the flood forecast information for 7 September 2020, at 10:30: (<b>a</b>) Ground rain gauge; (<b>b</b>) CMP_HFC; (<b>c</b>) SAM_RR.</p> "> Figure 13
<p>Calculation results of the flood forecast information for 7 September 2020, at 10:50: (<b>a</b>) Ground rain gauge; (<b>b</b>) CMP_HFC; (<b>c</b>) SAM_RR.</p> "> Figure 14
<p>Mean areal precipitation of the Samcheok-osib stream (7 September 2020, at 10:50): (<b>a</b>) Ground rain gauge; (<b>b</b>) CMP_HFC; (<b>c</b>) SAM_RR.</p> "> Figure 15
<p>Observed water level and time-series data of the mean areal precipitation on 7 September 2020.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.2. Methodology
2.2.1. Precipitation Estimation Algorithm Using X-Band Dual-Polarimetric Radar
2.2.2. Flow Nomograph
3. Results and Discussion
3.1. Quantitative Precipitation Estimation
3.2. Development of Flow Nomograph in Samcheok Stream
3.3. Flood Forecasting of Samcheok Stream
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- WMO. Meteorological Radar at the World Radiocommunication Conference, Meteoworld March 2015. Available online: https://public.wmo.int/en/resources/meteoworld/meteorological-radar-world-radiocommunication-conference (accessed on 16 March 2021).
- Anagnostou, M.N.; Kalogiros, J.; Anagnostou, E.N.; Tarolli, M.; Papadopoulos, A.; Borga, M. Performance evaluation of high-resolution rainfall estimation by X-band dual-polarization radar for flash flood applications in mountainous basins. J. Hydrol. 2010, 394, 4–16. [Google Scholar] [CrossRef]
- Anagnostou, M.N.; Nikolopoulos, E.I.; Kalogiros, J.; Anagnostou, E.N.; Marra, F.; Mair, E.; Borga, M. Advancing precipitation estimation and streamflow simulations in complex terrain with X-band dual-polarization radar observations. Remote Sens. 2018, 10, 1258. [Google Scholar] [CrossRef] [Green Version]
- Matrosov, S.Y.; Cifelli, R.; Gochis, D. Measurements of heavy convective rainfall in the presence of hail in flood-prone areas using an X-band polarimetric radar. J. Appl. Meteorol. Climatol. 2013, 52, 395–407. [Google Scholar] [CrossRef] [Green Version]
- Paz, I.D.S.R. Quantifying the Rain Heterogeneity by X-Band Radar Measurements for Improving Flood Forecasting. Ph.D. Thesis, Université Paris-Est, Champs-sur-Marne, France, 2018. [Google Scholar]
- Wang, Y.; Chandrasekar, V. Quantitative precipitation estimation in the CASA X-band dual-polarization radar network. J. Atmos. Ocean Technol. 2010, 27, 1665–1676. [Google Scholar] [CrossRef]
- Junyent, F.; Chandrasekar, V.; McLaughlin, D.; Insanic, E.; Bharadwaj, N. The CASA Integrated Project 1 networked radar system. J. Atmos. Ocean Technol. 2010, 27, 61–78. [Google Scholar] [CrossRef]
- Fang, Z.; Bedient, P. NEXRAD flood warning system and floodplain library for Houston, TX. Restoring Our Natural Habitat. In Proceedings of the 2007 World Environmental and Water Resources Congress, Tampa, FL, USA, 15–19 May 2007. [Google Scholar] [CrossRef] [Green Version]
- Andjelkovic, I. Guidelines on non-structural measures in urban flood management. In Technical Documents in Hydrology; UNESCO: Paris, France, 2001; p. 86. [Google Scholar]
- Hong, Y.; Gourley, J.J. Radar Hydrology; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Sokol, Z.; Szturc, J.; Orellana-Alvear, J.; Popová, J.; Jurczyk, A.; Célleri, R. The role of weather radar in rainfall estimation and its application in meteorological and hydrological modelling—A review. Remote Sens. 2021, 13, 351. [Google Scholar] [CrossRef]
- Correa, O.; García, F.; Bernal, G.; Gardona, O.D.; Rodriguez, C. Early warning system for rainfall-triggered landslides based on real-time probabilistic hazard assessment. Nat. Hazards 2020, 100, 345–361. [Google Scholar] [CrossRef] [Green Version]
- Ustrnul, Z.; Wypych, A.; Henek, E.; Maciejewski, M.; Bochenek, B. Climatologically based warning system against meteorological hazards and weather extremes: The example for Poland. Nat. Hazards 2015, 77, 1711–1729. [Google Scholar] [CrossRef] [Green Version]
- Bedient, P.B.; Holder, A.; Benavides, J.A.; Vieux, B.E. Radar-based flood warning system applied to tropical storm Allison. J. Hydrol. Eng. 2003, 8, 308–318. [Google Scholar] [CrossRef]
- Yoon, S.-S.; Nakakita, E. Application of an X-Band multiparameter radar network for rain-based urban flood forecasting. J. Hydrol. Eng. 2017, 22, E5015005. [Google Scholar] [CrossRef]
- Ji, J.B.; Lee, K.T. Analysis of precipitation in the Yeongdong region related to the east wind-focusing on the effect of the mountains. In Proceedings of the Spring Meeting of KMS, Seoul, Korea, 23–25 April 2008. [Google Scholar]
- Koch, S.E.; des Jardins, M.; Kocin, P.J. An interactive Barnes objective map analysis scheme for use with satellite and conventional data. J. Clim. Appl. Meteorol. 1983, 22, 1487–1503. [Google Scholar] [CrossRef]
- Lee, J.S.; Lee, Y.H.; Ha, J.C.; Lee, H.C. Objective analysis of temperature using the elevation-dependent weighting function. Atmosphere 2021, 22, 233–243. [Google Scholar] [CrossRef]
- Cifelli, R.; Chandrasekar, V.; Lim, S.; Kennedy, P.C.; Wang, Y.; Rutledge, S.A. A new dual-polarization radar rainfall algorithm: Application in Colorado precipitation events. J. Atmos. Ocean Technol. 2011, 28, 352–364. [Google Scholar] [CrossRef] [Green Version]
- Ryzhkov, A.V.; Giangrande, S.E.; Schuur, T.J. Rainfall estimation with a polarimetric prototype of WSR-88D. J. Appl. Meteorol. 2005, 44, 502–515. [Google Scholar] [CrossRef] [Green Version]
- Thurai, M.; Mishra, K.V.; Bringi, V.N.; Krajewski, W.F. Initial results of a new composite-weighted algorithm for dual-polarized X-band rainfall estimation. J. Hydrometeorol. 2017, 18, 1081–1100. [Google Scholar] [CrossRef]
- Pepler, A.S.; May, P.T. A robust error-based rain estimation method for polarimetric radar. Part II: Case study. J. Appl. Meteorol. Climatol. 2021, 51, 1702–1713. [Google Scholar] [CrossRef]
- Wang, Y.; Chandrasekar, V. Algorithm for estimation of the specific differential phase. J. Atmos. Ocean Technol. 2009, 26, 2569–2582. [Google Scholar] [CrossRef]
- Brandes, E.A.; Zhang, G.; Vivekanandan, J. Drop size distribution retrieval with polarimetric radar: Model and application. J. Appl. Meteorol. Climatol. 2004, 43, 461–475. [Google Scholar] [CrossRef] [Green Version]
- Lim, S.; Cifelli, R.; Chandrasekar, V.; Matrosov, S.Y. Precipitation classification and quantification using X-band dual-polarization weather radar: Application in the Hydrometeorology Testbed. J. Atmos. Ocean Technol. 2013, 30, 2108–2120. [Google Scholar] [CrossRef]
- Chen, H.; Lim, S.; Chandrasekar, V.; Jang, B.J. Urban hydrological applications of dual-polarization X-band radar: Case study in Korea. J. Appl. Meteorol. 2017, 22, 502–515. [Google Scholar] [CrossRef]
- Miller, D.A.; Wu, S.; Kitzmiller, D. Spatial and temporal resolution considerations in evaluating and utilizing radar quantitative precipitation estimates. J. Oper. Meteor. 2013, 1, 168–184. [Google Scholar] [CrossRef]
- HEC. Hydrologic Modeling System: Technical Reference Manual; US Army Corps of Engineers Hydrologic Engineering Center: Davis, CA, USA, 2000.
- HEC. River Analysis System: Hydraulic Reference Manual; US Army Corps of Engineers Hydrologic Engineering Center: Davis, CA, USA, 2002.
- Huff, F.A. Time distribution of rainfall in heavy storms. Water Resour. Res. 1967, 3, 1007–1019. [Google Scholar] [CrossRef]
- Fiedler, F.R. Simple, practical method for determining station weights using Thiessen polygons and isohyetal maps. J. Hydrol. Eng. 2003, 8, 119–221. [Google Scholar] [CrossRef]
Category | Ground Rain Gauge | SAM_RR | SAM_SRI | CMP_HFC |
---|---|---|---|---|
Data | AWS, ASOS (KMA) TM (ME) | Samcheok X-band radar | Samcheok X-band radar (original) | Composite S-band radar |
Spatial resolution | 27 gauge stations | 75 m | 75 m | 250 m |
Temporal resolution | 10 min | 2.5 min | 2.5 min | 10 min |
Rainfall estimation method | - | R (KDP) | R (Z) (Z = 200R1.6) | R (KDP) (CSU-HIDRO algorithm) |
Event | ITEM | Ground Rain Gauge | CMP_HFC | SAM_SRI | SAM_RR |
---|---|---|---|---|---|
1 | C-CORR | - | 0.58 (0.67) | 0.34 (0.38) | 0.62 (0.66) |
SLOPE | - | 0.24 | 0.04 | 0.27 | |
RMSE | - | 7.70 (15.50) | 9.23 (17.39) | 7.58 (14.11) | |
Max rain (mm/h) | 110.50 (84.00) | 54.47 (22.07) | 8.65 (8.65) | 47.66 (41.86) | |
Average rain (mm) | 3.82 (8.07) | 2.29 (2.15) | 0.84 (1.03) | 1.89 (2.64) | |
2 | C-CORR | - | 0.69 (0.91) | 0.60 (0.93) | 0.70 (0.98) |
SLOPE | - | 0.25 | 0.13 | 0.47 | |
RMSE | - | 5.16 (4.27) | 5.92 (3.11) | 4.60 (1.29) | |
Max rain (mm/h) | 51.00 (27.00) | 14.96 (6.07) | 11.10 (11.10) | 39.15 (35.37) | |
Average rain (mm) | 3.29 (4.56) | 1.10 (0.94) | 0.50 (2.13) | 1.39 (4.52) | |
3 | C-CORR | - | 0.44 (0.11) | 0.64 (0.73) | 0.66 (0.93) |
SLOPE | - | 0.09 | 0.15 | 0.34 | |
RMSE | - | 5.15 (12.30) | 5.03 (10.11) | 4.40 (6.20) | |
Max rain (mm/h) | 67.50 (67.50) | 6.51 (4.56) | 12.75 (12.75) | 36.16 (36.16) | |
Average rain (mm) | 3.16 (5.70) | 0.75 (0.84) | 0.49 (2.06) | 0.88 (3.60) | |
4 | C-CORR | - | 0.82 (0.81) | 0.44 (0.91) | 0.70 (0.95) |
SLOPE | - | 0.32 | 0.07 | 0.39 | |
RMSE | - | 5.61 (3.79) | 7.53 (3.07) | 5.69 (2.10) | |
Max rain (mm/h) | 60.50 (26.00) | 23.83 (7.23) | 13.70 (13.70) | 38.63 (34.25) | |
Average rain (mm) | 3.74 (2.26) | 1.55 (1.01) | 0.53 (1.24) | 1.62 (2.82) | |
5 | C-CORR | - | 0.82 (0.93) | 0.47 (0.79) | 0.72 (0.84) |
SLOPE | - | 0.27 | 0.08 | 0.46 | |
RMSE | - | 8.11 (11.58) | 10.10 (10.07) | 7.27 (6.50) | |
Max rain (mm/h) | 45.50 (45.50) | 20.01 (7.20) | 16.45 (16.45) | 41.29 (41.29) | |
Average rain (mm) | 5.98 (8.48) | 1.78 (1.61) | 0.59 (3.06) | 2.47 (7.19) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoon, S.-S.; Lim, S.-H. Analyzing the Application of X-Band Radar for Improving Rainfall Observation and Flood Forecasting in Yeongdong, South Korea. Remote Sens. 2022, 14, 43. https://doi.org/10.3390/rs14010043
Yoon S-S, Lim S-H. Analyzing the Application of X-Band Radar for Improving Rainfall Observation and Flood Forecasting in Yeongdong, South Korea. Remote Sensing. 2022; 14(1):43. https://doi.org/10.3390/rs14010043
Chicago/Turabian StyleYoon, Seong-Sim, and Sang-Hun Lim. 2022. "Analyzing the Application of X-Band Radar for Improving Rainfall Observation and Flood Forecasting in Yeongdong, South Korea" Remote Sensing 14, no. 1: 43. https://doi.org/10.3390/rs14010043
APA StyleYoon, S. -S., & Lim, S. -H. (2022). Analyzing the Application of X-Band Radar for Improving Rainfall Observation and Flood Forecasting in Yeongdong, South Korea. Remote Sensing, 14(1), 43. https://doi.org/10.3390/rs14010043