Salt Stockpile Inventory Management Using LiDAR Volumetric Measurements
<p>INDOT salt storage facilities and maintenance units.</p> "> Figure 2
<p>Examples of distinct INDOT salt storage facilities. (<b>a</b>) Sellersburg, Indiana Salt Facility (<b>b</b>) Bloomington, Indiana Salt Facility (<b>c</b>) Gary, Indiana Salt Facility (<b>d</b>) Rensselaer, Indiana Salt Facility.</p> "> Figure 3
<p>The SMART system for data acquisition (<b>a</b>) SMART System (<b>b</b>) SMART Portable Tripod (<b>c</b>) SMART System Packaging for Portability.</p> "> Figure 3 Cont.
<p>The SMART system for data acquisition (<b>a</b>) SMART System (<b>b</b>) SMART Portable Tripod (<b>c</b>) SMART System Packaging for Portability.</p> "> Figure 4
<p>SMART data acquisition and processing methodology (<b>a</b>) diagram of system rotation for data collection (<b>b</b>) coarse registration of LiDAR scans (<b>c</b>) digital surface model of stockpile area.</p> "> Figure 4 Cont.
<p>SMART data acquisition and processing methodology (<b>a</b>) diagram of system rotation for data collection (<b>b</b>) coarse registration of LiDAR scans (<b>c</b>) digital surface model of stockpile area.</p> "> Figure 5
<p>Locations of data collections across Indiana.</p> "> Figure 6
<p>Total salt over the winter season in the Lebanon, Indiana salt facility.</p> "> Figure 7
<p>Digital surface models of Lebanon salt over 2021–2022 winter season (<b>a</b>) 23 November 2021, Digital Surface Model (<b>b</b>) 6 January 2022, Digital Surface Model (<b>c</b>) 26 January 2022, Digital Surface Model (<b>d</b>) 11 February 2022, Digital Surface Model (<b>e</b>) 31 March 2022, Digital Surface Model (<b>f</b>) 23 May 2022, Digital Surface Model.</p> "> Figure 8
<p>GoPro Images of corresponding Lebanon salt piles for the 2021–2022 winter season (<b>a</b>) 23 November 2021, GoPro Image (<b>b</b>) 6 January 2022, GoPro Image (<b>c</b>) 26 January 2022, GoPro Image (<b>d</b>) 11 February 2022, GoPro Image (<b>e</b>) 31 March 2022, GoPro Image (<b>f</b>) 23 May 2022, GoPro Image.</p> "> Figure 9
<p>Testing locations for optimal permanent installation (<b>a</b>) Installation and Data Collection on Boom Lift (<b>b</b>) Location of Scans Relative to Salt Pile.</p> "> Figure 10
<p>Permanent installation of the SMART system (<b>a</b>) Permanent Installation in a Salt Barn (<b>b</b>) Permanent Installation in a Salt Dome.</p> "> Figure 11
<p>Data validation through salt repositioning (<b>a</b>) GoPro Image Before Salt Repositioning (<b>b</b>) Digital Surface Model Before Salt Repositioning (<b>c</b>) GoPro Image with 5 Buckets Repositioned (<b>d</b>) Digital Surface Model with 5 Buckets Repositioned (<b>e</b>) GoPro Image with 10 Buckets Repositioned (<b>f</b>) Digital Surface Model with 10 Buckets Repositioned (<b>g</b>) GoPro Image After Salt Repositioning (<b>h</b>) Digital Surface Model After Salt Repositioning.</p> ">
Abstract
:1. Introduction
2. Motivation
3. Objectives
4. Smart System, Data Collection and Processing Methodology
4.1. SMART System
4.2. SMART Data Collection and Processing Methodology
5. Study Locations
6. 2021–2022 Winter Monitoring and Results
7. Field Deployment
8. Field Validation of Volume
9. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hintz, W.D.; Fay, L.; Relyea, R.A. Road Salts, Human Safety, and the Rising Salinity of Our Fresh Waters. Front. Ecol. Environ. 2022, 20, 22–30. [Google Scholar] [CrossRef]
- Snow & Ice—FHWA Road Weather Management. Available online: https://ops.fhwa.dot.gov/weather/weather_events/snow_ice.htm (accessed on 7 July 2022).
- Bagenstose, K. Winter Weather: Road Salt Use Degrading Roads, Bridges, Scientists Say. USA Today 2019. Available online: https://www.usatoday.com/story/news/nation/2019/12/24/winter-weather-road-salt-use-problems/2741286001/ (accessed on 14 June 2022).
- Breining, G. We’re Pouring Millions of Tons of Salt on Roads Each Winter. Here’s Why That’s a Problem. Ensia. Available online: https://ensia.com/features/road-salt/ (accessed on 7 July 2022).
- Transportation Research Board. Highway Deicing Comparing Salt and Calcium Magnesium Acetate. Highw. Deicing Spec. Rep. 1991, 235, 16–30. [Google Scholar]
- Kaushal, S.S.; Groffman, P.M.; Likens, G.E.; Belt, K.T.; Stack, W.P.; Kelly, V.R.; Band, L.E.; Fisher, G.T. Increased Salinization of Fresh Water in the Northeastern United States. Proc. Natl. Acad. Sci. USA 2005, 102, 13517–13520. [Google Scholar] [CrossRef] [PubMed]
- Kelly, V.R.; Cunningham, M.A.; Curri, N.; Findlay, S.E.; Carroll, S.M. The Distribution of Road Salt in Private Drinking Water Wells in a Southeastern New York Suburban Township. J. Environ. Quali. 2018, 47, 445–451. [Google Scholar] [CrossRef] [PubMed]
- Knapp, K.K.; Kroeger, D.; Giese, K. Mobility and Safety Impacts of Winter Storm Events in a Freeway Environment; Iowa State University: Ames, IA, USA, 2000. [Google Scholar]
- Desai, J.; Mahlberg, J.; Kim, W.; Sakhare, R.; Li, H.; McGuffey, J.; Bullock, D.M. Leveraging Telematics for Winter Operations Performance Measures and Tactical Adjustment. J. Transp. Technol. 2021, 11, 611–627. [Google Scholar] [CrossRef]
- Mahlberg, J.; Zhang, Y.; Jha, S.; Mathew, J.K.; Li, H.; Desai, J.; Kim, W.; McGuffey, J.; Wells, T.; Krogmeier, J.V.; et al. Development of an Intelligent Snowplow Truck That Integrates Telematics Technology, Roadway Sensors, and Connected Vehicle; Joint Transportation Research Program Publication No. FHWA/IN/JTRP-2021/27; Purdue University: West Lafayette, IN, USA, 2021. [Google Scholar] [CrossRef]
- Kasich, J.R.; Tayler, M. Recommendations for Salt Storage; Ohio’s Water Resources Council: Columbus, OH, USA, 2013; p. 25. [Google Scholar]
- Ohno, T. Levels of Total Cyanide and NaCl in Surface Waters Adjacent to Road Salt Storage Facilities. Environ. Pollut. 1990, 67, 123–132. [Google Scholar] [CrossRef]
- Safe and Sustainable Salt Storage. Salt Storage Handbook. Available online: http://www.nwpa.us/uploads/1/2/9/8/129889926/salt-institute-salt-storage-handbook.pdf (accessed on 5 April 2022).
- Mass.Gov. Guidelines on Road Salt Storage. Massachusetts Department of Environmental Protection. Available online: https://www.mass.gov/guides/guidelines-on-road-salt-storage (accessed on 7 July 2022).
- Yilmaz, H.M. Close Range Photogrammetry in Volume Computing. Exp. Tech. 2010, 34, 48–54. [Google Scholar] [CrossRef]
- He, H.; Chen, T.; Zeng, H.; Huang, S. Ground Control Point-Free Unmanned Aerial Vehicle-Based Photogrammetry for Volume Estimation of Stockpiles Carried on Barges. Sensors 2019, 19, 3534. [Google Scholar] [CrossRef] [PubMed]
- SenseFly. Speed, Efficiency & Accuracy in Stockpile Surveying. Available online: https://www.sensefly.com/blog/achieving-greater-speed-efficiency-amp-accuracy-in-stockpile-surveying-with-ebee-x/ (accessed on 25 August 2022).
- Mora, O.E.; Chen, J.; Stoiber, P.; Koppanyi, Z.; Pluta, D.; Josenhans, R.; Okubo, M. Accuracy of Stockpile Estimates Using Low-Cost sUAS Photogrammetry. Int. J. Remote Sens. 2020, 41, 4512–4529. [Google Scholar] [CrossRef]
- Hugenholtz, C.H.; Walker, J.; Brown, O.; Myshak, S. Earthwork Volumetrics with an Unmanned Aerial Vehicle and Softcopy Photogrammetry. J. Surv. Eng. 2015, 141, 06014003. [Google Scholar] [CrossRef]
- Ajayi, O.G.; Ajulo, J. Investigating the Applicability of Unmanned Aerial Vehicles (UAV) Photogrammetry for the Estimation of the Volume of Stockpiles. Quaest. Geogr. 2021, 40, 25–38. [Google Scholar] [CrossRef]
- Zhu, J.; Yang, J.; Fan, J.; Danni, A.; Jiang, Y.; Song, H.; Wang, Y. Accurate Measurement of Granary Stockpile Volume Based on Fast Registration of Multi-Station Scans. Remote Sens. Lett. 2018, 9, 569–577. [Google Scholar] [CrossRef]
- Liu, S.; Yu, J.; Ke, Z.; Dai, F.; Chen, Y. Aerial–Ground Collaborative 3D Reconstruction for Fast Pile Volume Estimation with Unexplored Surroundings. Int. J. Adv. Robot. Syst. 2020, 17, 1729881420919948. [Google Scholar] [CrossRef]
- Alsayed, A.; Yunusa-Kaltungo, A.; Quinn, M.K.; Arvin, F.; Nabawy, M.R.A. Drone-Assisted Confined Space Inspection and Stockpile Volume Estimation. Remote Sens. 2021, 13, 3356. [Google Scholar] [CrossRef]
- Oliveira, A.; Oliveira, J.F.; Pereira, J.M.; de Araúo, B.R.; Boavida, J. 3D Modelling of Laser Scanned and Photogrammetric Data for Digital Documentation: The Mosteiro da Batalha Case Study. J. Real-Time Image Proc. 2014, 9, 673–688. [Google Scholar] [CrossRef]
- Chekole, S.D. Surveying with GPS, Total Station, and Terrestrial Scanner: A Comparative Study. Master’s Thesis, Royal Institute of Technology, Stockholm, Sweden, 2014. Available online: https://www.diva-portal.org/smash/get/diva2:715829/fulltext01.pdf (accessed on 16 March 2022).
- Manish, R.; Hasheminasab, S.M.; Liu, J.; Koshan, Y.; Mahlberg, J.A.; Lin, Y.C.; Ravi, R.; Zhou, T.; McGuffey, J.; Wells, T.; et al. Image-Aided LiDAR Mapping Platform and Data Processing Strategy for Stockpile Volume Estimation. Remote Sens. 2022, 14, 231. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Liu, J.; Cheng, Y.-T.; Hasheminasab, S.M.; Wells, T.; Bullock, D.; Habib, A. Processing Strategy and Comparative Performance of Different Mobile LiDAR System Grades for Bridge Monitoring: A Case Study. Sensors 2021, 21, 7550. [Google Scholar] [CrossRef] [PubMed]
- Sampath, A.; Shan, J. Building Boundary Tracing and Regularization from Airborne LiDAR Point Clouds. Photogramm. Eng. Remote Sens. 2007, 73, 805–812. [Google Scholar] [CrossRef]
- Kwak, E.; Habib, A. Automatic Representation and Reconstruction of DBM from LiDAR Data Using Recursive Minimum Bounding Rectangle. ISPRS J. Photogramm. Remote Sens. 2014, 93, 171–191. [Google Scholar] [CrossRef]
- CloudCompare, Version 2.6.1. GPL Software. 2022. Available online: http://www.cloudcompare.org/ (accessed on 22 March 2022).
- Alsayed, A.; Nabawy, M.R.; Yunusa-Kaltungo, A.; Arvin, F.; Quinn, M.K. Enhancing 1D LiDAR Scanning for Accurate Stockpile Volume Estimation Within Drone-Based Mapping Systems. In Proceedings of the AIAA Aviation 2021 Forum, Virtual, 2–6 August 2021. [Google Scholar] [CrossRef]
- 3D Stockpile Inventory—Pole Mounted or Inside Warehouse—EIP Enviro Controls. Available online: https://eipenviroindia.com/3d-stockpile-inventory-pole-mounted-or-inside-warehouse/ (accessed on 25 August 2022).
Map Ref. | Facility Name | # of Surveys | Map Ref. | Facility Name | # of Surveys |
---|---|---|---|---|---|
1 | Crawfordsville | 6 | 16 | Rochester Unit | 1 |
2 | Lebanon | 10 | 17 | Greensburg Unit | 1 |
3 | Frankfort | 6 | 18 | Brookville Unit | 1 |
4 | Romney | 6 | 19 | Aurora Sub | 1 |
5 | West Lafayette River Road | 4 | 20 | Scottsburg Unit | 1 |
6 | Rensselaer | 6 | 21 | Sellersburg Unit-1 | 1 |
7 | Chesterton | 5 | 22 | Sellersburg Unit-2 | 1 |
8 | Michigan City | 5 | 23 | Corydon Unit | 1 |
9 | Miller | 5 | 24 | Salem Unit | 1 |
10 | Monticello | 9 | 25 | Bloomington Sub-1 | 1 |
11 | US231 | 8 | 26 | Bloomington Sub-2 | 1 |
12 | City of Lafayette | 3 | 27 | Columbus Sub | 1 |
13 | City of West Lafayette Street Department | 1 | 28 | Portland Unit | 1 |
14 | LaPorte Unit | 1 | 29 | Valparaiso Unit | 2 |
15 | Plymouth Unit | 1 | 30 | Valparaiso Unit 2 | 3 |
Name | Dates Collected | ||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Apr 30, 2021 | Jun 08, 2021 | Jun 23, 2021 | Jul 22, 2021 | Oct 12, 2021 | Nov 23, 2021 | Nov 24, 2021 | Dec 07, 2021 | Dec 17, 2021 | Jan 04, 2022 | Jan 06, 2022 | Jan 19, 2022 | Jan 26, 2022 | Jan 28, 2022 | Feb 09, 2022 | Feb 11, 2022 | Feb 14, 2022 | Feb 16, 2022 | Feb 23, 2022 | Mar 31, 2022 | May 23, 2022 | Jun 13, 2022 | Jun 14, 2022 | |
Romney | 715 | 1137 | 1099 | 417 | 519 | 1216 | |||||||||||||||||
Crawfordsville | 2244 | 2246 | 1706 | 1354 | 931 | 2557 | |||||||||||||||||
Lebanon | 1995 | 1882 | 1897 | 1788 | 1305 | 1053 | 2408 | 2156 | 3276 | 3255 | |||||||||||||
Frankfort | 2509 | 2408 | 2179 | 1507 | 1290 | 3229 | |||||||||||||||||
Monticello | 3004 | 3626 | 2862 | 2536 | 3571 | ||||||||||||||||||
WL River Rd | 1082 | 1899 | 857 | 1176 | |||||||||||||||||||
WL 231 | 1266 | 1439 | 1307 | 1338 | 1294 | 1324 | 1322 | 1127 | 1022 | ||||||||||||||
City of Lafayette | 1789 | 1729 | 1495 | ||||||||||||||||||||
Rensselaer | 910 | 1010 | |||||||||||||||||||||
Miller | 3159 | 4438 | 4750 | 4335 | 3440 | 5295 | |||||||||||||||||
Chesterton | 2710 | 2620 | 2112 | 2596 | 3215 | ||||||||||||||||||
Michigan City | 4259 | 4025 | 3639 | 3165 | 5488 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahlberg, J.A.; Manish, R.; Koshan, Y.; Joseph, M.; Liu, J.; Wells, T.; McGuffey, J.; Habib, A.; Bullock, D.M. Salt Stockpile Inventory Management Using LiDAR Volumetric Measurements. Remote Sens. 2022, 14, 4802. https://doi.org/10.3390/rs14194802
Mahlberg JA, Manish R, Koshan Y, Joseph M, Liu J, Wells T, McGuffey J, Habib A, Bullock DM. Salt Stockpile Inventory Management Using LiDAR Volumetric Measurements. Remote Sensing. 2022; 14(19):4802. https://doi.org/10.3390/rs14194802
Chicago/Turabian StyleMahlberg, Justin Anthony, Raja Manish, Yerassyl Koshan, Mina Joseph, Jidong Liu, Timothy Wells, Jeremy McGuffey, Ayman Habib, and Darcy M. Bullock. 2022. "Salt Stockpile Inventory Management Using LiDAR Volumetric Measurements" Remote Sensing 14, no. 19: 4802. https://doi.org/10.3390/rs14194802
APA StyleMahlberg, J. A., Manish, R., Koshan, Y., Joseph, M., Liu, J., Wells, T., McGuffey, J., Habib, A., & Bullock, D. M. (2022). Salt Stockpile Inventory Management Using LiDAR Volumetric Measurements. Remote Sensing, 14(19), 4802. https://doi.org/10.3390/rs14194802