Heterogeneity of Increases in Net Primary Production under Intensified Human Activity and Climate Variability on the Loess Plateau of China
<p>Map of location (<b>a</b>) and land cover (<b>b</b>) of the Loess Plateau in China.</p> "> Figure 2
<p>Observation vs. simulation based on the CASA model over our study area in 2010. R<sup>2</sup> = 0.92; NRMSE = 0.15.</p> "> Figure 3
<p>NPP distribution in (<b>a</b>) 2001 and (<b>b</b>) 2020 on the Loess plateau. The numbers on the pixels represent six sub-regions on the LP: (1) temperate steppe desert (TSD), (2) alpine forest–steppe (AFS), (3) temperate desert–steppe (TDS), (4) temperate typical steppe (TTS), (5) temperate forest–steppe (TFS), (6) temperate deciduous forest (TDF). Bar charts show the average NPP in six sub-regions in 2001 and 2020.</p> "> Figure 4
<p>(<b>a</b>) Spatial patterns of variations of NPP on the LP during 2001−2020. The numbers on the pixels represent six sub-regions on the LP: (1) Temperate steppe desert (TSD), (2) alpine forest–steppe (AFS), (3) temperate desert–steppe (TDS), (4) temperate typical steppe (TTS), (5) temperate forest–steppe (TFS), (6) temperate deciduous forest (TDF). The line chart shows the trend in average NPP over the study area. (<b>b</b>) Significance of variations of NPP on the LP during 2001−2020. The red bar in the right panel indicates a significant increase (<span class="html-italic">p</span> < 0.01) in average NPP over the TTS and the TFS regions.</p> "> Figure 5
<p>Contribution of each driving factor to interannual variations in NPP: (<b>a</b>) precipitation; (<b>b</b>) temperature; (<b>c</b>) radiation; (<b>d</b>) human land use. Red pixels represented weakly negative contributions to NPP increases. Yellow pixels represented faint positive contributions to NPP increases. Green pixels represented obvious positive contributions to NPP increases. The numbers on the pixels represent six sub-regions on the LP: (1) Temperate steppe desert (TSD), (2) alpine forest–steppe (AFS), (3) temperate desert–steppe (TDS), (4) temperate typical steppe (TTS), (5) temperate forest–steppe (TFS), (6) temperate deciduous forest (TDF).</p> "> Figure 6
<p>(<b>a</b>) Spatial pattern of dominant driver of variations of NPP on the LP. The numbers on the pixels represent six sub-regions on the LP: (1) Temperate steppe desert (TSD), (2) alpine forest–steppe (AFS), (3) temperate desert–steppe (TDS), (4) temperate typical steppe (TTS), (5) temperate forest–steppe (TFS), (6) temperate deciduous forest (TDF). (<b>b</b>) Relative contribution of climate factors and human activity to variations of NPP in sub-regions on the LP.</p> "> Figure 7
<p>The interactive effects of climate factors and land use on the NPP on the LP.</p> "> Figure 8
<p>Human activity on the LP over the past 20 years. Panels (<b>a</b>) and (<b>b</b>) are maps of population density on the LP in 2000 and 2020, respectively. Panel (<b>c</b>) shows fractions of pixels for different population densities. Panel (<b>d</b>) represents variations in NPP with percentage area of forests, non-forest vegetation, and barren land on the LP. The red ellipses in panel (<b>a</b>) and (<b>b</b>) represent the regions with extreme decreases in population density. The color bars in panel (<b>d</b>) show the various stages of land use-managements.</p> "> Figure 9
<p>Time series of (<b>a</b>) NPP, (<b>b</b>) SSTa for Niño 3.4, and (<b>c</b>) precipitation in growing season over the periods 2001–2020 and anomaly distribution of vertically integrated summer water vapor in (<b>d</b>) 2015 and (<b>e</b>) 2016. The brown bar represents the decrease in NPP and precipitation affected by the strong El Niño event in 2015. The arrows in panel (<b>c</b>) and (<b>d</b>) represent the wind direction.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Used
2.3. Contribution of Each Driving Factor to Interannual Variation in NPP
2.4. Interactive Effect of Driving Factors on the NPP
3. Model and Evaluation
3.1. CASA Model
3.2. Model Optimization and Validation
4. Results
4.1. Spatiotemporal Pattern of NPP
4.2. Quantitative Analysis of Contributions of Driving Factors on Variations in NPP
4.3. Changes in Population Patterns and Vegetation Types on the LP
4.4. Impact of Strong El Niño Event on the Vegetation on the LP
5. Discussion
5.1. Heterogeneity of Vegetation Variation over the LP
5.2. Heterogeneity of Attribution of the Vegetation Variations
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Field, C.B.; Behrenfeld, M.J.; Randerson, J.T.; Falkowski, P. Primary Production of the Biosphere: Integrating Terrestrial and Oceanic Components. Science 1998, 281, 237–240. [Google Scholar] [CrossRef] [PubMed]
- Canfield, D.E.; Glazer, A.N.; Falkowski, P.G. The Evolution and Future of Earth’s Nitrogen Cycle. Science 2010, 330, 192–196. [Google Scholar] [CrossRef] [PubMed]
- Crowther, T.W.; van den Hoogen, J.; Wan, J.; Mayes, M.A.; Keiser, A.D.; Mo, L.; Averill, C.; Maynard, D.S. The Global Soil Community and Its Influence on Biogeochemistry. Science 2019, 365, eaav0550. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A Large and Persistent Carbon Sink in the World’s Forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef]
- Philipson, C.D.; Cutler, M.E.J.; Brodrick, P.G.; Asner, G.P.; Boyd, D.S.; Moura Costa, P.; Fiddes, J.; Foody, G.M.; van der Heijden, G.M.F.; Ledo, A.; et al. Active Restoration Accelerates the Carbon Recovery of Human-Modified Tropical Forests. Science 2020, 369, 838–841. [Google Scholar] [CrossRef]
- Su, F.; Fu, D.; Yan, F.; Xiao, H.; Pan, T.; Xiao, Y.; Kang, L.; Zhou, C.; Meadows, M.; Lyne, V.; et al. Rapid Greening Response of China’s 2020 Spring Vegetation to COVID-19 Restrictions: Implications for Climate Change. Sci. Adv. 2021, 7, eabe8044. [Google Scholar] [CrossRef]
- Bonan, G.B. Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests. Science 2008, 320, 1444–1449. [Google Scholar] [CrossRef]
- Beer, C.; Reichstein, M.; Tomelleri, E.; Ciais, P.; Jung, M.; Carvalhais, N.; Rödenbeck, C.; Arain, M.A.; Baldocchi, D.; Bonan, G.B.; et al. Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate. Science 2010, 329, 834–838. [Google Scholar] [CrossRef]
- Bonan, G.B.; Doney, S.C. Climate, Ecosystems, and Planetary Futures: The Challenge to Predict Life in Earth System Models. Science 2018, 359, eaam8328. [Google Scholar] [CrossRef]
- Lewis, S.L.; Lopez-Gonzalez, G.; Sonké, B.; Affum-Baffoe, K.; Baker, T.R.; Ojo, L.O.; Phillips, O.L.; Reitsma, J.M.; White, L.; Comiskey, J.A.; et al. Increasing Carbon Storage in Intact African Tropical Forests. Nature 2009, 457, 1003–1006. [Google Scholar] [CrossRef]
- Erb, K.-H.; Kastner, T.; Plutzar, C.; Bais, A.L.S.; Carvalhais, N.; Fetzel, T.; Gingrich, S.; Haberl, H.; Lauk, C.; Niedertscheider, M.; et al. Unexpectedly Large Impact of Forest Management and Grazing on Global Vegetation Biomass. Nature 2018, 553, 73–76. [Google Scholar] [CrossRef]
- Cuni-Sanchez, A.; Sullivan, M.J.P.; Platts, P.J.; Lewis, S.L.; Marchant, R.; Imani, G.; Hubau, W.; Abiem, I.; Adhikari, H.; Albrecht, T.; et al. High Aboveground Carbon Stock of African Tropical Montane Forests. Nature 2021, 596, 536–542. [Google Scholar] [CrossRef]
- Zeng, N.; Zhao, F.; Collatz, G.J.; Kalnay, E.; Salawitch, R.J.; West, T.O.; Guanter, L. Agricultural Green Revolution as a Driver of Increasing Atmospheric CO2 Seasonal Amplitude. Nature 2014, 515, 394–397. [Google Scholar] [CrossRef]
- Pugh, T.A.M.; Lindeskog, M.; Smith, B.; Poulter, B.; Arneth, A.; Haverd, V.; Calle, L. Role of Forest Regrowth in Global Carbon Sink Dynamics. Proc. Natl. Acad. Sci. USA 2019, 116, 4382–4387. [Google Scholar] [CrossRef]
- Mao, J.; Ribes, A.; Yan, B.; Shi, X.; Thornton, P.E.; Séférian, R.; Ciais, P.; Myneni, R.B.; Douville, H.; Piao, S.; et al. Human-Induced Greening of the Northern Extratropical Land Surface. Nat. Clim. Change 2016, 6, 959–963. [Google Scholar] [CrossRef]
- Chen, C.; Park, T.; Wang, X.; Piao, S.; Xu, B.; Chaturvedi, R.K.; Fuchs, R.; Brovkin, V.; Ciais, P.; Fensholt, R.; et al. China and India Lead in Greening of the World through Land-Use Management. Nat. Sustain. 2019, 2, 122–129. [Google Scholar] [CrossRef]
- Li, C.; Fu, B.; Wang, S.; Stringer, L.C.; Wang, Y.; Li, Z.; Liu, Y.; Zhou, W. Drivers and Impacts of Changes in China’s Drylands. Nat. Rev. Earth Environ. 2021, 2, 858–873. [Google Scholar] [CrossRef]
- Li, Y.; Piao, S.; Li, L.Z.X.; Chen, A.; Wang, X.; Ciais, P.; Huang, L.; Lian, X.; Peng, S.; Zeng, Z.; et al. Divergent Hydrological Response to Large-Scale Afforestation and Vegetation Greening in China. Sci. Adv. 2018, 4, eaar4182. [Google Scholar] [CrossRef]
- Kou, P.; Xu, Q.; Jin, Z.; Yunus, A.P.; Luo, X.; Liu, M. Complex Anthropogenic Interaction on Vegetation Greening in the Chinese Loess Plateau. Sci. Total Environ. 2021, 778, 146065. [Google Scholar] [CrossRef]
- Shi, S.; Yu, J.; Wang, F.; Wang, P.; Zhang, Y.; Jin, K. Quantitative Contributions of Climate Change and Human Activities to Vegetation Changes over Multiple Time Scales on the Loess Plateau. Sci. Total Environ. 2021, 755, 142419. [Google Scholar] [CrossRef]
- Feng, X.; Fu, B.; Piao, S.; Wang, S.; Ciais, P.; Zeng, Z.; Lü, Y.; Zeng, Y.; Li, Y.; Jiang, X.; et al. Revegetation in China’s Loess Plateau Is Approaching Sustainable Water Resource Limits. Nat. Clim. Change 2016, 6, 1019–1022. [Google Scholar] [CrossRef]
- Qiu, L.; Wu, Y.; Shi, Z.; Yu, M.; Zhao, F.; Guan, Y. Quantifying Spatiotemporal Variations in Soil Moisture Driven by Vegetation Restoration on the Loess Plateau of China. J. Hydrol. 2021, 600, 126580. [Google Scholar] [CrossRef]
- Zhao, M.; Zhang, J.; Velicogna, I.; Liang, C.; Li, Z. Ecological Restoration Impact on Total Terrestrial Water Storage. Nat. Sustain. 2021, 4, 56–62. [Google Scholar] [CrossRef]
- Liu, J.; Rühland, K.M.; Chen, J.; Xu, Y.; Chen, S.; Chen, Q.; Huang, W.; Xu, Q.; Chen, F.; Smol, J.P. Aerosol-Weakened Summer Monsoons Decrease Lake Fertilization on the Chinese Loess Plateau. Nat. Clim. Change 2017, 7, 190–194. [Google Scholar] [CrossRef]
- Wu, D.; Xie, X.; Tong, J.; Meng, S.; Wang, Y. Sensitivity of Vegetation Growth to Precipitation in a Typical Afforestation Area in the Loess Plateau: Plant-Water Coupled Modelling. Ecol. Model. 2020, 430, 109128. [Google Scholar] [CrossRef]
- Jia, L.; Yu, K.; Li, Z.; Li, P.; Zhang, J.; Wang, A.; Ma, L.; Xu, G.; Zhang, X. Temporal and Spatial Variation of Rainfall Erosivity in the Loess Plateau of China and Its Impact on Sediment Load. CATENA 2022, 210, 105931. [Google Scholar] [CrossRef]
- Li, G.; Sun, S.; Han, J.; Yan, J.; Liu, W.; Wei, Y.; Lu, N.; Sun, Y. Impacts of Chinese Grain for Green Program and Climate Change on Vegetation in the Loess Plateau during 1982–2015. Sci. Total Environ. 2019, 660, 177–187. [Google Scholar] [CrossRef]
- Wu, X.; Wang, S.; Fu, B.; Feng, X.; Chen, Y. Socio-Ecological Changes on the Loess Plateau of China after Grain to Green Program. Sci. Total Environ. 2019, 678, 565–573. [Google Scholar] [CrossRef]
- Wu, Z.; Dai, X.; Li, B.; Hou, Y. Livelihood Consequences of the Grain for Green Programme across Regional and Household Scales: A Case Study in the Loess Plateau. Land Use Policy 2021, 111, 105746. [Google Scholar] [CrossRef]
- Zhao, M.; Running, S.W. Drought-Induced Reduction in Global Terrestrial Net Primary Production from 2000 Through 2009. Science 2010, 329, 940–943. [Google Scholar] [CrossRef] [Green Version]
- Lian, X.; Piao, S.; Chen, A.; Wang, K.; Li, X.; Buermann, W.; Huntingford, C.; Peñuelas, J.; Xu, H.; Myneni, R.B. Seasonal Biological Carryover Dominates Northern Vegetation Growth. Nat. Commun. 2021, 12, 983. [Google Scholar] [CrossRef]
- Li, S.; He, S. The Variation of Net Primary Productivity and Underlying Mechanisms Vary under Different Drought Stress in Central Asia from 1990 to 2020. Agric. For. Meteorol. 2022, 314, 108767. [Google Scholar] [CrossRef]
- Ruimy, A.; Saugier, B.; Dedieu, G. Methodology for the Estimation of Terrestrial Net Primary Production from Remotely Sensed Data. J. Geophys. Res. Atmos. 1994, 99, 5263–5283. [Google Scholar] [CrossRef]
- Kong, D.; Miao, C.; Wu, J.; Zheng, H.; Wu, S. Time Lag of Vegetation Growth on the Loess Plateau in Response to Climate Factors: Estimation, Distribution, and Influence. Sci. Total Environ. 2020, 744, 140726. [Google Scholar] [CrossRef]
- Wang, C.; Wang, S.; Fu, B.; Lü, Y.; Liu, Y.; Wu, X. Integrating Vegetation Suitability in Sustainable Revegetation for the Loess Plateau, China. Sci. Total Environ. 2021, 759, 143572. [Google Scholar] [CrossRef]
- Zheng, K.; Wei, J.-Z.; Pei, J.-Y.; Cheng, H.; Zhang, X.-L.; Huang, F.-Q.; Li, F.-M.; Ye, J.-S. Impacts of Climate Change and Human Activities on Grassland Vegetation Variation in the Chinese Loess Plateau. Sci. Total Environ. 2019, 660, 236–244. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, X.; Li, M.; Zhang, J.; Cao, Y. Climate-Growth Pattern of Pinus Tabulaeformis Plantations and Their Resilience to Drought Events in the Loess Plateau. For. Ecol. Manag. 2021, 499, 119642. [Google Scholar] [CrossRef]
- Xu, M.; Li, X.; Liu, M.; Shi, Y.; Zhou, H.; Zhang, B.; Yan, J. Spatial Variation Patterns of Plant Herbaceous Community Response to Warming along Latitudinal and Altitudinal Gradients in Mountainous Forests of the Loess Plateau, China. Environ. Exp. Bot. 2020, 172, 103983. [Google Scholar] [CrossRef]
- Erasmi, S.; Propastin, P.; Kappas, M.; Panferov, O. Spatial Patterns of NDVI Variation over Indonesia and Their Relationship to ENSO Warm Events during the Period 1982–2006. J. Clim. 2009, 22, 6612–6623. [Google Scholar] [CrossRef]
- Lü, A.; Zhu, W.; Jia, S. Assessment of the Sensitivity of Vegetation to El-Niño/Southern Oscillation Events over China. Adv. Space Res. 2012, 50, 1362–1373. [Google Scholar] [CrossRef]
- Zhao, Q.; Ma, X.; Yao, W.; Liu, Y.; Yao, Y. Anomaly Variation of Vegetation and Its Influencing Factors in Mainland China During ENSO Period. IEEE Access 2020, 8, 721–734. [Google Scholar] [CrossRef]
- Li, F.; Lin, W.; Li, J. ENSO-Related Impact on the Vapor Sources of China Based on Case Simulations of Summer 2015 and 2010. J. Atmos. Sol. -Terr. Phys. 2020, 211, 105489. [Google Scholar] [CrossRef]
- Sulla-Menashe, D.; Gray, J.M.; Abercrombie, S.P.; Friedl, M.A. Hierarchical Mapping of Annual Global Land Cover 2001 to Present: The MODIS Collection 6 Land Cover Product. Remote Sens. Environ. 2019, 222, 183–194. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, C.; Wang, Z.; Chen, Y.; Gang, C.; An, R.; Li, J. Vegetation Dynamics and Its Driving Forces from Climate Change and Human Activities in the Three-River Source Region, China from 1982 to 2012. Sci. Total Environ. 2016, 563–564, 210–220. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, X.; Christakos, G.; Liao, Y.; Zhang, T.; Gu, X.; Zheng, X. Geographical Detectors-Based Health Risk Assessment and Its Application in the Neural Tube Defects Study of the Heshun Region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- Potter, C.S.; Klooster, S.A. Global Model Estimates of Carbon and Nitrogen Storage in Litter and Soil Pools: Response to Changes in Vegetation Quality and Biomass Allocation. Tellus B 1997, 49, 1–17. [Google Scholar] [CrossRef]
- Zhu, W.Q.; Pan, Y.Z.; Zhang, J.S. Estimation of net primary productivity of chinese terrestrial vegetation based on remote sensing. Chin. J. Plant Ecol. 2007, 31, 413–424. [Google Scholar]
- Potter, C.S.; Randerson, J.T.; Field, C.B.; Matson, P.A.; Vitousek, P.M.; Mooney, H.A.; Klooster, S.A. Terrestrial Ecosystem Production: A Process Model Based on Global Satellite and Surface Data. Glob. Biogeochem. Cycles 1993, 7, 811–841. [Google Scholar] [CrossRef]
- Field, C.B.; Randerson, J.T.; Malmström, C.M. Global Net Primary Production: Combining Ecology and Remote Sensing. Remote Sens. Environ. 1995, 51, 74–88. [Google Scholar] [CrossRef]
- Lai, X.; Yang, X.; Wang, Z.; Shen, Y.; Ma, L. Productivity and Water Use in Forage-Winter Wheat Cropping Systems across Variable Precipitation Gradients on the Loess Plateau of China. Agric. Water Manag. 2022, 259, 107250. [Google Scholar] [CrossRef]
- Cai, W.; Borlace, S.; Lengaigne, M.; van Rensch, P.; Collins, M.; Vecchi, G.; Timmermann, A.; Santoso, A.; McPhaden, M.J.; Wu, L.; et al. Increasing Frequency of Extreme El Niño Events Due to Greenhouse Warming. Nat. Clim. Change 2014, 4, 111–116. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Ma, T.; Wang, Y.; Zheng, J. Health Risks Associated with Multiple Metal(Loid)s in Groundwater: A Case Study at Hetao Plain, Northern China. Environ. Pollut. 2020, 263, 114562. [Google Scholar] [CrossRef] [PubMed]
Sub-Regions | Area (km2) | Annual Mean Temperature (°C) | Annual Precipitation (mm) | Vegetation Types |
---|---|---|---|---|
TSD | 5.07 | 8.77 | 251.75 | Croplands; steppe–desert |
AFS | 3.51 | 4.60 | 387.57 | Desert; steppe; forest |
TDS | 8.06 | 8.33 | 288.94 | Desert; steppe |
TTS | 16.80 | 8.17 | 413.53 | Steppe |
TFS | 13.37 | 10.12 | 519.30 | Forest–steppe |
TDF | 11.61 | 12.40 | 600.56 | Forests; croplands |
Vegetation types | RVImax | RVImin |
---|---|---|
Deciduous needle-leaf forest | 6.63 | 1.05 |
Deciduous broad-leaf forest | 6.91 | 1.05 |
Sparse woods | 4.49 | 1.05 |
Steppe | 4.46 | 1.05 |
Urban lands | 4.46 | 1.05 |
Desert | 4.46 | 1.05 |
Croplands | 4.46 | 1.05 |
Vegetation Types | εmax [gC·MJ−1] |
---|---|
Deciduous needle-leaf forest | 1.008 |
Deciduous broad-leaf forest | 1.259 |
Sparse woods | 0.774 |
Steppe | 0.608 |
Croplands | 0.604 |
Other | 0.389 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ni, X.; Guo, W.; Li, X.; Li, S. Heterogeneity of Increases in Net Primary Production under Intensified Human Activity and Climate Variability on the Loess Plateau of China. Remote Sens. 2022, 14, 4706. https://doi.org/10.3390/rs14194706
Ni X, Guo W, Li X, Li S. Heterogeneity of Increases in Net Primary Production under Intensified Human Activity and Climate Variability on the Loess Plateau of China. Remote Sensing. 2022; 14(19):4706. https://doi.org/10.3390/rs14194706
Chicago/Turabian StyleNi, Xiangnan, Wei Guo, Xiaoting Li, and Shuheng Li. 2022. "Heterogeneity of Increases in Net Primary Production under Intensified Human Activity and Climate Variability on the Loess Plateau of China" Remote Sensing 14, no. 19: 4706. https://doi.org/10.3390/rs14194706
APA StyleNi, X., Guo, W., Li, X., & Li, S. (2022). Heterogeneity of Increases in Net Primary Production under Intensified Human Activity and Climate Variability on the Loess Plateau of China. Remote Sensing, 14(19), 4706. https://doi.org/10.3390/rs14194706