A New Method for Calculating Water Quality Parameters by Integrating Space–Ground Hyperspectral Data and Spectral-In Situ Assay Data
"> Figure 1
<p>The geographic location of the study area and the selected sampling positions. (<b>a</b>) Map showing the location of the study area, Foshan, Guangdong province, China. (<b>b</b>) 36 water quality sampling points are distributed along the river. During the acquisition of hyperspectral data by UAV, two buoy hyperspectral sensors were set up simultaneously in the middle and downstream of the river. (<b>c</b>) The first buoy hyperspectral sensor, No. A. There is some shadow interference in this position. (<b>d</b>) The second buoy hyperspectral sensor, No. B. There are no shadows in this position.</p> "> Figure 2
<p>Distribution of 10 strips and the information of radiometric calibration cloth. (<b>a</b>) The radiation calibration cloth is laid for each strip, and three reflectivity calibration cloths are laid. The cloth is laid in a flat and unobstructed place with an area of 3 × 3 m. (<b>b</b>) This is the standard reflectance of the calibration cloth. They are 11%, 32%, and 56%, respectively. In the later calibration, they are selectively used according to the field illumination.</p> "> Figure 3
<p>The system is composed of an intelligent water quality spectrometer and data analysis cloud service platform. (<b>a</b>) The water quality spectrometer is fixed on the water surface, collects spectral data regularly, and transmits it to the cloud service in real-time through 4G/5G network. (<b>b</b>) The system supports cloud data storage, statistical analysis, and real-time viewing of the user’s client.</p> "> Figure 4
<p>Workflow of the new method for calculating water quality parameters by integrating space–ground hyperspectral image data and spectral–in situ assay data.</p> "> Figure 5
<p>The flow of a recognition algorithm of absorbance characteristics. The characteristic bands selected by supervised method and unsupervised method are obtained through direct and indirect methods, and the overlapping bands are used as the influential bands.</p> "> Figure 6
<p>Spectral data sampling method at five scale levels.</p> "> Figure 7
<p>Comparison of mean reflectance between the data of two buoy spectrometers and 10 strips of UAV.</p> "> Figure 8
<p>Positive and negative moving diagrams, scatter diagram, and radar diagram for cross-correlation coefficient between buoy spectrometer and UAV spectral data. (<b>a</b>,<b>b</b>) show that the central wavelength positions of the two sensors are basically the same, because the correlation coefficient RMS shows a downward trend with the left and right shifts of the wavelength. The important conclusion is that the characteristic band found by the buoy sensor on the water surface can be extended to UAV data. (<b>c</b>,<b>d</b>) show that the correlation coefficients of individual strips jump to a large extent with the movement of the central wavelength, which is likely due to the sudden change of light or shadow. These bands need to be eliminated during modeling, otherwise they may cause overfitting or underfitting.</p> "> Figure 8 Cont.
<p>Positive and negative moving diagrams, scatter diagram, and radar diagram for cross-correlation coefficient between buoy spectrometer and UAV spectral data. (<b>a</b>,<b>b</b>) show that the central wavelength positions of the two sensors are basically the same, because the correlation coefficient RMS shows a downward trend with the left and right shifts of the wavelength. The important conclusion is that the characteristic band found by the buoy sensor on the water surface can be extended to UAV data. (<b>c</b>,<b>d</b>) show that the correlation coefficients of individual strips jump to a large extent with the movement of the central wavelength, which is likely due to the sudden change of light or shadow. These bands need to be eliminated during modeling, otherwise they may cause overfitting or underfitting.</p> "> Figure 9
<p>The spectral data, absorbance data, absorbance characteristics data, and total absorbance characteristics data of sampling points on each of the 10 strips and the spectral data of buoys A and B spectrometers. (<b>a</b>) The spectral data of sampling points; (<b>b</b>) the absorbance data of sampling points; (<b>c</b>) the absorbance characteristics data of sampling points; (<b>d</b>) the numerical ranking of 272 bands after passing the recognition algorithm of absorbance characteristics.</p> "> Figure 10
<p>The water quality parameters characterization band set. (<b>a</b>) The absolute value of correlation coefficient between five water quality parameters and all bands; (<b>b</b>) the comparison chart of characteristic bands selected by supervised method and unsupervised method.</p> "> Figure 11
<p>Clustering results of hierarchical clustering method and fuzzy clustering method at five scales. The same color in the figure indicates that the cluster is the same class and there are five categories in total.</p> "> Figure 12
<p>Comparison of regression results between ACR and MLR, SVM, and NN methods. (<b>a</b>) <span class="html-italic">R</span><sup>2</sup> values regressed by ACR method and MLR method at different scales; (<b>b</b>) RMSE values regressed by ACR method and MLR method at different scales; (<b>c</b>) <span class="html-italic">R</span><sup>2</sup> values regressed by ACR method and SVM method at different scales; (<b>d</b>) RMSE values regressed by ACR method and SVM method at different scales; (<b>e</b>) <span class="html-italic">R</span><sup>2</sup> values regressed by ACR method and NN method at different scales; (<b>f</b>) RMSE values regressed by ACR method and NN method at different scales.</p> "> Figure 13
<p>Comparison between the measured and predicted values of each water quality parameter in the modeling dataset. (<b>a</b>) Comparison between predicted and measured values of total phosphorus; (<b>b</b>) comparison between predicted and measured values of total nitrogen; (<b>c</b>) comparison between predicted value and measured value of COD; (<b>d</b>) comparison between predicted value and measured value of turbidity; (<b>e</b>) comparison between predicted value and measured value of Chlorophyll.</p> "> Figure 14
<p>Calculation results of water quality parameters in the whole river and spatial distribution of five parameters in typical areas. (<b>a</b>) Calculation results of total phosphorus and content in four typical areas; (<b>b</b>) contents of total nitrogen, COD, turbidity, and chlorophyll in four typical areas.</p> "> Figure 15
<p>The prediction results of five water quality parameters at modeling points.</p> "> Figure 16
<p>Distribution law of water quality parameters in the upstream, midstream, and downstream of Lingnan Avenue River. (<b>a</b>) distribution law the total phosphorus; (<b>b</b>) distribution law the total nitrogen; (<b>c</b>) distribution law the COD; (<b>d</b>) distribution law the turbidity; (<b>e</b>) distribution law the Chlorophyll.</p> ">
Abstract
:1. Introduction
2. Study Area and Data Collection
2.1. Study Area
2.2. Data Collection
2.2.1. Hyperspectral Image Acquisition
2.2.2. Water Surface Hyperspectral Data Acquisition
2.2.3. Water Parameter Sampling and Measurement
3. Methodology
3.1. Workflow
3.2. Spectral Matching Algorithm for UAV and Buoy Data
3.3. Absorbance Characteristics Recognition Algorithm (ACR)
3.4. 5x Dimensionality Reduction Algorithm
3.5. Regression Models
3.6. Model Evaluation
4. Results
4.1. Space to Ground Matching Results
4.2. Water Quality Parameters Characterization Band Set
4.3. Response of Sensitive Bands to Water Quality Content at Different Scales
4.4. Accuracy Evaluation
4.5. Mapping and Water Quality Evaluation
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, L.F.; Zhang, L.S.; Sun, X.J.; Chen, J.; Wang, S.; Zhang, H.M.; Tong, Q.X. Spectral monitoring online system for water quality assessment based on satellite–ground data integration. J. Glob. Change Data Discov. 2021, 5, 1–10. [Google Scholar] [CrossRef]
- Aguzzi, J.; Albiez, J.; Flgel, S.; God, O.R.; Zhang, G. A flexible autonomous robotic observatory infrastructure for bentho-pelagic monitoring. Sensors 2020, 20, 1614. [Google Scholar] [CrossRef] [Green Version]
- Arvor, D.; Betbeder, J.; Daher, F.; Blossier, T.; Junior, C. Towards user-adaptive remote sensing: Knowledge-driven automatic classification of sentinel-2 time series. Remote Sens. Environ. 2021, 264, 112615. [Google Scholar] [CrossRef]
- Brezonik, P.L.; Olmanson, L.G.; Finlay, J.C.; Bauer, M.E. Factors affecting the measurement of cdom by remote sensing of optically complex inland waters. Remote Sens. Environ. 2015, 157, 199–215. [Google Scholar] [CrossRef]
- Flores, A.; Griffin, R.; Dix, M.; Romero-Oliva, C.S.; Barreno, F. Hyperspectral satellite remote sensing of water quality in lake atitlán, guatemala. Front. Environ. Sci. 2020, 8, 7. [Google Scholar] [CrossRef]
- Yang, M.M.; Ishizaka, J.; Goes, J.I.; Gomes, H.D.R.; de Raús Maúre, E.; Hayashi, M.; Katano, T.; Fujii, N.; Mine, T.; Yamashita, H.; et al. Improved modis-aqua chlorophyll-a retrievals in the turbid semi-enclosed ariake bay, japan. Remote Sens. 2018, 10, 1335. [Google Scholar] [CrossRef] [Green Version]
- Jiaming, L.; Yanjun, Z.; Di, Y.; Xingyuan, S. Empirical estimation of total nitrogen and total phosphorus concentration of urban water bodies in china using high resolution ikonos multispectral imagery. Water 2015, 7, 6551–6573. [Google Scholar] [CrossRef] [Green Version]
- Lavigne, H.; Zande, D.; Ruddick, K.; Santos, J.; Kratzer, S. Quality-control tests for oc4, oc5 and nir-red satellite chlorophyll-a algorithms applied to coastal waters. Remote Sens. Environ. 2021, 255, 112237. [Google Scholar] [CrossRef]
- Liu, Y.; Xiao, C.C. Water extraction on the hyperspectral images of gaofen-5 satellite using spectral indices. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2020, 43, 441–446. [Google Scholar] [CrossRef]
- Niroumandjadidi, M.; Bovolo, F.; Bruzzone, L. Water quality retrieval from prisma hyperspectral images: First experience in a turbid lake and comparison with sentinel-2. Remote Sens. 2020, 12, 3984. [Google Scholar] [CrossRef]
- Arabi, B.; Salama, M.S.; Pitarch, J.; Verhoef, W. Integration of in-situ and multi-sensor satellite observations for long-term water quality monitoring in coastal areas. Remote Sens. Environ. 2020, 239, 111632. [Google Scholar] [CrossRef]
- Kaire, T.; Tiit, K.; Alo, L.; Margot, S.; Birgot, P.; Tiina, N. First experiences in mapping lake water quality parameters with sentinel-2 msi imagery. Remote Sens. 2016, 8, 640. [Google Scholar] [CrossRef] [Green Version]
- Riaza, A.; Buzzi, J.; Garcia-Melendez, E.; Carrere, V.; Sarmiento, A.; Mueller, A. Monitoring acidic water in a polluted river with hyperspectral remote sensing (hymap). Int. Assoc. Sci. Hydrol. Bull. 2015, 60, 1064–1077. [Google Scholar] [CrossRef]
- Suomalainen, J.; Oliveira, R.A.; Hakala, T.; Koivumäki, N.; Markelin, L.; Näsi, R.; Honkavaara, E. Direct reflectance transformation methodology for drone-based hyperspectral imaging. Remote Sens. Environ. 2021, 266, 112691. [Google Scholar] [CrossRef]
- Guimarães, T.T.; Veronez, M.R.; Koste, E.C.; Gonzaga, L.; Bordin, F.; Inocencio, L.C.; Larocca, A.P.C.; De Oliveira, M.Z.; Vitti, D.C.; Mauad, F.F. An alternative method of spatial autocorrelation for chlorophyll detection in water bodies using remote sensing. Sustainability 2017, 9, 416. [Google Scholar] [CrossRef] [Green Version]
- Niu, C.; Tan, K.; Jia, X.; Wang, X. Deep learning based regression for optically inactive inland water quality parameter estimation using airborne hyperspectral imagery. Environ. Pollut. 2021, 286, 117534. [Google Scholar] [CrossRef] [PubMed]
- Pahlevan, N.; Smith, B.; Binding, C.; Gurlin, D.; Giardino, C. Hyperspectral retrievals of phytoplankton absorption and chlorophyll-a in inland and nearshore coastal waters. Remote Sens. Environ. 2020, 253, 112200. [Google Scholar] [CrossRef]
- Becker, R.H.; Sayers, M.; Dehm, D.; Shuchman, R.; Quintero, K.; Bosse, K.; Sawtell, R. Unmanned aerial system based spectroradiometer for monitoring harmful algal blooms: A new paradigm in water quality monitoring. J. Great Lakes Res. 2019, 45, 444–453. [Google Scholar] [CrossRef]
- Wei, L.; Huang, C.; Wang, Z.; Wang, Z.; Zhou, X.; Cao, L. Monitoring of urban black-odor water based on nemerow index and gradient boosting decision tree regression using uav-borne hyperspectral imagery. Remote Sens. 2019, 11, 2402. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wu, L.; Ren, H.; Liu, Y.; Dong, J. Mapping water quality parameters in urban rivers from hyperspectral images using a new self-adapting selection of multiple artificial neural networks. Remote Sens. 2020, 12, 336. [Google Scholar] [CrossRef] [Green Version]
- González, J.; Herrera, J.L.; Varela, R.A. A design proposal of real-time monitoring stations: Implementation and performance in contrasting environmental conditions. Sci. Mar. 2012, 76 (Suppl. 1), 235–248. [Google Scholar] [CrossRef] [Green Version]
- Favali, P.; Beranzoli, L.; D’Anna, G.; Gasparoni, F.; Finch, E. A fleet of multiparameter observatories for geophysical and environmental monitoring at seafloor. Ann. Geophys. 2006, 49, 659–680. [Google Scholar] [CrossRef]
- Li, X.; Ling, F.; Foody, G.M.; Boyd, D.S.; Jiang, L.; Zhang, Y.; Zhou, P.; Wang, Y.; Chen, R.; Du, Y. Monitoring high spatiotemporal water dynamics by fusing modis, landsat, water occurrence data and DEM. Remote Sens. Environ. 2021, 265, 112680. [Google Scholar] [CrossRef]
- Zhu, X.; Cai, F.; Tian, J.; Williams, T. Spatiotemporal fusion of multisource remote sensing data: Literature survey, taxonomy, principles, applications, and future directions. Remote Sens. 2018, 10, 527. [Google Scholar] [CrossRef] [Green Version]
- Cheng, C.; Wei, Y.; Lv, G.; Ning, X. Remote sensing estimation of chlorophyll-a concentration in taihu lake considering spatial and temporal variations. Environ. Monit. Assess. 2019, 191, 84. [Google Scholar] [CrossRef]
- Hestir, E.L.; Brando, V.E.; Bresciani, M.; Giardino, C.; Matta, E.; Villa, P. Measuring freshwater aquatic ecosystems: The need for a hyperspectral global mapping satellite mission. Remote Sens. Environ. 2015, 167, 181–195. [Google Scholar] [CrossRef] [Green Version]
- Suel, E.; Bhatt, S.; Brauer, M.; Flaxman, S.; Ezzati, M. Multimodal deep learning from satellite and street-level imagery for measuring income, overcrowding, and environmental deprivation in urban areas. Remote Sens. Environ. 2021, 257, 112339. [Google Scholar] [CrossRef] [PubMed]
- Warren, M.A.; Simis, S.; Selmes, N. Complementary water quality observations from high and medium resolution sentinel sensors by aligning chlorophyll- a and turbidity algorithms. Remote Sens. Environ. 2021, 265, 112651. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Dan, J.-H.; Sun, D.-W. Applications of imaging spectrometry in inland water quality monitoring-a review of recent developments. Water Air Soil Pollut. 2017, 228, 131. [Google Scholar] [CrossRef]
- Page, B.P.; Olmanson, L.G.; Mishra, D.R. A harmonized image processing workflow using sentinel-2/msi and landsat-8/oli for mapping water clarity in optically variable lake systems. Remote Sens. Environ. 2019, 231, 111284. [Google Scholar] [CrossRef]
- Vassiliki, M.; Dionissios, K.; George, P.; Elias, D. An appraisal of the potential of landsat 8 in estimating chlorophyll-a, ammonium concentrations and other water quality indicators. Remote Sens. 2018, 10, 1018. [Google Scholar] [CrossRef] [Green Version]
- Jongcheol, P.; Yakov, P.; Sang-Soo, B.; Yongseong, K.; Minjeong, K.; Hyuk, L. Optimizing semi-analytical algorithms for estimating chlorophyll-a and phycocyanin concentrations in inland waters in Korea. Remote Sens. 2017, 9, 542. [Google Scholar] [CrossRef] [Green Version]
- Ryan, K.; Ali, K. Application of a partial least-squares regression model to retrieve chlorophyll-a concentrations in coastal waters using hyper-spectral data. Ocean. Sci. J. 2016, 51, 209–221. [Google Scholar] [CrossRef]
- Sarigai; Yang, J.; Zhou, A.; Han, L.; Xie, Y. Monitoring urban black-odorous water by using hyperspectral data and machine learning. Environ. Pollut. 2021, 269, 116166. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh, M.J.; Kavianpour, M.R. Development of wavelet-ann models to predict water quality parameters in hilo bay, pacific ocean. Mar. Pollut. Bull. 2015, 98, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Chua, C.G.; Goh, A.T.C. A hybrid Bayesian back-propagation neural network approach to multivariate modelling. International. J. Numer. Anal. Methods Geomech. 2003, 27, 651–667. [Google Scholar] [CrossRef]
- Dekker, A.G.; Hoogenboom, H.J.; Goddijn, L.M.; Malthus, T.J.M. The relation between inherent optical properties and reflectance spectra in turbid inland waters. Remote Sens. Rev. 1997, 15, 59–74. [Google Scholar] [CrossRef]
- Jing, Z.; Hui, W.B.; Yw, B.; Qin, Z.B.; Yla, B. Deep network based on up and down blocks using wavelet transform and successive multi-scale spatial attention for cloud detection. Remote Sens. Environ. 2021, 261, 112483. [Google Scholar] [CrossRef]
- Chen, F.; Xiao, D.; Li, Z. Developing water quality retrieval models with in situ hyperspectral data in poyang lake, china. Geo-Spat. Inf. Sci. 2016, 19, 255–266. [Google Scholar] [CrossRef] [Green Version]
- Gurlin, D.; Gitelson, A.A.; Moses, W.J. Remote estimation of chl-a concentration in turbid productive waters—Return to a simple two-band nir-red model? Remote Sens. Environ. 2011, 115, 3479–3490. [Google Scholar] [CrossRef]
- James, B.; Tsai, S. Optimization of a semi-analytical algorithm for multi-temporal water quality monitoring in inland waters with wide natural variability. Remote Sens. 2015, 7, 16623–16646. [Google Scholar] [CrossRef] [Green Version]
- Pyo, J.C.; Yong, S.K.; Min, J.H.; Nam, G.; Park, Y. Effect of hyperspectral image-based initial conditions on improving short-term algal simulation of hydrodynamic and water quality models. J. Environ. Manag. 2021, 294, 112988. [Google Scholar] [CrossRef] [PubMed]
- Gitelson, A. The peak near 700 nm on radiance spectra of algae and water: Relationships of its magnitude and position with chlorophyll concentration. Int. J. Remote Sens. 1992, 13, 3367–3373. [Google Scholar] [CrossRef]
- Cui, T.; Jie, Z.; Jing, L.; Lim, B.; Roslinah, S. Hyperspectral water quality retrieval model: Taking malaysia inshore sea area as an example. Int. Soc. Opt. Photonics 2007, 6790, 679036. [Google Scholar] [CrossRef]
- Mbuh, M.J. Optimization of airborne real-time cueing hyperspectral enhanced reconnaissance (archer) imagery, in situ data with chemometrics to evaluate nutrients in the shenandoah river, virginia. Geocarto Int. 2017, 33, 1326–1349. [Google Scholar] [CrossRef]
- Jouanneau, S.; Reroutes, L.; Durand, M.J.; Boukabache, A.; Picot, V.; Primault, Y.; Lakel, A.; Sengelin, M.; Barillon, B.; Thouand, G. Methods for assessing biochemical oxygen demand (bod): A review. Water Res. 2014, 49, 62–82. [Google Scholar] [CrossRef] [PubMed]
- Song, K.; Li, L.; Li, S.; Tedesco, L.; Hall, B.; Li, L. Hyperspectral remote sensing of total phosphorus (tp) in three central indiana water supply reservoirs. Water Air Soil Pollut. 2012, 223, 1481–1502. [Google Scholar] [CrossRef]
- Su, T.-C. A study of a matching pixel by pixel (mpp) algorithm to establish an empirical model of water quality mapping, as based on unmanned aerial vehicle (uav) images. Int. J. Appl. Earth Obs. Geoinf. 2017, 58, 213–224. [Google Scholar] [CrossRef]
- Houskeeper, H.F.; Hooker, S.B.; Kudela, R.M. Spectral range within global acdom(440) algorithms for oceanic, coastal, and inland waters with application to airborne measurements. Remote Sens. Environ. 2020, 253, 112155. [Google Scholar] [CrossRef]
- Turkoglu, M.O.; D’Aronco, S.; Perich, G.; Liebisch, F.; Streit, C.; Schindler, K. Crop mapping from image time series: Deep learning with multi-scale label hierarchies. ScienceDirect 2021, 264, 112603. [Google Scholar] [CrossRef]
- Salem, S.I.; Higa, H.; Kim, H.; Kazuhiro, K.; Oki, T. Multi-algorithm indices and look-up table for chlorophyll-a retrieval in highly turbid water bodies using multispectral data. Remote Sens. 2017, 9, 556. [Google Scholar] [CrossRef] [Green Version]
- Jorge, D.S.; Loisel, H.; Jamet, C.; Dessailly, D.; Demaria, J.; Bricaud, A.; Maritorena, M.; Zhang, X.; Antoine, D.; Kuster, T.; et al. A three-step semi analytical algorithm (3saa) for estimating inherent optical properties over oceanic, coastal, and inland waters from remote sensing reflectance. Remote Sens. Environ. 2021, 263, 112537. [Google Scholar] [CrossRef]
- Soppa, M.A.; Silva, B.; Steinmetz, F.; Keith, D.; Bracher, A. Assessment of polymer atmospheric correction algorithm for hyperspectral remote sensing imagery over coastal waters. Sensors 2021, 21, 4125. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Yi, H.; Liu, X.; Wang, Y.; Liu, X.; Zhang, H. Remote-sensing estimation of dissolved inorganic nitrogen concentration in the bohai sea using band combinations derived from modis data. Int. J. Remote Sens. 2016, 37, 327–340. [Google Scholar] [CrossRef]
- Xiong, J.; Lin, C.; Ma, R.; Cao, Z. Remote sensing estimation of lake total phosphorus concentration based on modis: A case study of lake hongze. Remote Sens. 2019, 11, 2068. [Google Scholar] [CrossRef] [Green Version]
- Ciurczak, E.W.; Igne, B.; Workman, J.; Burns, D.A. Handbook of Near Infrared Analysis; Marcel Dekker Inc.: New York, NY, USA, 2001. [Google Scholar] [CrossRef]
- Cannistra, A.F.; Shean, D.E.; Cristea, N.C. High-resolution cubesat imagery and machine learning for detailed snow-covered area. Remote Sens. Environ. 2021, 258, 112399. [Google Scholar] [CrossRef]
- Rahman, H.A.; Harun, S.W.; Yasin, M.; Ahmad, H. Fiber optic salinity sensor using beam-through technique. Opt. Int. J. Light Electron Opt. 2013, 124, 679–681. [Google Scholar] [CrossRef]
- Qu, Y.; Wang, J.; Wan, H.; Li, X.; Zhou, G. A bayesian network algorithm for retrieving the characterization of land surface vegetation. Remote Sens. Environ. 2008, 112, 613–622. [Google Scholar] [CrossRef]
Strips | Total Phosphorus (mg/L) | Total Nitrogen (mg/L) | COD (mg/L) | Turbidity (JTU) | Chlorophyll (mg/L) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Range | Mean | Range | Mean | Range | Mean | Range | Mean | Range | Mean | |
1 | 0.7–1.0 | 0.82 | 7.0–12.0 | 9.55 | 5.0–22.0 | 15.73 | 24.10–42.30 | 29.21 | 3.59–6.04 | 5.15 |
2 | 0.9–1.1 | 0.98 | 6.0–8.0 | 7.00 | 11.0–16.0 | 13.00 | 29.90–34.90 | 31.60 | 4.55–5.20 | 4.91 |
3 | 1.0–1.2 | 1.08 | 9.0–13.0 | 11.25 | 9.0–13.0 | 11.50 | 35.40–40.10 | 37.33 | 4.15–4.41 | 4.25 |
4 | 0.8–1.8 | 1.30 | 11.0–15.0 | 13.00 | 12.0–21.0 | 16.50 | 34.00–49.50 | 41.75 | 4.29–4.49 | 4.39 |
5 | 1.0–1.2 | 1.10 | 12.0–13.0 | 12.50 | 12.0–13.0 | 12.50 | 31.10–31.70 | 31.40 | 5.01–5.51 | 5.26 |
6 | 1.1–1.2 | 1.15 | 11.0–12.0 | 11.50 | 13.0–17.0 | 15.00 | 48.30–48.60 | 48.45 | 3.92–4.26 | 4.09 |
7 | 1.1–1.2 | 1.15 | 13.0–14.0 | 13.50 | 11.0–11.0 | 11.00 | 49.00–50.10 | 49.55 | 3.46–3.59 | 3.53 |
8 | 1.1–1.1 | 1.10 | 13.0–13.0 | 13.00 | 16.0–18.0 | 17.00 | 45.40–47.30 | 46.35 | 4.34–4.55 | 4.45 |
9 | 1.4–1.4 | 1.40 | 12.0–12.0 | 12.00 | 14.0–18.0 | 16.20 | 42.90–51.70 | 48.36 | 3.36–4.52 | 3.97 |
10 | 1.0–1.2 | 1.10 | 20.0–20.0 | 20.0 | 12.0–13.0 | 12.50 | 26.50–26.50 | 26.50 | 3.84–4.19 | 4.02 |
Buoy sensor A | 1.0–1.1 | 1.05 | 13.0–18.0 | 15.25 | 13.0–19.0 | 15.25 | 36.50–40.30 | 38.48 | 4.18–4.44 | 4.34 |
Buoy sensor B | 0.8–1.1 | 0.90 | 6.0–8.0 | 7.20 | 5.0–9.0 | 7.00 | 29.90–30.70 | 30.20 | 4.13–4.40 | 4.29 |
Scale | Method | Accuracy | TP | TN | COD | Turbidity | Chlorophyll |
---|---|---|---|---|---|---|---|
1 * | ACR | RMSE | 0.2113 | 3.4244 | 3.9972 | 7.0520 | 0.0062 |
R2 | 0.6142 | 0.3201 | 0.1673 | 0.3054 | 0.1431 | ||
MLR | RMSE | 0.1799 | 2.5217 | 3.7454 | 5.5209 | 0.6104 | |
R2 | 0.3698 | 0.4276 | 0.2688 | 0.5742 | 0.0900 | ||
1 | SVM | RMSE | 0.1858 | 2.9075 | 3.3585 | 7.5495 | 0.5614 |
R2 | 0.3684 | 0.2532 | 0.4274 | 0.2139 | 0.2638 | ||
NN | RMSE | 0.2024 | 2.9117 | 4.0375 | 6.7541 | 0.4725 | |
R2 | 0.2026 | 0.2369 | 0.1502 | 0.3628 | 0.4546 | ||
8 | MLR | RMSE | 0.1820 | 1.0607 | 3.7279 | 3.9585 | 0.4787 |
R2 | 0.3277 | 0.7949 | 0.2866 | 0.7105 | 0.4431 | ||
SVM | RMSE | 0.1762 | 2.0915 | 3.5193 | 5.6504 | 0.4778 | |
R2 | 0.4400 | 0.2078 | 0.3837 | 0.4796 | 0.4648 | ||
NN | RMSE | 0.2223 | 3.2793 | 2.6825 | 8.4609 | 0.5512 | |
R2 | 0.0381 | 0.0320 | 0.6249 | 0.1279 | 0.2578 | ||
16 | MLR | RMSE | 0.1767 | 1.0815 | 3.8211 | 6.1119 | 0.4391 |
R2 | 0.3657 | 0.7868 | 0.2504 | 0.3100 | 0.5313 | ||
SVM | RMSE | 0.1867 | 1.9938 | 3.6679 | 6.3852 | 0.4730 | |
R2 | 0.3241 | 0.2857 | 0.3376 | 0.3467 | 0.4798 | ||
NN | RMSE | 0.2218 | 3.2981 | 3.9968 | 8.4518 | 0.6190 | |
R2 | 0.0422 | 0.0208 | 0.1673 | 0.0022 | 0.0640 | ||
24 | MLR | RMSE | 0.1741 | 2.3017 | 3.7519 | 5.3045 | 0.4488 |
R2 | 0.3845 | 0.0341 | 0.2774 | 0.4802 | 0.5104 | ||
SVM | RMSE | 0.1912 | 1.9701 | 3.6856 | 6.3527 | 0.4832 | |
R2 | 0.2775 | 0.3201 | 0.3299 | 0.3429 | 0.4607 | ||
NN | RMSE | 0.2055 | 3.3055 | 4.0253 | 7.1815 | 0.5828 | |
R2 | 0.1776 | 0.0165 | 0.1554 | 0.2796 | 0.1705 | ||
32 | MLR | RMSE | 0.1772 | 1.1327 | 3.8439 | 5.1770 | 0.3907 |
R2 | 0.3624 | 0.7662 | 0.2415 | 0.5049 | 0.6289 | ||
SVM | RMSE | 0.1866 | 1.9808 | 3.6631 | 6.4209 | 0.4725 | |
R2 | 0.3215 | 0.2941 | 0.3408 | 0.3434 | 0.4813 | ||
NN | RMSE | 0.2189 | 3.3162 | 4.0816 | 8.4297 | 0.6094 | |
R2 | 0.0673 | 0.0101 | 0.1316 | 0.0074 | 0.0929 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, D.; Zhang, L.; Sun, X.; Gao, Y.; Lan, Z.; Wang, Y.; Zhai, H.; Li, J.; Wang, W.; Chen, M.; et al. A New Method for Calculating Water Quality Parameters by Integrating Space–Ground Hyperspectral Data and Spectral-In Situ Assay Data. Remote Sens. 2022, 14, 3652. https://doi.org/10.3390/rs14153652
Zhang D, Zhang L, Sun X, Gao Y, Lan Z, Wang Y, Zhai H, Li J, Wang W, Chen M, et al. A New Method for Calculating Water Quality Parameters by Integrating Space–Ground Hyperspectral Data and Spectral-In Situ Assay Data. Remote Sensing. 2022; 14(15):3652. https://doi.org/10.3390/rs14153652
Chicago/Turabian StyleZhang, Donghui, Lifu Zhang, Xuejian Sun, Yu Gao, Ziyue Lan, Yining Wang, Haoran Zhai, Jingru Li, Wei Wang, Maming Chen, and et al. 2022. "A New Method for Calculating Water Quality Parameters by Integrating Space–Ground Hyperspectral Data and Spectral-In Situ Assay Data" Remote Sensing 14, no. 15: 3652. https://doi.org/10.3390/rs14153652
APA StyleZhang, D., Zhang, L., Sun, X., Gao, Y., Lan, Z., Wang, Y., Zhai, H., Li, J., Wang, W., Chen, M., Li, X., Hou, L., & Li, H. (2022). A New Method for Calculating Water Quality Parameters by Integrating Space–Ground Hyperspectral Data and Spectral-In Situ Assay Data. Remote Sensing, 14(15), 3652. https://doi.org/10.3390/rs14153652