Conventional and Conservation Seedbed Preparation Systems for Wheat Planting in Silty-Clay Soil
<p>Selected implements during the tests. (<b>a</b>) 5 m power harrow; (<b>b</b>) 5.2 m rotary tiller; (<b>c</b>) combined cultivator; (<b>d</b>) offset disk harrow.</p> "> Figure 2
<p>Diagrams of the relationship between the variables (letters A to L) and the principal components (PC1 and PC2) for the power harrows (<b>a</b>) and rotary tillers (<b>b</b>).</p> "> Figure 3
<p>Correlation coefficient between each variable considered in the PCA and the principal components (PC) identified for the power harrow (PH) and the rotary tillers (RT, A to L).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tested Implements and Tractor Characteristics
2.2. Field Site
2.3. Operating Machinery and Soil Parameters
2.4. Measurement Equipment and Data Acquisition System
2.5. Statistics
3. Results and Discussion
3.1. Dynamic–Energetic Performance
3.2. Statistics
3.3. Quality of Work
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wachira, P.; Kimenju, J.; Okoth, S.; Kiarie, J. Conservation and Sustainable Management of Soil Biodiversity for Agricultural Productivity. In Sustainable Living with Environmental Risks, 1st ed.; Kaneko, N., Yoshiura, S., Kobayashi, M., Eds.; Chapter 3; Springer: Tokyo, Japan, 2014; pp. 27–34. [Google Scholar]
- Rusu, T. Energy efficiency and soil conservation in conventional, minimum tillage and no-tillage. Int. Soil Water Conserv. Res. 2014, 2, 42–49. [Google Scholar] [CrossRef] [Green Version]
- Sherer, D.V.; Chumanova, N.N. Soil Tillage as a factor of soil conservation. IOP Conf. Ser. Earth Environ. Sci. 2017, 66, 012033. [Google Scholar] [CrossRef] [Green Version]
- Busari, M.A.; Kukal, S.S.; Kaur, A.; Bhatt, R.; Dulazi, A.A. Conservation tillage impacts on soil, crop and the environment. Int. Soil Water Conserv. Res. 2015, 3, 119–129. [Google Scholar] [CrossRef] [Green Version]
- Perfect, E.; McLaughlin, N.B.; Kay, B.D. Energy requirements for conventional tillage following different crop rotations. Trans. ASAE 1997, 40, 45–49. [Google Scholar] [CrossRef]
- Patil, S.B.; Salunkhe, S.C.; Jadhav, S.K.; Patil, S.S. Evaluation for cost effective combination of different seed bed preparation implements with large size tractors. Int. J. Agric. Eng. 2009, 2, 212–215. [Google Scholar]
- Kim, Y.S.; Kim, T.J.; Kim, Y.J.; Lee, S.D.; Park, S.U.; Kim, W.S. Development of a real-time tillage depth measurement system for agricultural tractors: Application to the effect analysis of tillage depth on draft force during plow tillage. Sensors 2020, 20, 912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Monero, F.V.; Lobb, D.; Tessier, S.; Cavers, C. Effects of six tillage methods on residue incorporation and crop performance in a heavy clay soil. Trans. ASAE 2004, 47, 1003–1010. [Google Scholar] [CrossRef]
- Servadio, P.; Bergonzoli, S.; Toderi, M. Soil mapping to assess workability in central Italy as climate change adaptation technique. Global Nest J. 2014, 16, 229–239. [Google Scholar]
- Servadio, P.; Bergonzoli, S.; Beni, C. Soil tillage systems and wheat yield under climate change scenarios. Agronomy 2016, 6, 43. [Google Scholar] [CrossRef] [Green Version]
- Fanigliulo, R.; Biocca, M.; Pochi, D. Effects of six primary tillage implements on energy inputs and residue cover in Central Italy. J. Agric. Eng. 2016, 47, 177–180. [Google Scholar] [CrossRef] [Green Version]
- Fedrizzi, M.; Sperandio, G.; Guerrieri, M.; Pagano, M.; Costa, C.; Puri, D.; Fanigliulo, R.; Bazzoffi, P. Economic competitiveness gap related to the application of the GAEC standards of cross-compliance on farms: Evaluation methodology. Ital. J. Agron. 2015, 10, 696. [Google Scholar] [CrossRef]
- De Laune, P.B.; Sij, J.W. Impact of tillage on runoff in long term no-till wheat systems. Soil Till. Res. 2012, 124, 32–35. [Google Scholar] [CrossRef]
- Carbonell-Bojollo, R.; Ganzalez-Sanchez, E.J.; Veroz-Conzalez, O.; Ordonez-Fernandez, R. Soil management systems and short term CO2 emissions in a clayey soil in southern Spain. Sci. Total Environ. 2011, 409, 2929–2935. [Google Scholar] [CrossRef]
- Lekavičienė, K.; Šarauskis, E.; Naujokienė, V.; Buragienė, S.; Kriačiūnienė, Z. The effect of the strip tillage machine parameters on the traction force, diesel consumption and CO2 emissions. Soil Till. Res. 2019, 192, 95–102. [Google Scholar] [CrossRef]
- Moitzi, G.; Wagentristl, H.; Refenner, K.; Weingartmann, H.; Piringer, G.; Boxberger, J.; Gronauer, A. Effects of working depth and wheel slip on fuel consumption of selected tillage implements. Agric. Eng. Int. Cigr. J. 2014, 16, 182–190. [Google Scholar]
- Buragienė, S.; Šarauskis, E.; Romaneckas, K.; Sasnauskienė, J.; Masilionytė, L.; Kriaučiūnienė, Z. Experimental analysis of CO2 emissions from agricultural soils subjected to five different tillage systems in Lithuania. Sci. Total Environ. 2015, 514, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Koga, N.; Tsuruta, H.; Tsuji, H.; Nakano, H. Fuel consumption-derived CO2 emissions under conventional and reduced tillage cropping systems in northern Japan. Agric. Ecosyst. Environ. 2003, 99, 213–219. [Google Scholar] [CrossRef]
- Dyer, J.A.; Desjardins, R.L. Simulated Farm Fieldwork, Energy Consumption and Related Greenhouse Gas Emissions in Canada. Biosyst. Eng. 2003, 85, 503–513. [Google Scholar] [CrossRef]
- Filipovic, D.; Kosutic, S.; Gospodaric, Z.; Zimmer, R.; Banaj, D. The possibilities of fuel savings and the reduction of CO2 emissions in the soil tillage in Croatia. Agric. Ecosyst. Environ. 2006, 115, 290–294. [Google Scholar] [CrossRef]
- Tebrügge, F. No-tillage visions–protection of soil, water and climate and influence on management and farm income. In Conservation Agriculture; Garcia-Torres, L., Benites, J., Martĩnez-Vilela, A., Holgado-Cabrera, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2001; Volume 1, pp. 327–340. [Google Scholar]
- Lal, R.; Reicosky, D.C.; Hanson, J.D. Evolution of the plough over 10.000 years and the rationale for no-tillage farming. Soil Till. Res. 2007, 93, 1–12. [Google Scholar] [CrossRef]
- Soane, B.D.; Ball, B.C.; Arvidsson, J.; Basch, G.; Moreno, F.; Roger-Estrade, J. No-till in northern, western and south-western Europe: A review of problems and opportunities for crop production and the environment. Soil Tillage Res. 2012, 118, 66–87. [Google Scholar] [CrossRef] [Green Version]
- Fanigliulo, R.; Biocca, M.; Pochi, D. Evaluation of traditional and conservation tillage methods for cereal cultivation in central Italy. Chem. Eng. Trans. 2017, 58, 211–216. [Google Scholar]
- Raper, R.L.; Bergtold, J.S. In-row subsoiling: A rewiew and suggestion for reducing cost of this conservation tillage operation. Appl. Eng. Agric. 2007, 23, 463–471. [Google Scholar] [CrossRef]
- Usaborisut, P.; Prasertkan, K. Specific energy requirements and soil pulverization of a combined tillage implement. Heliyon 2019, 5, e0257. [Google Scholar] [CrossRef]
- Serrano, J.M.; Peca, J.O.; da Silva, J.M.; Pinheiro, A.; Carvalho, M. Tractor energy requirements in disc harrow system. Biosyst. Eng. 2007, 98, 286–296. [Google Scholar] [CrossRef]
- Godwin, R.J. A review of the effect of implement geometry on soil failure and implement forces. Soil Till. Res. 2007, 97, 331–340. [Google Scholar] [CrossRef]
- Ghuman, B.S.; Sur, H.S. Tillage and residue management effects on soil properties and yields of rain fed corn and wheat in a sub humid subtropical climate. Soil Till. Res. 2001, 58, 1–10. [Google Scholar] [CrossRef]
- Papayiannopoulou, A.; Parissopoulos, G.; Papadakis, G.; Kladis, G.; Sakkas, C. Winter cereals production with no tillage and conventional methods in central Greece. J. Sustain. Agric. 2008, 32, 597–609. [Google Scholar] [CrossRef]
- Fanigliulo, R.; Antonucci, F.; Figorilli, S.; Pochi, D.; Pallottino, F.; Fornaciari, L.; Grilli, R.; Costa, C. Light Drone-Based Application to Assess Soil Tillage Quality Parameters. Sensors 2020, 20, 728. [Google Scholar] [CrossRef] [Green Version]
- Römkens, R.L.; Wang, J.Y. Effect of tillage on surface roughness. Trans. ASAE 1986, 29, 429–433. [Google Scholar] [CrossRef]
- Bögel, T.; Osinenko, P.; Herlitzius, T. Assessment of soil roughness after tillage using spectral analysis. Soil Till. Res. 2016, 159, 73–82. [Google Scholar] [CrossRef]
- Wuest, S.B.; Albrecht, S.L.; Skirvin, K.W. Crop residue position and interference with wheat seedling development. Soil Till. Res. 2000, 55, 175–182. [Google Scholar] [CrossRef]
- Håkansson, I.; Myrbeck, Å.; Etana, A. A review of research on seedbed preparation for small grains in Sweden. Soil Till. Res. 2002, 64, 23–40. [Google Scholar] [CrossRef]
- Anken, T.; Hilfiker, T.; Bollhalder, H.; Sandri, R.; Sartori, L. Digital image analysis and profile meter for defining seedbed fineness. Agrarforsch. Schweiz 1997, 4, 13–16. [Google Scholar]
- McLaughlin, N.B.; Drury, C.F.; Reynolds, W.D.; Yang, X.M.; Li, Y.X.; Welacky, T.W.; Stewart, G. Energy inputs for conservation and conventional primary tillage implements in a clay loam soil. Trans. ASABE 2008, 51, 1153–1163. [Google Scholar] [CrossRef]
- Hirasawa, K.; Kataoka, T.; Kubo, T. Relationship between Required Power and PTO Speed in Rotary Tiller. IFAC Proc. Volumes 2013, 46, 141–146. [Google Scholar] [CrossRef]
- Fanigliulo, R.; Biocca, M.; Pochi, D. An analysis of eight tillage methods in a silty-clay soil: Proposal for flexible tillage cycles. INMATEH Agric. Eng. 2018, 56, 49–58. [Google Scholar]
- EC Standard. EN 590:2014+A1:2017: Automotive Fuels-Diesel-Requirements and Test Methods; EC: Brussels, Belgium, 2014. [Google Scholar]
- Chen, Y.; Tessier, S.; Rouffignat, J. Soil bulk density estimation for tillage system and soil textures. Trans. ASAE 1998, 41, 1601–1610. [Google Scholar] [CrossRef]
- Servadio, P. Applications of empirical methods in central Italy for predicting field wheeled and tracked vehicle performance. Soil Till. Res. 2010, 110, 236–242. [Google Scholar] [CrossRef]
- ASAE Standards. S313.3 (R2013): Soil Cone Penetrometer; ASABE 843-844; ASAE: St. Joseph, MI, USA, 1999. [Google Scholar]
- ENAMA. Agricultural Machinery Functional and Safety Testing Service. In Test Protocol n. 03 rev. 2–Soil Tillage Machines; ENAMA: Rome, Italy, 2003. [Google Scholar]
- Pochi, D.; Fanigliulo, R.; Pagano, M.; Grilli, R.; Fedrizzi, M.; Fornaciari, L. Dynamic-energetic balance of agricultural tractors: Active systems for the measurement of the power requirements in static tests and under field conditions. J. Agric. Eng. 2013, 44, 415–420. [Google Scholar] [CrossRef]
- Peruzzi, A.; Raffaelli, M.; Di Ciolo, S. Proposta di metodologia per la valutazione della qualità del lavoro svolto dalle macchine per la lavorazione del terreno. Riv. Ing. Agr. 1999, 3, 156–167. [Google Scholar]
- Römkens, M.J.; Wang, M.J.Y.; Darden, R.W. A laser microreliefmeter. Trans. ASAE 1988, 31, 408–413. [Google Scholar] [CrossRef]
- Sandri, R.; Anken, T.; Hilfiker, T.; Sartori, L.; Bollhalder, H. Comparison of methods for determining cloddiness in seedbed preparation. Soil Till. Res. 1998, 45, 75–90. [Google Scholar] [CrossRef]
- Hendrick, J.G.; Gill, W.R. Rotary tiller design parameters Part (1) Direction of rotation, Part (2) Depth of tillage and Part (3) Ratio of peripheral and forward velocities. Trans. ASAE 1971, 14, 669–683. [Google Scholar]
- Ade, G.; Pezzi, F. regolazione e qualità del lavoro di due erpici rotanti ad asse verticale. Riv. Ital. Ing. Agrar. 1991, 4, 193–201. [Google Scholar]
- Chan, C.W.; Wood, R.K.; Holmes, R.G. Powered harrow operating parameters: Effects on soil physical properties. Trans. ASAE 1993, 36, 1279–1285. [Google Scholar] [CrossRef]
- Fanigliulo, R.; Pochi, D.; Volpi, C.; Santoro, G. A mobile system to evaluate the performances of agricultural machinery under field conditions. J. Agric. Eng. 2004, 4, 89–95. [Google Scholar]
- Al-Suhaibani, S.A.; Al-Janobi, A.A.; Al-Majhadi, Y.N. Development and evaluation of tractors and tillage implements instrumentation system. Am. J. Eng. Appl. Sci. 2010, 3, 363–371. [Google Scholar] [CrossRef] [Green Version]
- Pochi, D.; Fanigliulo, R. Testing of soil tillage machinery. In Soil Engineering; Dedousis, A., Bartzanas, T., Eds.; “Soil Biology” Book Series; Springer: Berlin/Heidelberg, Germany, 2010; Volume 20, pp. 147–168. [Google Scholar]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 1–9. [Google Scholar]
- Berntsen, R.; Berre, B. Soil fragmentation and the efficiency of tillage implements. Soil Till. Res. 2002, 64, 137–147. [Google Scholar] [CrossRef]
- Adam, K.M.; Erbach, D.C. Secondary tillage tool effect on soil aggregation. Trans. ASAE 1992, 35, 1771–1776. [Google Scholar] [CrossRef]
- Tagar, A.A.; Adamowski, J.; Memon, M.S.; Do, M.C.; Mashori, A.S.; Soomro, A.S.; Bhayo, W.A. Soil fragmentation and aggregate stability as affected by conventional tillage implements and relations with fractal dimensions. Soil Till. Res. 2020, 197, 104494. [Google Scholar] [CrossRef]
- Grisso, R.; Pitman, R.; Perumpral, J.V.; Roberson, G.T. Gear Up and Throttle Down to Save Fuel; Virginia Cooperative Extension: Blacksburg, VA, USA, 2014; pp. 442–450. 8p. [Google Scholar]
- Cutini, M.; Brambilla, M.; Bisaglia, C.; Pochi, D.; Fanigliulo, R. Efficiency of tractor drawbar power taking into account soil-tire slippage. In Innovative Biosystems Engineering for Sustainable Agriculture, Forestry and Food Production; MID-TERM AIIA 2019, “Lecture Notes in Civil Engineering” Book Series; Coppola, A., Di Renzo, G.C., Altieri, G., D’Antonio, P., Eds.; Springer: Cham, Switzerland, 2020; Volume 67, pp. 661–670. [Google Scholar]
- Kheiralla, A.F.; Yahya, A.; Zohadie, M.; Ishak, W. Modelling of power and energy requirements for tillage implements operating in Serdang sandy clay loam, Malaysia. Soil Till. Res. 2004, 78, 21–34. [Google Scholar] [CrossRef]
Specifications/Treatments | PH-3 | PH-4 | PH-5 | PH-6 |
---|---|---|---|---|
Working width (m) | 3.0 | 4.0 | 5.0 | 6.0 |
Numbers of rotors | 12 | 16 | 20 | 24 |
Distance among rotors (mm) | 245 | 245 | 245 | 245 |
Rotor tine length (mm) | 280 | 270 | 260 | 310 |
Packer roller diameter (mm) | 500 | 500 | 470 | 500 |
Total mass (kg) | 1320 | 1650 | 2910 | 4000 |
Specifications/Treatments | RT-2.3 | RT-4 | RT-5.2 | DH | CC |
---|---|---|---|---|---|
Working width (m) | 2.3 | 4.0 | 5.2 | 2.5 | 3.9 |
Blades/tools number | 54 | 96 | 120 | 36 | 5 1–10 2 |
Distance among flanges/tools (mm) | 250 | 240 | 250 | 230 | 950 3–480 4 |
Number of blades on a flange (n) | 6 | 6 | 6 | - | - |
Rotor diameter 5 (mm) | 530 | 600 | 550 | - | - |
Total mass (kg) | 1170 | 2560 | 3140 | 3465 | 1730 |
Variables | Unit | |
---|---|---|
A | Average Cone Index (0–0.30 m) | MPa |
B | Dry bulk density | kg m−3 |
C | Water content, weight percentage | % |
D | Fuel consumption per h per working width unit | kg h−1m−1 |
E | Specific traction force | kN dm−3 |
F | Specific traction power | kW dm−3 |
G | Tractor slip | % |
H | Slip Power losses | kW |
I | Energy losses for slip | MJ ha−1 |
J | Total working specific power | kW m−1 |
K | Working energy per surface unit | MJ ha−1 |
L | Energy losses for transmission | MJ ha−1 |
M | Total energy losses | MJ ha−1 |
Parameters | Unit | PH-3 | PH-4 | PH-5 | PH-6 | RT-2.3 | RT-4 | RT-5.2 | CC | DH |
---|---|---|---|---|---|---|---|---|---|---|
Water content, weight % | % | 11.0 | 12.8 | 14.3 | 11.9 | 17.2 | 10.7 | 15.1 | 11.6 | 16.7 |
Dry bulk density | kg m−3 | 1309 | 1390 | 1420 | 1380 | 1200 | 1100 | 1376 | 1530 | 1599 |
Surface coverage index | % | 3.9 | 3.6 | 3.4 | 2.9 | 2.9 | 3.6 | 3.9 | 7.6 | 86.1 |
Average Cone Index (0–30 cm) | MPa | 1.3 | 1.3 | 0.6 | 1.3 | 1.7 | 1.1 | 0.8 | 2.0 | 2.0 |
Actual working width | m | 3.1 | 4.0 | 5.0 | 6.0 | 2.3 | 4.0 | 5.2 | 2.5 | 4.0 |
Working depth | m | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.3 | 0.2 |
Surface of tilled soil section | dm2 | 45.8 | 64.3 | 75.0 | 96.0 | 46.0 | 88.0 | 109.2 | 83.1 | 59.7 |
Actual working speed | km h−1 | 3.5 | 3.6 | 3.4 | 2.7 | 2.9 | 4.0 | 3.3 | 4.7 | 6.3 |
Tractor wheels peripheral speed | km h−1 | 3.5 | 3.7 | 3.5 | 2.7 | 3.0 | 4.1 | 3.4 | 5.29 | 6.9 |
Δv | km h−1 | 0.1 | 0.3 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.6 | 0.5 |
Tractor slip | % | 2.3 | 7.3 | 3.6 | 7.8 | 0.9 | 1.2 | 1.6 | 12.1 | 7.7 |
Actual working time | h ha−1 | 0.9 | 0.7 | 0.6 | 0.6 | 1.5 | 0.6 | 0.6 | 0.9 | 0.4 |
Actual working capacity | ha h−1 | 1.1 | 1.5 | 1.7 | 1.6 | 0.7 | 1.3 | 1.5 | 1.1 | 2.5 |
Fuel consumption per h | kg h−1 | 18.5 | 22.8 | 34.8 | 36.1 | 26.8 | 35.8 | 44.6 | 24.3 | 19.8 |
Fuel consumption per ha | kg ha−1 | 17.6 | 15.5 | 20.5 | 22.7 | 40.2 | 27.5 | 29.7 | 21.3 | 7.8 |
Gross traction force | kN | 13.1 | 18.9 | 24.7 | 22.9 | 8.9 | 14.0 | 20.3 | 49.0 | 24.9 |
Tractor self-dislocat. force | kN | 7.1 | 7.7 | 12.9 | 9.8 | 7.8 | 11.0 | 12.9 | 6.4 | 5.9 |
Net traction force | kN | 6.0 | 11.2 | 11.9 | 13.2 | 1.1 | 3.0 | 7.4 | 42.6 | 19.0 |
Specific traction force | kN dm−2 | 0.1 | 0.2 | 0.2 | 0.1 | 0.0 | 0.0 | 0.1 | 0.5 | 0.3 |
Tractor self-dislocat. power | kW | 6.8 | 7.8 | 12.1 | 7.2 | 6.3 | 12.2 | 11.8 | 8.3 | 6.4 |
Traction power | kW | 5.7 | 11.1 | 11.1 | 9.5 | 0.9 | 3.3 | 6.8 | 55.0 | 33.4 |
Specific traction power | kW dm−3 | 1.9 | 2.8 | 2.2 | 1.6 | 0.4 | 0.8 | 1.3 | 22.4 | 8.4 |
PTO speed | rad s−1 | 102.3 | 106.8 | 112.0 | 118.5 | 108.9 | 111.0 | 117.3 | - | - |
Torque at the PTO | Nm | 356 | 385 | 860 | 992 | 726 | 1078 | 1356 | - | - |
Power at the PTO | kW | 36.4 | 41.1 | 96.3 | 117.6 | 79.0 | 126.6 | 159.0 | - | - |
Specific PTO power | kW dm−3 | 11.9 | 10.2 | 19.3 | 19.6 | 34.3 | 31.7 | 30.6 | - | - |
Total working power | kW | 42.1 | 52.2 | 107.4 | 127.1 | 79.9 | 129.9 | 165.8 | 61.7 | 33.4 |
Total working specific power | kW m−1 | 13.8 | 13.0 | 21.5 | 21.2 | 34.7 | 32.5 | 31.9 | 25.2 | 8.4 |
Total engine power | kW | 56.2 | 70.2 | 137.8 | 144.0 | 95.8 | 145.3 | 191.2 | 84.5 | 53.4 |
Power losses for slip | kW | 0.1 | 2.9 | 1.0 | 0.8 | 0.02 | 0.3 | 0.6 | 6.64 | 2.56 |
Energy losses for slip | MJ ha−1 | 0.5 | 7.2 | 2.0 | 1.9 | 0.11 | 0.63 | 1.21 | 21.0 | 3.7 |
Working energy per surface unit | MJ ha−1 | 143.9 | 128.5 | 227.5 | 287.7 | 431.2 | 292.2 | 347.8 | 267.0 | 76.2 |
Working energy per 1000 m3 soil volume | MJ 10−3m−3 | 96.0 | 80.3 | 151.7 | 179.8 | 215.6 | 132.8 | 165.6 | 78.8 | 50.8 |
Power losses for transmiss. | kW | 4.8 | 9.1 | 17.9 | 10.1 | 9.6 | 10.2 | 13.4 | 5.9 | 5.6 |
Energy losses for transmiss. | MJ ha−1 | 16.5 | 22.4 | 37.9 | 22.8 | 51.7 | 22.9 | 28.1 | 18.7 | 8.0 |
Total energy losses | MJ ha−1 | 16.6 | 25.3 | 38.9 | 23.6 | 51.7 | 23.2 | 28.6 | 25.35 | 10.7 |
Rotor speed | rad s−1 | 29.6 | 36.5 | 37.6 | 39.8 | 19.8 | 27.7 | 28.6 | - | - |
Tines cutting interval | mm | 101.7 | 87.0 | 77.8 | 58.0 | - | - | - | - | - |
Tillage pitch | mm | - | - | - | - | 85.0 | 83.8 | 67.0 | - | - |
Blades cutting density | n m−2 | - | - | - | - | 94.1 | 99.4 | 119.3 | - | - |
PC | PH | RT | ||
---|---|---|---|---|
Eigenvalue | % Variance | Eigenvalue | % Variance | |
1 | 6.04 | 46.50 | 10.071 | 77.47 |
2 | 4.87 | 37.46 | 2.929 | 22.53 |
3 | 2.09 | 16.05 | - | - |
Variables | D | E | F | G | H | I | J | K | L | M | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PH | A | r | −0.94 | −0.25 | −0.18 | 0.52 | 0.17 | 0.22 | −0.50 | −0.16 | −0.90 | −0.86 |
p | 0.06 | 0.75 | 0.82 | 0.48 | 0.83 | 0.78 | 0.50 | 0.84 | 0.10 | 0.14 | ||
B | r | 0.43 | 0.70 | 0.39 | 0.43 | 0.49 | 0.43 | 0.58 | 0.41 | 0.85 | 0.90 | |
p | 0.57 | 0.30 | 0.61 | 0.57 | 0.51 | 0.57 | 0.42 | 0.59 | 0.15 | 0.10 | ||
C | r | 0.65 | 0.70 | 0.50 | 0.05 | 0.38 | 0.32 | 0.47 | 0.19 | 0.95 | 0.98 | |
p | 0.35 | 0.30 | 0.50 | 0.95 | 0.62 | 0.68 | 0.53 | 0.81 | 0.05 | 0.02 | ||
RT | A | r | 0.95 | −0.91 | −0.99 | −0.99 | −0.99 | −0.99 | 0.97 | 0.67 | 0.82 | 0.82 |
p | 0.20 | 0.27 | 0.08 | 0.11 | 0.08 | 0.08 | 0.15 | 0.54 | 0.38 | 0.39 | ||
B | r | 0.17 | 0.54 | 0.27 | 0.31 | 0.27 | 0.26 | 0.09 | 0.64 | 0.44 | 0.45 | |
p | 0.89 | 0.64 | 0.83 | 0.80 | 0.82 | 0.83 | 0.94 | 0.56 | 0.71 | 0.70 | ||
C | r | 0.31 | −0.87 | −0.69 | −0.72 | −0.69 | −0.69 | 0.39 | −0.21 | 0.03 | 0.02 | |
p | 0.80 | 0.33 | 0.51 | 0.49 | 0.51 | 0.52 | 0.75 | 0.87 | 0.98 | 0.99 |
Variables | Unit | Power Harrows | Rotary Tillers | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PH-3 | PH-4 | PH-5 | Aver. | St dev | CV(%) | RT-2.3 | RT-4 | RT-5.2 | Aver. | St dev | CV (%) | ||
A | MPa | 1.30 | 1.31 | 1.20 | 1.27 | 0.06 | 4.79 | 1.66 | 1.14 | 0.76 | 1.19 | 0.45 | 38.02 |
B | kg m−3 | 1309 | 1390 | 1420 | 1373.00 | 57.42 | 4.18 | 1200 | 1100 | 1376 | 1225.33 | 139.73 | 11.40 |
C | % | 11.0 | 12.8 | 14.3 | 12.70 | 1.65 | 13.01 | 15.1 | 17.2 | 10.7 | 14.33 | 3.32 | 23.14 |
D | kg h−1m−1 | 6.07 | 5.66 | 6.96 | 6.23 | 0.67 | 10.68 | 11.66 | 8.95 | 8.57 | 9.72 | 1.69 | 17.33 |
E | kN dm−3 | 0.13 | 0.17 | 0.16 | 0.15 | 0.02 | 14.40 | 0.02 | 0.03 | 0.07 | 0.04 | 0.02 | 55.40 |
F | kW dm−3 | 1.88 | 2.76 | 2.22 | 2.29 | 0.45 | 19.52 | 0.39 | 0.82 | 1.31 | 0.84 | 0.46 | 55.12 |
G | % | 2.30 | 7.30 | 3.60 | 4.40 | 2.59 | 58.96 | 0.92 | 1.22 | 1.62 | 1.25 | 0.35 | 28.02 |
H | kW | 0.13 | 2.91 | 0.95 | 1.33 | 1.43 | 107.12 | 0.02 | 0.28 | 0.58 | 0.29 | 0.28 | 95.32 |
I | MJ ha−1 | 0.46 | 7.16 | 2.01 | 3.21 | 3.51 | 109.23 | 0.11 | 0.63 | 1.21 | 0.65 | 0.55 | 84.56 |
J | kW m−1 | 13.82 | 12.99 | 21.49 | 16.10 | 4.68 | 29.10 | 34.73 | 32.47 | 31.88 | 33.03 | 1.50 | 4.55 |
K | MJ ha−1 | 143.9 | 128.5 | 227.5 | 166.6 | 53.3 | 31.0 | 431.2 | 292.2 | 347.8 | 357.1 | 69.9 | 19.6 |
L | MJ ha−1 | 16.46 | 22.44 | 37.93 | 25.61 | 11.08 | 43.26 | 51.71 | 22.88 | 28.07 | 34.22 | 15.36 | 44.90 |
M | MJ ha−1 | 16.60 | 25.35 | 38.88 | 26.94 | 11.23 | 41.67 | 51.73 | 23.16 | 28.65 | 34.51 | 15.16 | 43.93 |
Variables | Difference | Dev. | D.o.F. | Var. | F | p (same) |
---|---|---|---|---|---|---|
E | Within groups | 0.0014 | 2 | 0.001 | 2.135 | 0.319 |
Between groups | 0.0190 | 1 | 0.0190 | 57.76 | 0.017 | |
Error | 0.0007 | 2 | 0.0003 | |||
Total | 0.0210 | 5 | ||||
F | Within groups | 0.558 | 2 | 0.279 | 2.094 | 0.323 |
Between groups | 3 | 1 | 3.146 | 23.61 | 0.040 | |
Error | 0.266 | 2 | 0.133 | |||
Total | 4 | 5 | ||||
J | Within groups | 158.94 | 2 | 79.47 | 0.489 | 0.672 |
Between groups | 429.99 | 1 | 429.99 | 26.45 | 0.036 | |
Error | 32.52 | 2 | 16.26 | |||
Total | 478.41 | 5 | ||||
K | Within groups | 7958.3 | 2 | 3979.2 | 1.061 | 0.485 |
Between groups | 54,401.5 | 1 | 54,401.5 | 14.51 | 0.063 | |
Error | 7498.0 | 2 | 3749.0 | |||
Total | 69,857.8 | 5 |
Parameters | SCI 1 (%) | BBD (%) | SRI | RRD (%) | CBI | CRD (%) | SQI |
---|---|---|---|---|---|---|---|
Implements | |||||||
PH-3 | 0.7 | 82.1 | 1.79 | 80.1 | 0.84 | 36.5 | 1.29 |
PH-4 | 0.6 | 84.6 | 1.69 | 81.0 | 0.82 | 36.3 | 1.25 |
PH-5 | 0.6 | 84.0 | 2.41 | 63.7 | 0.82 | 56.3 | 0.87 |
PH-6 | 0.5 | 85.7 | 1.54 | 81.5 | 0.83 | 57.9 | 0.92 |
RT-2.3 | 0.6 | 81.0 | 2.17 | 72.1 | 0.84 | 53.8 | 1.10 |
RT-4 | 0.7 | 80.8 | 2.32 | 70.8 | 0.83 | 56.7 | 1.16 |
RT-5.2 | 0.8 | 78.6 | 1.27 | 82.5 | 0.85 | 57.1 | 0.94 |
DH | 4.7 | 38.0 | 4.86 | 32.8 | 0.60 | 54.7 | 0.43 |
CC 2 | 10.5 | 87.8 | 3.50 | - | 0.66 | - | 0.81 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fanigliulo, R.; Pochi, D.; Servadio, P. Conventional and Conservation Seedbed Preparation Systems for Wheat Planting in Silty-Clay Soil. Sustainability 2021, 13, 6506. https://doi.org/10.3390/su13116506
Fanigliulo R, Pochi D, Servadio P. Conventional and Conservation Seedbed Preparation Systems for Wheat Planting in Silty-Clay Soil. Sustainability. 2021; 13(11):6506. https://doi.org/10.3390/su13116506
Chicago/Turabian StyleFanigliulo, Roberto, Daniele Pochi, and Pieranna Servadio. 2021. "Conventional and Conservation Seedbed Preparation Systems for Wheat Planting in Silty-Clay Soil" Sustainability 13, no. 11: 6506. https://doi.org/10.3390/su13116506
APA StyleFanigliulo, R., Pochi, D., & Servadio, P. (2021). Conventional and Conservation Seedbed Preparation Systems for Wheat Planting in Silty-Clay Soil. Sustainability, 13(11), 6506. https://doi.org/10.3390/su13116506