Production Risk and Competency among Categorized Rice Peasants: Cross-Sectional Evidence from an Emerging Country
Abstract
:1. Introduction
2. Theoretical Framework
3. Econometric Approach
3.1. Stochastic Frontier and Risk Models Estimation
3.2. Dominance Criterion for Stochastic Model
4. Study Area and Data Collection
5. Results and Discussion
5.1. Descriptive Statistics of the Used Variables
5.2. Descriptive Statistics of the Used Variables
5.2.1. Estimated Results of Deterministic Production Frontier Model
5.2.2. Estimation of Technical Inefficiency
5.2.3. Risk Function
5.3. Efficiency and Risk Distribution Comparisons
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Barrett, C.B.; Reardon, T.; Webb, P. Nonfarm income diversification and household livelihood strategies in rural Africa: Concepts, dynamics, and policy implications. Food Policy 2001, 26, 315–331. [Google Scholar] [CrossRef]
- Yu, X.; Zhao, G. Chinese agricultural development in 30 years: A literature review. Front. Econ. China 2009, 4, 633–648. [Google Scholar] [CrossRef]
- De Brauw, A.; Rozelle, S. Reconciling the returns to education in off-farm wage employment in rural China. Rev. Dev. Econ. 2008, 12, 57–71. [Google Scholar] [CrossRef]
- Xiaobing, W.; Herzfeld, T.; Glauben, T. Labor allocation in transition: Evidence from Chinese rural households. China Econ. Rev. 2007, 18, 287–308. [Google Scholar]
- Adams, R.H. Nonfarm Income, Inequality, and Poverty in Rural Egypt and Jordan; World Bank Publications: Washington, DC, USA, 2001; Volume 2572. [Google Scholar]
- De Brauw, A.; Huang, J.; Rozelle, S.; Zhang, L.; Zhang, Y. The evolution of China’s rural labor markets during the reforms. J. Comp. Econ. 2002, 30, 329–353. [Google Scholar] [CrossRef] [Green Version]
- Benjamin, D. Household composition, labor markets, and labor demand: Testing for separation in agricultural household models. Econom. J. Econom. Soc. 1992, 60, 287–322. [Google Scholar] [CrossRef]
- Fernandez-Cornejo, J.; Ashok, M.; Nehring, R.; Hendricks, C.; Southern, M.; Gregory, A. Off-Farm Income, Technology Adoption, and Farm Economic Performance; United States Department of Agriculture (USDA): Washington, DC, USA, 2007; 53p.
- Jolliffe, D. The impact of education in rural Ghana: Examining household labor allocation and returns on and off the farm. J. Dev. Econ. 2004, 73, 287–314. [Google Scholar] [CrossRef]
- Babatunde, R.O. On-farm and off-farm works: Complement or substitute? Evidence from rural nigeria. In Proceedings of the 4th international conference of the African Association of Agricultural Economists, Hammamet, Tunisia, 22–25 September 2013. [Google Scholar]
- Haggblade, S.; Hazell, P.; Reardon, T. The rural non-farm economy: Prospects for growth and poverty reduction. World Dev. 2010, 38, 1429–1441. [Google Scholar] [CrossRef]
- Davis, B.; Di Giuseppe, S.; Zezza, A. Income Diversification Patterns in Rural Sub-Saharan Africa: Reassessing the Evidence; World Bank Policy Research Working Paper; World Bank: Washington, DC, USA, 2014. [Google Scholar]
- El-Osta, H.S.; Mishra, A.K.; Morehart, M.J. Off-farm labor participation decisions of married farm couples and the role of government payments. Appl. Econ. Perspect. Policy 2008, 30, 311–332. [Google Scholar] [CrossRef]
- El-Osta, H.S.; Mishra, A.K.; Morehart, M.J. Determinants of economic well-being among US farm operator households. Agric. Econ. 2007, 36, 291–304. [Google Scholar] [CrossRef]
- Mishra, A.K.; Goodwin, B.K. Farm income variability and the supply of off-farm labor. Am. J. Agric. Econ. 1997, 79, 880–887. [Google Scholar] [CrossRef]
- Yee, J.; Ahearn, M.C.; Huffman, W. Links among farm productivity, off-farm work, and farm size in the Southeast. J. Agric. Appl. Econ. 2004, 36, 591–603. [Google Scholar] [CrossRef]
- Goodwin, B.K.; Mishra, A.K. Farming efficiency and the determinants of multiple job holding by farm operators. Am. J. Agric. Econ. 2004, 86, 722–729. [Google Scholar] [CrossRef]
- Kumbhakar, S.C.; Biswas, B.; Bailey, D. A study of economic efficiency of Utah dairy farmers: A system approach. Rev. Econ. Stat. 1989, 71, 595–604. [Google Scholar] [CrossRef]
- Ahmed, M.H.; Melesse, K.A. Impact of off-farm activities on technical efficiency: Evidence from maize producers of eastern Ethiopia. Agric. Food Econ. 2018, 6, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Abebe, G.G. Off-farm Income and Technical Efficiency of Smallholder Farmers in Ethiopia—A Stochastic Frontier Analysis; Swedish University of Agricultural Sciences: Uppsala, Sweden, 2014. [Google Scholar]
- Bojnec, S.; Ferto, I. Impact of Off-farm Income on Farm Efficiency in Slovenia. In Proceedings of the EAAE International Congress, Zurich, Switzerland, 30 August–2 September 2011. [Google Scholar]
- Zhang, L.; Su, W.; Eriksson, T.; Liu, C. How off-farm employment affects technical effi ciency of China’s farms: The case of Jiangsu. China World Econ. 2016, 24, 37–51. [Google Scholar] [CrossRef]
- Arshad, M.; Amjath-Babu, T.S.; Krupnik, T.J.; Aravindakshan, S.; Abbas, A.; Kächele, H.; Müller, K. Climate variability and yield risk in South Asia’s rice–wheat systems: Emerging evidence from Pakistan. Paddy Water Environ. 2016, 15, 249–261. [Google Scholar] [CrossRef]
- Huang, J.; Wang, Y.; Wang, J. Farmers’ adaptation to extreme weather events through farm management and its impacts on the mean and risk of rice yield in China. Am. J. Agric. Econ. 2015, 97, 602–617. [Google Scholar] [CrossRef]
- Mane, R.; Watkins, B. Stochastic Analysis of Margin Protection (MP) Crop Insurance in Arkansas Rice Production. In Proceedings of the 2016 Annual Meeting, San Antonio, TX, USA, 6–9 February 2016. [Google Scholar]
- Parry, M.L.; Rosenzweig, C.; Iglesias, A.; Livermore, M.; Fischer, G. Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Glob. Environ. Chang. 2004, 14, 53–67. [Google Scholar] [CrossRef]
- Rizwan, M.; Deyi, Z.; Nazir, A.; Osti, R.; Ahmed, U.I.; Zhu, Y.; Iqbal, M.A. Risk Perceptions and Management Strategies of Rice Growing Households: Evidence from a Developing Country. J. Appl. Environ. Biol. Sci. 2017, 7, 15–26. [Google Scholar]
- Dadzie, S.K.N.; Acquah, H.D. Attitudes toward risk and coping responses: The case of food crop farmers at Agona Duakwa in Agona East District of Ghana. Int. J. Agric. For. 2012, 2, 29–37. [Google Scholar]
- Rizwan, M.; Ping, Q.; Saboor, A.; Ahmed, U.I.; Zhang, D.; Deyi, Z.; Teng, L. Measuring rice farmers’ risk perceptions and attitude: Evidence from Pakistan. Hum. Ecol. Risk Assess. 2019, 1–6. [Google Scholar] [CrossRef]
- Ping, Q.; Iqbal, M.A.; Abid, M.; Ahmed, U.I.; Nazir, A.; Rehman, A. Adoption of off-farm diversification income sources in managing agricultural risks among cotton farmers in Punjab Pakistan. J. Appl. Environ. Biol. Sci 2016, 6, 47–53. [Google Scholar]
- Chomba, S.J.; Nyang’au, S.P. Influence of entrepreneurial competencies on the growth of small and micro enterprises in the agricultural industry in Kirinyaga County, Kenya. Int. Acad. J. Innov. Leadersh. Entrep. 2019, 2, 1–13. [Google Scholar]
- Salim, M.N.; Fajar, H. Determinant analysis of productivity on rice management in indonesia. Int. J. Bus. 2019, 6, 369–383. [Google Scholar]
- De Janvry, A.; Sadoulet, E. Income strategies among rural households in Mexico: The role of off-farm activities. World Dev. 2001, 29, 467–480. [Google Scholar] [CrossRef]
- Rizwan, M.; Deyi, Z.; Nazir, A.; Osati, R.; Traore, L.; Sargani, G.R. Determinants and choices of off-farm work among rice farmers in a developing country. J. Anim. Plant Sci. 2017, 27, 1993–2002. [Google Scholar]
- Hongo, C.; Tsuzawa, T.; Tokui, K.; Tamura, E. Development of damage assessment method of rice crop for agricultural insurance using satellite data. J. Agric. Sci. 2015, 7, 59. [Google Scholar] [CrossRef]
- Nazir, A.; Li, G.; Sheikh, M.; Zhou, X.; Humayoon, A.; Rizwan, M.; Akhtar, S. Farmers’ perceptions of risk sources and risk coping strategies in Pakistan. J. Anim. Plant Sci 2018, 28, 889–902. [Google Scholar]
- Singla, S.; Sagar, M. Integrated risk management in agriculture: An inductive research. J. Risk Financ. 2012, 13, 199–214. [Google Scholar] [CrossRef]
- Abdullah, A.; Gillani, W.A.; Naveed, S.; Amanullah, K.; Kashif, H. Computerized farm guide: Using ICT for better dissemination of agriculture extension information, A paper. In Proceedings of the 3rd International Symposium on Intelligent Information Technology in Agriculture, Beijing, China, 14–16 October 2005. [Google Scholar]
- GOP Pakistan Economic Survey 2017-18. Available online: http://www.finance.gov.pk/survey/chapters_18/Economic_Survey_2017_18.pdf (accessed on 20 December 2019).
- FAOSTAT Comparing Data, Region. Available online: http://www.fao.org/faostat/en/#compare (accessed on 12 February 2017).
- Hess, U.; Richter, K.; Stoppa, A. Weather risk management for agriculture and agri-business in developing countries. In Climate Risk and the Weather Market, Financial Risk Management with Weather Hedges; Risk Books: London, UK, 2002. [Google Scholar]
- Carroll, J.M. Pakistan Grain and Feed Annual Grain and Feed Annual Report. Available online: https://apps.fas.usda.gov/newgainapi/api/report/downloadreportbyfilename?filename=Grain%20and%20Feed%20Annual_Islamabad_Pakistan_4-7-2010.pdf (accessed on 12 December 2019).
- GOP Economic Survey of Pakistan, 2013–2014. Ministry of Food and Agriculture. Finance Division, Economic Advisor’s Wing, Islamabad, Pakistan. Islam. Pakistan. 2014. Available online: http://ipr.org.pk/wp-content/uploads/2014/07/IPR-Analysis-on-Economic-Survey.pdf (accessed on 20 November 2019).
- Dai, J. A study on the risk and technical efficiency of Taiwan ricegrowing farms: 1998–2004. Taiwan. Agric. Econ. Rev. 2006, 11, 213–238. [Google Scholar]
- El-Osta, H.S.; Morehart, M.J. Determinants of poverty among US farm households. J. Agric. Appl. Econ. 2008, 40, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Lass, D.A.; Findeis, J.L.; Hallberg, M.C. Factors Affecting the Supply of Off-farm Labor: A Review of Empirical Evidence; Iowa State University Press: Iowa, IA, USA, 1991. [Google Scholar]
- Kumbhakar, S.C. Specification and estimation of production risk, risk preferences and technical efficiency. Am. J. Agric. Econ. 2002, 84, 8–22. [Google Scholar] [CrossRef]
- Chang, H.H.; Wen, F.I. Off-farm work, technical efficiency, and rice production risk in Taiwan. Agric. Econ. 2011, 42, 269–278. [Google Scholar] [CrossRef]
- Heckman, J.J. Sample Selection Bias as a Specification Error (with an Application to the Estimation of Labor Supply Functions); National Bureau of Economic Research Cambridge: Cambridge, MA, USA, 1977. [Google Scholar]
- Wooldridge, J.M. Econometric Analysis of Cross Section and Panel Data; MIT Press: Cambridge, MA, USA, 2010; ISBN 0262296799. [Google Scholar]
- Battese, G.E.; Rambaldi, A.N.; Wan, G.H. A stochastic frontier production function with flexible risk properties. J. Product. Anal. 1997, 8, 269–280. [Google Scholar] [CrossRef]
- Wang, H.-J. Heteroscedasticity and non-monotonic efficiency effects of a stochastic frontier model. J. Product. Anal. 2002, 18, 241–253. [Google Scholar] [CrossRef]
- Just, R.E.; Pope, R.D. Production function estimation and related risk considerations. Am. J. Agric. Econ. 1979, 61, 276–284. [Google Scholar] [CrossRef]
- Aigner, D.; Lovell, C.A.K.; Schmidt, P. Formulation and estimation of stochastic frontier production function models. J. Econom. 1977, 6, 21–37. [Google Scholar] [CrossRef]
- Battese, G.E.; Coelli, T.J. Prediction of firm-level technical efficiencies with a generalized frontier production function and panel data. J. Econom. 1988, 38, 387–399. [Google Scholar] [CrossRef]
- Sherlund, S.M.; Barrett, C.B.; Adesina, A.A. Smallholder technical efficiency controlling for environmental production conditions. J. Dev. Econ. 2002, 69, 85–101. [Google Scholar] [CrossRef]
- Chavas, J.P. Risk Analysis in Theory and Practice, 1st ed.; Elsevier Academic Press: San Diego, CA, USA, 2004. [Google Scholar]
- GOP Agricultural statistics of Pakistan 2012–13. Ministry of Food andAgriculture (economic Wing), Finance Division, Government of Pakistan, Islamabad. In Islam. Pakistan; 2013. Available online: http://mnfsr.gov.pk/frmDetails.aspx. (accessed on 15 October 2019).
- Amjad, R.; Arif, G.M.; Mustafa, U. Does the labor market structure explain differences in poverty in rural Punjab? Lahore J. Econ. 2008, 8, 139–162. [Google Scholar] [CrossRef]
- Yamane, T. Research Methods: Determination of Sample Size. 1967. Available online: http://www.sciepub.com/reference/180098. (accessed on 15 February 2019).
- Hejazi, S. Sampling and Its Variants: Introduction to Research Methodology in Medical Sciences; Tehran Islamic Azad University: Tehran, Iran, 2006. [Google Scholar]
- Dhungana, B.R.; Nuthall, P.L.; Nartea, G.V. Measuring the economic inefficiency of Nepalese rice farms using data envelopment analysis. Aust. J. Agric. Resour. Econ. 2004, 48, 347–369. [Google Scholar] [CrossRef]
- Papademetriou, M.K.; Dent, F.J.; Herath, E.M. Bridging the Rice Yield Gap in the Asia-Pacific Region; FAO Regional Office for Asia and the Pacific Bangkok: Bangkok, Thailand, 2000. [Google Scholar]
- Tsai, S.; Wann, J. Selecting functional form for empirical economic model–the case of Taiwan rice production function. Taiwan. Agric. Econ. Rev. 1995, 1, 187–216. [Google Scholar]
- Audibert, M. Technical inefficiency effects among paddy farmers in the villages of the ‘Office du Niger’, Mali, West Africa. J. Product. Anal. 1997, 8, 379–394. [Google Scholar] [CrossRef]
- Fuwa, N.; Edmonds, C.; Banik, P. Are small-scale rice farmers in eastern India really inefficient? Examining the effects of microtopography on technical efficiency estimates. Agric. Econ. 2007, 36, 335–346. [Google Scholar] [CrossRef]
- Liao, H.; Du, Y.-F.; Huang, Z.; Wei, Y.-M. Measuring energy economic efficiency: A mathematical programming approach. Appl. Energy 2016, 179, 479–487. [Google Scholar] [CrossRef]
- Abedullah; Kouser, S.; Mushtaq, K. Analysis of technical efficiency of rice production in Punjab (Pakistan): Implications for future investment strategies. Pak. Econ. Soc. Rev. 2007, 45, 231–244. [Google Scholar]
- Lingard, J.; Castillo, L.; Jayasuriya, S. Comparative efficiency of rice farms in Central Luzon, the Philippines. J. Agric. Econ. 1983, 34, 163–173. [Google Scholar] [CrossRef]
- Johnston, D.; Le Roux, H. Leaving the household out of family labour? The implications for the size–efficiency debate. Eur. J. Dev. Res. 2007, 19, 355–371. [Google Scholar] [CrossRef]
- Idiong, I.C. Estimation of farm level technical efficiency in smallscale swamp rice production in cross river state of Nigeria: A stochastic frontier approach. World J. Agric. Sci. 2007, 3, 653–658. [Google Scholar]
- von Cramon-Taubadel, S.; Saldias, R. Access to credit and determinants of technical inefficiency of specialized smallholder farmers in Chile. Chil. J. Agric. Res. 2014, 74, 413–420. [Google Scholar] [CrossRef]
- Villano, R.; Fleming, E. Technical inefficiency and production risk in rice farming: Evidence from Central Luzon Philippines. Asian Econ. J. 2006, 20, 29–46. [Google Scholar] [CrossRef]
- Yang, J.; Wang, H.; Jin, S.; Chen, K.; Riedinger, J.; Peng, C. Migration, local off-farm employment, and agricultural production efficiency: Evidence from China. J. Product. Anal. 2016, 45, 247–259. [Google Scholar] [CrossRef] [Green Version]
- Vortia, P.; Nasrin, M.; Bipasha, S.K.; Islam, M.M. Extent of farm mechanization and technical efficiency of rice production in some selected areas of Bangladesh. GeoJournal 2019, 1–14. [Google Scholar] [CrossRef]
- Shakoor, U.; Saboor, A.; Baig, I.; Afzal, A.; Rahman, A. Climate variability impacts on rice crop production in Pakistan. Pakistan J. Agric. Res. 2015, 28, 19–27. [Google Scholar]
- Hart, K.A.; Pimentel, D. Environmental and economic costs of pesticide use. Encycl. pest Manag. New York Marcel Dekker 2002, 237–239. [Google Scholar] [CrossRef]
- Iqbal, M.A.; Ping, Q.; Abid, M.; Muhammad Muslim Kazmi, S.; Rizwan, M. Assessing risk perceptions and attitude among cotton farmers: A case of Punjab province, Pakistan. Int. J. Disaster Risk Reduct. 2016, 16, 68–74. [Google Scholar] [CrossRef]
- Lien, G.; Kumbhakar, S.C.; Hardaker, J.B. Determinants of off-farm work and its effects on farm performance: The case of Norwegian grain farmers. Agric. Econ. 2010, 41, 577–586. [Google Scholar] [CrossRef]
Variables | Characterization | With off-Farm | Without off-Farm | * p-Value | ||
---|---|---|---|---|---|---|
Mean | SD | Mean | SD | |||
Yield | average(kg/acre) | 2142.00 | 473.22 | 1892.2 | 435.29 | 0.000 |
Labor | used man days | 170.52 | 34.28 | 170.16 | 28.44 | 0.000 |
Machine | agricultural equipment used in hours | 81.34 | 15.23 | 65.86 | 14.97 | 0.000 |
Fertilizer | fertilizer used in Kg(s) | 2067.6 | 259.1 | 1744.2 | 278.2 | 0.000 |
Chemical | Chemical used in liters | 63.62 | 8.18 | 63.89 | 9.03 | 0.000 |
Irrigation | no. of irrigation | 470.10 | 54.77 | 431.56 | 59.97 | 0.004 |
seed | seed used in kg | 114.78 | 12.84 | 112.04 | 14.11 | 0.02 |
farmsize1 | agricultural land <5 acre | 0.13 | 0.03 | 0.11 | 0.032 | 0.159 |
farmsize2 | agricultural land 5–12.5 acre | 0.45 | 0.11 | 0.42 | 0.028 | 0.098 |
farmsize3 | agricultural land 12.5–25 acre | 0.33 | 0.09 | 0.39 | 0.79 | 0.095 |
farmsize4 | agricultural land >25 acre | 0.08 | 0.02 | 0.06 | 0.02 | 0.046 |
Age | age in years | 45.09 | 7.36 | 48.77 | 10.76 | 0.082 |
educ. | School education in years | 9.65 | 3.21 | 6.57 | 3.55 | 0.000 |
famlysize | total family members | 6.54 | 1.54 | 6.88 | 2.05 | 0.076 |
Rainfall $ | average rain fall | 991.80 | 345.56 | 991.80 | 345.56 | 0.900 |
Tempr $ | average temperature | 30.06 | 0.77 | 30.06 | 0.77 | 0.088 |
Disease | dummy, if yes = 1, no = 0 | 0.60 | 0.49 | 0.37 | 0.48 | 0.098 |
Variables | With off-Farm Work | Without off-Farm Work | ||
---|---|---|---|---|
A Deterministic Frontier Function | ||||
Coefficient | Std. errs. | Coefficient | Std. errs. | |
Constant | 0.891 *** | 0.149 | 0.742 *** | 0.139 |
log(labour) | 0.373 *** | 0.075 | 0.298 *** | 0.072 |
log(machine) | 0.064 * | 0.036 | 0.057 * | 0.032 |
log(fertilizer) | 0.190 *** | 0.047 | 0.170 *** | 0.045 |
log(chemical) | 0.075 * | 0.035 | 0.109 * | 0.042 |
log(irrigation) | 0.232 *** | 0.045 | 0.271 *** | 0.049 |
log(seed) | 0.083 * | 0.032 | 0.084 * | 0.037 |
Inefficiency mean function | ||||
Constant | 5.030 *** | 0.368 | 4.915 *** | 0.317 |
farmsize2 | 0.663 *** | 0.046 | 0.698 *** | 0.049 |
farmsize3 | 1.442 *** | 0.048 | 1.387 *** | 0.049 |
farmsize4 | 1.969 *** | 0.069 | 2.151 *** | 0.067 |
Age | 0.118 | 0.106 | 0.105 | 0.090 |
educ | 0.055 * | 0.036 | 0.025 | 0.021 |
famlysize | 0.023 * | 0.062 | −0.067 * | 0.041 |
Function of risk | ||||
Constant | −2.013 | 1.956 | 0.978 * | 2.176 |
log(labour) | −0.314 *** | 0.076 | −0.304 *** | 0.074 |
log(machine) | −0.061 * | 0.035 | −0.064 * | 0.032 |
log(fertilizer) | 0.197 | 0.045 | −0.183 ** | 0.048 |
log(chemical) | 0.078 | 0.034 | −0.112 ** | 0.042 |
log(irrigation) | −0.226 *** | 0.051 | −0.267 *** | 0.046 |
log(seed) | 0.117 | 0.036 | −0.016 | 0.012 |
Rainfall | 0.073 | 0.032 | −0.008 | 0.035 |
tempr | 0.692 * | 0.519 | 0.042 * | 0.566 |
disease | 0.016 * | 0.011 | 0.076 * | 0.041 |
Log-likelihood | 213.349 | 109.325 |
Technical Efficiencies | Risks | |||
---|---|---|---|---|
With off-Farm. | Without off-Farm | With off-Farm. | Without off-Farm. | |
Mean. | 0.891 * | 0.789 * | 0.197 $ | 0.104 $ |
SD | 0.137 ** | 0.146 ** | 0.021 $$ | 0.025 $$ |
Percentiles | ||||
1% | 0.057 | 0.032 | 0.004 | 0.003 |
5% | 0.089 | 0.061 | 0.007 | 0.006 |
10% | 0.102 | 0.072 | 0.010 | 0.007 |
15% | 0.145 | 0.098 | 0.017 | 0.01 |
25% | 0.274 | 0.219 | 0.026 | 0.022 |
40% | 0.451 | 0.408 | 0.047 | 0.041 |
50% | 0.579 | 0.542 | 0.058 | 0.054 |
60% | 0.679 | 0.687 | 0.069 | 0.065 |
75% | 0.821 | 0.856 | 0.078 | 0.081 |
90% | 0.891 | 0.918 | 0.083 | 0.091 |
95% | 0.911 | 0.920 | 0.085 | 0.092 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rizwan, M.; Qing, P.; Saboor, A.; Iqbal, M.A.; Nazir, A. Production Risk and Competency among Categorized Rice Peasants: Cross-Sectional Evidence from an Emerging Country. Sustainability 2020, 12, 3770. https://doi.org/10.3390/su12093770
Rizwan M, Qing P, Saboor A, Iqbal MA, Nazir A. Production Risk and Competency among Categorized Rice Peasants: Cross-Sectional Evidence from an Emerging Country. Sustainability. 2020; 12(9):3770. https://doi.org/10.3390/su12093770
Chicago/Turabian StyleRizwan, Muhammad, Ping Qing, Abdul Saboor, Muhammad Amjed Iqbal, and Adnan Nazir. 2020. "Production Risk and Competency among Categorized Rice Peasants: Cross-Sectional Evidence from an Emerging Country" Sustainability 12, no. 9: 3770. https://doi.org/10.3390/su12093770
APA StyleRizwan, M., Qing, P., Saboor, A., Iqbal, M. A., & Nazir, A. (2020). Production Risk and Competency among Categorized Rice Peasants: Cross-Sectional Evidence from an Emerging Country. Sustainability, 12(9), 3770. https://doi.org/10.3390/su12093770