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Abstract: Climate change is increasing the frequency and intensity of extreme events and, consequently,
flooding in urban and peri-urban areas. The electrical grid is exposed to an increase in fault probability
because its infrastructure was designed considering historical frequencies of extreme events occurred
in the past. In this respect, to ensure future energy plans and securing services is of great relevance to
determine and evaluate the new zones that may be under risk and its relation to critical infrastructures
for such extreme events. In this regard, the electrical distribution system is one of the key critical
infrastructures since it feeds the others and with the future plans of zero-emissions (leading to the
electrification of transport, buildings, renewable energies, etc.) will become even more important
in the short term. In this paper, a novel methodology has been developed, able to analyze flood
hazard maps quantifying the probability of failure risk of the electrical assets and their potential
impacts using a probabilistic approach. Furthermore, a process to monetize the consequences of
the yielded risk was established. The whole method developed was applied to the Barcelona and
Bristol case study cities. In this way, two different examples of application have been undertaken by
using slightly different inputs. Two main inputs were required: (1) the development of accurate GIS
hazard flooding models; and (2) the location of the electrical assets (i.e., Distribution Centers (DCs)).
To assess and monetize the flood risk to DCs, a variety of variables and tools were required such as
water depths (i.e., flood maps), DCs’ areas of influence, fragility curves, and damage curves. The
analysis was performed for different return periods under different scenarios, current (Baseline) and
future (Business As Usual (BAU)) rainfall conditions. The number of DCs affected was quantified
and classified into different categories of risk, where up to 363 were affected in Barcelona and 623
in Bristol. Their risk monetization resulted in maximums of 815,700 € in Barcelona and 643,500 € in
Bristol. Finally, the percentage of risk increases when considering future rainfall conditions (i.e., BAU)
when calculated, resulting in a 2.38% increase in Barcelona and 3.37% increase in Bristol, which in
monetary terms would be an average of a 22% increase.
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1. Introduction

The future projections for climate change augur severe scenarios for extreme climate events,
especially flooding. The predictions indicate increases of frequency in high flows by 10%–30%, while
also increasing in magnitude as well [1,2]. The Climate Research Foundation (FIC) as part of the
RESCCUE project has studied the changes in terms of rainfall intensity for two European cities,
Barcelona and Bristol, with an expected increase of up to 40% [3]. An increase in the rainfall intensity
will provoke consequently higher flood depths in the surface of the cities because of the exceedance of
the drainage and sewer system capacity. Consequently, current flood prone areas will be covered by
higher depths and new flood prone areas will arise [4], which will increase the likelihood of affecting
critical city infrastructures.

As critical infrastructures, the electric power systems are considered the backbone of the city due
to the increase of power-dependent utilities and devices. The water supply through water pumps,
telecommunication centers, transport (e.g., tramway, underground, electric buses, traffic lights, etc.),
and a large list of city services depend on the electrical infrastructure [5], therefore a general system
failure may end in the collapse of a city until emergency equipment is installed [6]. Due to this, the
resilience of cities is of extreme relevance.

Like any other kind of infrastructure, the electrical was designed considering certain return
periods of events that could affect the system at any point, and they were protected and isolated
accordingly. However, the problem arises when the intensity of the considered return period increases
due to climate change, generating unexpected extreme occurrences that increase the likelihood of
damaging the infrastructures that are not prepared for it [2].

Taking into account the aforementioned points and mixing all ideas together, a plausible problem
is presented; the increased probability of electric blackout provoked by flooding due to more frequent
extreme rainfall events caused by climate change, and thus generating the effect of cascading failures
in other urban services.

Although the problem presented above has not been extensively studied, there exist some other
investigations studying similar problems but following different perspectives or focusing either on the
impact assessment or on economical assessment. The most complete study found during the literature
review was a GIS-based method assessing electrical grid and gas network through fragility curves
focused on seismic events [7]. When focusing on flooding events a methodology to assess the flooding
impact probability of the electrical assets was proposed in [8] where through spatial network models
identified and compared the risk of critical infrastructures on flooded lands. Also, [9] proposed a
method to investigate quantitatively the robustness of the grid against flooding events based on the
Hazus methodology [10] providing a detailed risk analysis. The last relevant method found during
the literature review was [11], presenting an integrated modelling framework combining geospatial
information on infrastructure and flood hazard and geospatial modelling of businesses and economic
activities. Additionally, in [12,13] was proposed a methodology to assess the economic losses caused
by flooding events to electrical assets that in fact, has been used partially on this study.

In this context, this study aims to identify first the hazards and to assess later the potential impacts
caused in the electrical sector in Barcelona and Bristol cities that inevitably affect the population of
the cities. This impact assessment is carried out to evaluate the probability of power system failures
after a flooding event occurs, which allows identification of the most critical locations in order to
implement, if necessary, adaptation measures effectively. The impact assessment will also allow an
estimate of the potential cost of the energy lost during blackout periods, and damages caused to the
electrical assets. Therefore, an analysis of the consequences caused by flooding to population and
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the electrical Distribution Systems Operators (DSO) considering failures within the electrical sector is
presented here, together with the description of a novel method to assess risk and estimate losses in
the distribution centers (DCs) of the power network (example given in Figure 1). The application of
these tools has been carried out for the city of Barcelona and Bristol.
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analysis and its corresponding risk monetization. The results are presented in different sub-sections 
discussing later all the details to finally conclude with the main findings and evidence drawn. 
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Figure 1. Distribution Center example. (a) Outside view, (b) Inside view. 

2. Study Areas and Data Used 

The considered case studies have been two different cities, Bristol (UK) (Figure 2a) and Barcelona 
(Spain) (Figure 2b). Both cities are very different in almost every possible feature to consider, in the 
city design as house grouping, drainage systems, terrestrial topography, electrical grid, etc. and even 
more different in the weather conditions. Although they have a similar areal extent (Bristol 111 km2 
and Barcelona 102 km2) the population density in Barcelona is three times bigger than in Bristol, 
having around 1,621,000 inhabitants while Bristol has only 460,000. However, the studied area for 
this energy analysis in Barcelona has been reduced up to 33% due to key data availability, therefore 
considering only the inhabitants living in the main city area (i.e., 326,000 inhabitants). 
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Figure 2. Areas of study considered. (a) Barcelona city area, (b) Bristol city area. 

2.1. The Bristol Context. 

Bristol is recognized as one of the most susceptible cities within the top 10 Flood risk areas in 
the UK [14]. This is mainly caused by the influence of the tidal river “Avon”, directly connected to 
the sea by mean of the “Severn Estuary”, where tides have a great effect on the river water depth. 
This tidal effect is transmitted to a lesser extent to the other rivers that flow into the river Avon. Bristol 

Figure 1. Distribution Center example. (a) Outside view, (b) Inside view.

The paper starts with an overview of the study areas and the data used to later explain the
probabilistic GIS-based method developed and how the data was used to conduct the DC risk analysis
and its corresponding risk monetization. The results are presented in different sub-sections discussing
later all the details to finally conclude with the main findings and evidence drawn.

2. Study Areas and Data Used

The considered case studies have been two different cities, Bristol (UK) (Figure 2a) and Barcelona
(Spain) (Figure 2b). Both cities are very different in almost every possible feature to consider, in the city
design as house grouping, drainage systems, terrestrial topography, electrical grid, etc. and even more
different in the weather conditions. Although they have a similar areal extent (Bristol 111 km2 and
Barcelona 102 km2) the population density in Barcelona is three times bigger than in Bristol, having
around 1,621,000 inhabitants while Bristol has only 460,000. However, the studied area for this energy
analysis in Barcelona has been reduced up to 33% due to key data availability, therefore considering
only the inhabitants living in the main city area (i.e., 326,000 inhabitants).
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2.1. The Bristol Context

Bristol is recognized as one of the most susceptible cities within the top 10 Flood risk areas in the
UK [14]. This is mainly caused by the influence of the tidal river “Avon”, directly connected to the
sea by mean of the “Severn Estuary”, where tides have a great effect on the river water depth. This
tidal effect is transmitted to a lesser extent to the other rivers that flow into the river Avon. Bristol has
undergone severe floods caused by the combination of storm surges and spring tides, but also others
provoked by heavy rainfall.

Some great historical floods have occurred in Bristol throughout time. The first example is an
historical flood that took place in 1607 when the death of around 2000 people was estimated. A second
more recent example took place in 1896 when a tidal flood event caused a 1m water depth in the city
center, and in 1968 when a combination of a great rainfall with a river flood event killed 7 people and
flooded around 800 properties in the Bristol area. Also, an extreme rainfall event in 2012 caused the
flooding of 25 properties due to surface water flooding [14]. All these examples give an idea of the
flooding experienced in Bristol and present a real problem that this city has suffered over time.

2.1.1. Bristol Flooding Data

From the flooding problems occurred in the past, some city plans have been born and the flooding
records act as a great tool to be used in studies to try to assess the risk to the city in any sector, which in
this case will be the electrical sector.

The study carried out in this paper has used two of the most recent city studies conducted by
Bristol City Council; the Central Area Flood Risk Assessment (CAFRA) focused on the river and tidal
flooding and the Surface Water Management Plan (SWMP), focused on the flooding caused by rainfall
extreme events. In Table 1, the return periods given for each study and scenario are introduced.

Table 1. Different return periods and scenarios run under the flood risk studies.

Return Period

Flood risk study SWMP CAFRA
Current Scenario T20, T100 T20, T100

BAU Scenario T20, T100 T20, T100

2.1.2. Bristol Electrical Data

Regarding the electrical grid, Western Power Distribution is the Distribution System Operator
(DSO) responsible in Bristol city who has provided part of the suitable data necessary for this study,
which comprises the locations of all 11 kV DCs involved in the assessment, substantiating the risk that
these assets can be exposed to.

2.2. The Barcelona Context

In Barcelona, although two main rivers (Llobregat and Besòs) cross the city and flow into the sea,
the tidal influence of the Mediterranean Sea is not relevant, in that the main flooding events have been
caused by heavy rainfall resulting in overtopping banks and river overflow. Every year, one or more
serious rainfall events take place in Barcelona during summer and autumn, normally due to the cold
drop phenomenon.

For what the Catalonia water agency (ACA) has recorded for Barcelona, in February of 1920 there
was great flooding that caused the loss of around 600 properties [15]. After that, the worst flooding of
Barcelona occurred on the 25th September 1962 when 200 l/m2 were registered in less than 3h. This
caused the overflow of Besòs and Llobregat rivers making entire wards disappear through inundation,
destroying whole factories and causing more than 12,000 victims and 617 people dead in several places
of Barcelona province [16]. This disaster boosted the channeling of both Llobregat and Besòs Rivers,
preventing further flooding caused by river overflow. Thereafter, another example of severe flooding
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took place in October of 1987 when Barcelona city services such as the underground, roads, train, tram,
airport, gas, communications and the electric services were blocked until the progressive restoration in
the following days [15].

Taking into account this historical record, the tidal assessment seems irrelevant, as there were no
occurrences for tidal flooding. On the other hand, the extreme rainfall is the phenomenon responsible
for causing the most important flooding events that critically affected the city, hence the importance of
the surface cover flood risk assessment of the different city services in Barcelona.

2.2.1. Barcelona Flooding Data

The entire drainage system of Barcelona has been modelled, providing GIS layers with detailed
information about flooding areas of Barcelona for different return periods and scenarios. Layers with
different return periods (T1, T10, T50, T100 and T500) were generated for a current climate scenario [17]
and for a climate change scenario by considering BAU conditions [18]. The current scenario is based on
historical rainfall data. However, the BAU scenario was created by simulating extreme rainfall events
considering RCP 4.5 and 8.5 by the year 2100.

2.2.2. Barcelona Electrical Data

In the Barcelona case, the electrical grid is managed by Endesa DSO, who provided the location
of the DCs of three important areas: Besòs riverside, Llobregat riverside, and seashore. Due to the
non-availability of DCs location within the entire city, it is not possible to estimate the losses in the
entire city, which makes the focus of the study on the three areas mentioned. These areas were selected
by the DSO as the most relevant for their infrastructure. In addition, to keep the study based on the
real data obtained, no estimations on the other zones have been made.

3. Methodology

To calculate the failure probability of the DC to assess and calculate the potential cost of flooding, a
new methodology has been designed. Such methodology provides an estimation of the assets impacted
as well as the economic evaluation of such faulty conditions. The methodology is structured in different
steps as inputs, probability evaluation, number of assets counting and finally the impact outputs. A
graphical explanation of the method explained in detail in the following sections is given in Figure 3.

3.1. Risk Assessment

For the electrical asset risk assessment, a novel procedure has been established. The first step
was to create a sampling shape layer by using an average diameter of 20 meters for the electrical
DCs wanted for evaluation, with the diameter based on recommendation in the Energy Networks
Association article [19]. The diameter was used to define the influence area for each location and after
that a uniformly distributed cloud of 106 sampling points was created all across the extent (Figure 4).
It is worth noting that such areas allow the tool to cope with location uncertainty in GIS data.
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The second step consisted of the intersection of the sampling layer with the detailed flooding
map that contained the water depth of each flooded area. After crossing both shapes, the following
parameters were extracted:

• Water depth (in meters).
• Flooding occurrence (Y/N). For this, the condition to get a positive answer was to have a Water

Depth ≥ 10 cm (Flooding was assumed to occur once this this threshold was reached).

The third step was to process the information obtained for every sampling point to calculate a
representative figure for each location. In this way, the rate of the affected area and an average for the
water depth for each location was calculated.

To calculate the Affected Area Rate (AAR), the number of sampling points affected were counted
(nY) and later divided by the total number of sampling points (ntotal) (Equation (1)).

AAR =
nY

ntotal
× 100 (1)
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Afterwards, the Water Depth Average (WDA) was calculated for the sampling points flood depth,
obtaining a general representative number of each location (Equation (2)):

WDA =
1
n

n∑
i=1

Yi (2)

Once the water depth for each location was calculated, the fourth step was to introduce this
parameter in the X-axis of each fragility curve represented in Figure 5. The failure probability was
obtained and represented from 0 to 1 in the Y-axis.Sustainability 2020, 12, 1527 7 of 20 
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Figure 5. Original flooding fragility curves for HV, MV and LV electrical substations and distribution
centers (b) (adapted from FEMA, 2009). Softened fragility curve (a) and Hardened fragility curve for
sensitivity analysis (c).

The original fragility curve (Figure 5b) used in this study was adapted from that of the Federal
Emergency Management Agency of the United States [10], previously formed through data gathered
from important disasters occurred in the US electrical grid. It must be remarked that the US grid can
have different standards and protective measures compared to Europe and a different substation and
DC topology. However, in further studies with more data available, the curves can be rebuilt to fit with
the real conditions and features. Taking into account this dissimilarity with the grid established in
Bristol or Barcelona, a sensitivity analysis was performed to assess the possible error caused by this. In
this manner, it is possible to offer a better resolution by contemplating a wider spectrum (Figure 5a,c).

After obtaining the result from the fragility curves, the fifth step was to multiply the Fragility
Curve Probability (FCP) by the AAR, obtaining a final probability of failure for each analysis performed
for each return period given (Equation (3)).

PF = AAR× FCP (3)

The last step was to classify each location studied according to the PF calculated by following the
categories established in Table 2.

Table 2. Different categories set for ranges of failure probabilities.

PF > 0.01 Low Failure Probability (LFP)
0.01 < PF ≤ 0.10 Moderate Failure Probability (MFP)
0.10 < PF ≤ 0.50 High Failure Probability (HFP)

PF > 0.50 Non-Acceptable Failure Probability (NAFP)

3.2. Economical Losses Caused by Electrical Asset Failure

Flooding can cause extensive potential economic losses due to the impact caused to the electrical
assets described in the previous sections. The losses considered in this study are those caused by
non-supplied electricity, damages provoked to the electrical assets, the expenditures associated with
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the renting of emergency electrical supply appliances, and the businesses earning losses provoked by
the shortage. The methodology followed for the calculation of all mentioned losses is explained below.

3.2.1. Effective Damage Cost (EDC)

To monetize the potential damages caused to the electrical assets, a damage curve adapted from
(FEMA-HAZUS) has been applied (Figure 6). The curve initially was given for a 3m depth, but it has
been interpolated from the original one up to a water depth of 9m according to the maximum water
depths obtained in the flooding maps. In Figure 6, the original curve is shown in blue, and the one that
was used for the analysis in green.
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Figure 6. Damage curve used for Effective Damage Cost calculation (Adapted and interpolated from
FEMA-HAZUS [10]).

After introducing the WDA (obtained by Equation (2)) in the damage curve, a percentage of
damage (Dn) in each DC analyzed was obtained. After that, the effective damage cost (EDC) was
calculated according to Equation (4) by multiplying the damage ratio (DES), by the failure probability
(PF) and by the price of the corresponding DC (pSC) that has been estimated based on the substation
voltage given in Table 3. The price of a DC assumed for the cost calculation corresponds to an 11
kV substation.

EDC = PF ×DES × pS (4)

Table 3. Cost of the different substations analyzed based on the voltage (pS) (Adapted from “Climate
change and critical infrastructure-floods” [12]).

Voltage (kV) 225 132 63 33 25 11

Substation cost (€) 9,000,000 5,560,000 3,000,000 1,890,000 1,590,000 1,070,000

3.2.2. Cost Associated with Businesses Losses (BC)

First, a GIS consumer layer based on the ward’s population of each city was created, by using
databases of 2018 obtained from the open data portal of both cities studied [20,21].

A cloud of random points based on the ward population was then generated, therefore representing
the potential consumers distributed along all the study extent. After that, a Thiessen polygons layer
was generated for each electrical asset, representing the supply coverage area of each DC (Figure 7).
The next step was the association of the number of consumers of each random point to the overlapping
Thiessen polygon, getting a total of associated consumers for each DC. It is important to indicate that
such polygons provide an averaged estimation of the population that for global risk assessment can be
accepted as a reasonable result, allowing its application to larger areas.
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Equations (5) and (6) are taken from a European Commission Joint Research Center (JRC) technical
report [13] analyzing climate change and critical infrastructure. These equations evaluate the losses
accounted by city businesses provoked by electrical shortages. Equation (5) uses the Gross Domestic
Product (GDP) of the city and multiplies it by the probability of failure of the DC (PF), by a ratio of
the part of population affected (number of people affected by the shortage (nP) divided by the total
population (ntot)), by the fraction of the year that the shortage takes place (shortage duration in days
(tWE) divided by 365). In this way, the previous DC failure analysis allows the calculation of this
formula that will estimate the cost of the shortage to the businesses.

Bussiness Cost (BC) = GDP× PF ×
nP

Ptot
×

tWE

365
(5)

Equation (6) will give the total cost of the losses associated with local businesses by adding the
values previously calculated in Equation (5).

Total Bussiness Cost (TBC) =
∑

k

BCi (6)

3.2.3. Energy Non-Supplied Cost (ENSC)

In this section, the electrical supply losses caused by the shortage duration have been estimated
by following some different steps for the two cities studied due to the data availability.

The first step was to estimate the power supplied at each DC. In Barcelona, this step was not
necessary because the real parameter was known, making the analysis performed in the selected areas
quite accurate.

However, in Bristol, the average electrical demand of each DC studied was estimated based on
the GIS layer generated in “3.2.2. Cost Associated with Businesses Losses (BC)” where the consumers
were associated with the different DCs. The power estimation consisted of the multiplication of the
total number of consumers by an average consumption of 531 kWh gathered from the world data
portal [22]. In this case, the power losses could be underestimated, due to the business locations, the
industries and other possible sources of consumption were neglected.

Another important parameter required for the calculation of ENSC is the repair time (tR), which
was calculated by associating the different damage categories to the repair time obtained from “power



Sustainability 2020, 12, 1527 10 of 20

grid recovery after natural hazard impact” [6], creating in such a way a damage-time curve based
on these categories (Figure 8). Because in this study the damage will never overpass the 50% mark
(see Figure 8), the categories that could exceeded that mark were discarded for a better equation
curve-fitting, and the rest of categories were represented in a scatter chart, looking for a trend line that
really fits the curve. In this case, it was found that a polynomial curve fitted almost to the perfection
with the damage-time curve (R2 = 0.9987). Hence, it was possible to adapt from a categorical scale to
continuous by using the trend line equation.
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Figure 8. Repair time-damage curve obtained from deriving data from “power grid recovery after
natural hazard impact” [6].

For those future cases in which 100% damage can be reached, it is suggested to consider a
total replacement.

Thus, the equation obtained from Figure 8 was applied to the damage percentage calculated in
the previous step for all locations analyzed to obtain the corresponding repair time of each one.

Thus, DES was applied to the trend line equation, obtaining the corresponding repair time of each
location damaged.

Once the DCs power and the repair time were calculated, the energy losses were derived according
to Equation (7).

ENSC
{

PF·PES·tR·pE, tR ≤ tWE

PF·PES·tWE·pE, tR > tWE
(7)

where PF is the failure probability, PES is the DC power, pE is the energy price and tWE is the period
without energy.

In such a way, the energy blackout will be extended up to the Auxiliary Generation systems that
are put into operation. From this point onwards, the cost will be directly attached to the Auxiliary
Generation Cost.

3.2.4. Auxiliary Generation Cost (AGC)

In this section, the cost attached to the energy generation to avoid the prolongation of the shortage
was estimated. The use of diesel emergency power generator support was assumed for when the repair
time exceeded 9h of duration. This period was chosen as a hypothesis assuming the rainfall duration
given for the flooding maps calculation (i.e., 3 hours) and 6h of response time to rent, transport and
install the equipment. In this way, the calculation of the cost of penalties to the DSO company can be
neglected in the analysis, although this, depending on the severity of the event experienced could be
an underestimation.

It has been considered the transport of the equipment (CAGT) to the affected DC as 20€, and three
different tranches of renting price depending on the number of days required. The first renting tranche
(CRt1) has been set as 100€/day when the period is less than 1 week. The second tranche (CRt2) takes
part when the problem is extended from one week to three weeks with a renting price of 50€/day and



Sustainability 2020, 12, 1527 11 of 20

the third tranche (CRt3) when the repair tasks need more than three weeks, the price is reduced up to
40€/day. The prices used for this calculation have been taken from a company of machinery renting in
Barcelona [23]. In addition, the fuel consumption cost (CFC) was added to the calculation as well as the
number of auxiliary generators (nAG) (Equation (8)).

AGC


0, tR ≤ tWE

PF·CAGT·nAG + CFC + CRt1·nAG, tWE < tR < 1 week
PF·CAGT·nAG + CFC + CRt2·nAG, 1 week < tR < 3 weeks

PF·CAGT·nAG + CFC + CRt3·nAG, tR > 3 weeks

(8)

The number of auxiliary generators was calculated by dividing the DC power consumption (PES)
by the maximum active power given by the generator (PAG) and rounding up the result to the whole
number (Equation (9)).

nAG = d
PES
PAG
e (9)

3.2.5. Estimation of the Total Losses

The total losses were calculated by adding all the cost values calculated in the previous sub-sections
(Equation (10)).

Losses Related to the Grid (LRG) = EDC + BC + ENSC + AGC (10)

4. Results

4.1. Risk Assessment Results

After the application of the methodology presented in Section 3, based on hydraulic modelling,
probabilistic functions, and GIS processes, the results are presented for both case studies in Barcelona
and Bristol, and both scenarios presented, current (Baseline) and future (BAU) rainfall conditions.

4.1.1. Barcelona

In Barcelona city, the results obtained for the risk analysis are given in Figures 9 and 10. These
results are the output of the different analyses made with the different fragility curves FC1 (Softened
fragility curve), FC2 (Original fragility curve) and FC3 (Hardened fragility curve) presented in
Section 3.1.

The number of DCs affected in FC1 and FC2 was the same in the corresponding return periods,
but with the difference that these DCs were allocated in different risk categories. While FC2 allocated
more DCs in LFP and NAFP, FC1 did in MFP and HFP. However, FC3 diminishes the number of DCs
affected due to those under LFP and MFP being dismissed (Figure 9).

Also, between scenarios, a percentage of increase over the total of elements analyzed was extracted
(i.e., 1342 DCs).

Depending on the return period analyzed and the fragility curve observed, there is a different
increase from current scenario to BAU. With increases of up to 32 DCs affected in the BAU scenario
means 2.38% of the total number of DCs, although this happens in the lowest importance category
(i.e., LFP). In MFP, an increase of 22 DCs was found in T500 return period, meaning 1.64% over the
total and in HFP 7 DCs, that is a percentage of 0.52%. All the increases found for the maximum return
period analyzed T500, are depicted in the map of Figure 10, colored in green.
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Figure 9. Summary chart of the DCs at potential risk found by the implementation of the method
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Figure 10. Multiple Barcelona map representation of the DCs analyzed, regarding the different fragility
curves (FCs) studied and the different scenarios analyzed for return period T500.

4.1.2. Bristol

In Bristol city, the effect of FC1 and FC2 is the same as in Barcelona. The number of DCs detected
at risk is the same, but this is through allocating them in different risk categories and showing the same
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allocation pattern. Otherwise, the results obtained by means of FC3 are almost null, presenting only
one DC at risk in NAFP (Figure 11).
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Figure 11. Summary chart of the DCs at potential risk in Bristol found by the implementation of the
method developed.

The analysis between scenarios was also made in Bristol, where a total of 1869 DCs were analyzed.
From current to BAU, it was found in LFP that there was a maximum increase of 63 DCs, representing
3.37% over the original total. Also, in MFP there was a maximum increase of 1.12% (21 DCs) and 0.43%
in HFP with eight more DCs affected. In Figure 12, the increases are represented for the maximum
return period analyzed (i.e., T100).
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In general, the effective damage cost (EDC) is the most significant part of the cost with around
90% of the total gross, followed by the business cost (BC) with an average percentage of 8%.

In contrast, the AGC signified 1% of the total while the ENSC was practically negligible.
The detailed results for both study cases analyzed are explained with a bit more detail in the

following paragraphs.
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Figure 13. Summary chart of the monetization results for Barcelona study case. It is differentiated
between the return period studied (T), different fragility curves applied (FC) and scenarios applied.

The fragility curves applied show a significant difference between the application of FC1 and FC2,
decreasing the costs associated with DCs failure. However, between FC2 and FC3, the differences are
not quite so evident, and even in T10 of FC3, there produced an increase in costs in comparison to FC2,
but in general, the costs remained quite similar (Figure 13).

In Figure 14, the DCs susceptible to provoke the maximum losses can be identified. In general,
the major losses come from the North-East side of Barcelona, which coincides with the Besòs riverside
where several locations could potentially provoke costs up to 50,000€ in the case of the BAU scenario.
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Also, in an area of the central part of the seashore, (i.e., the Raval ward) there is one DC prone to
provoke losses up to 50,000€ as well and other several locations that could provoke costs up to 20,000€.
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Figure 14. Barcelona map representing the locations that are prone to produce the major losses provoked
by electrical shortages in the return period T500.

4.2.2. Bristol

In the Bristol case, the total losses range from 400,000€ to around 1,000,000 €maximum.
The patterns followed are virtually identical to the previous study case. The results produced

for Bristol city with the application of FC2 and FC3 are quite similar while the FC1 generates slightly
greater losses (Figure 15).Sustainability 2020, 12, 1527 15 of 20 
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Figure 15. Summary chart of the monetization results for the Barcelona study case. It is differentiated
between the return period studied (T), different fragility curves applied (FC) and scenarios applied.

In the map represented in Figure 16, it is possible to see where the costs from 1,000€ to 50,000€
are located and which type of flooding (i.e., tidal/fluvial (CAFRA) or pluvial (SWMP)) is causing the
loss and the scenario in which is caused. The most severe cases are located around the city center and
caused by tidal fluvial problems, with some cases that can provoke losses up to 40,000€ in the current
scenario, or up to 50,000€ in the BAU scenario.
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Figure 16. Bristol map representing the locations that are prone to produce the major losses provoked
by electrical shortages in the return periods T100.

The losses caused by pluvial events are in other points of the Bristol area, more specifically in the
Henbury ward with losses up to 40,000€ and in the Hengrove ward with losses up to 30,000€.

5. Discussion

The risk of assets has been quantified in other studies and in several ways, but not in the same
way it was conducted here. For example, a GIS-based method was proposed by JRC [7] to assess the
electrical grid and the gas network in case of seismic events using seismic fragility curves proposed
by FEMA-HAZUS [10], which is similar to what was done on the failure assessment of this study.
However, it was not taken into account how to assess the economic losses, later releasing other studies,
with methodologies to evaluate the economic losses caused by storms and floods to the electrical
infrastructure in [12,13], but never fusing them in a complete methodology and using it in case of
flooding. The case of [9] builds on FEMA-HAZUS methodology [10] and follows a much more detailed
analysis by using interdependencies but with the single problem of the huge requirement of data and
the added difficulty of creating the network topology, and in most of the cases that information is
confidential. Considering other methodologies as the proposed in [8] only the probability of flooding is
assessed and not the probability of failure neither the economic losses. The most similar methodology
can be found at [11] where a GIS-based approach is taken for the assessment of the electrical sector in
flooding events determining the system exposure and vulnerability of the grid to flooding, with the
particularity of not using fragility curves. A good point here is that this study takes into account other
ways to assess the economic losses considering the economic sectors involved in each area of study.

Regarding the points highlighted above and the new procedures developed, this is a novel process
that allows an analytical interpretation not only of the risk that electrical assets are exposed to but also
about the potential costs that these assets could produce in many different ways to the population and
to the DSO company.

This process enables the user to find the distribution center most exposed to flooding within a
set region, allowing them to then take preventive measures if necessary on behalf of the responsible
organization or authority.

This study evaluated several scenarios by using different parameters. This allowed a check on the
effectiveness of the process and to establish comparisons between the different scenarios proposed.
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5.1. Comparison between Fragility Curves

The results produced in the different analyses, carried out by applying the different fragility curves
modelled, offer a comprehensive view of the effect of changing the curve shape, as demonstrated in
the results produced. The analysis made with FC1 (softened fragility curve) may overestimate the
results because high failure rates at low water depths are considered. On the contrary, when using
FC3 (hardened fragility curve) the results can be underestimated due to the curve considering zero
failure probability up to water depths of 1.4m. Taking into account the results presented, FC3 is neither
representative nor realistic because it omits a high number of DCs with a failure probability in the other
FCs. As the arrangement of the electrical elements can vary heavily between DCs, a zero probability
would be a great underestimation. In fact, taking the experiences of electrical companies’ employees, a
DC can fail from very low water depths and the threshold to identify the flood risk was set to 10 cm in
the risk analysis.

In general, taking FC2 as a reference point, FC1 results in a 19% cost average increase caused by
the sum of all the possible small losses produced by low failure probabilities, while FC3 results in a 9%
cost average reduction, as it neglects all of the small losses and keeps the gross.

In the end, the variation in the fragility curves can be taken as a pessimistic, neutral or optimistic
view if choosing from FC1 to FC3, although in general, FC3 is not representative.

5.2. Comparison Between Current and BAU Scenario

The first comparison made was between a current scenario, where different return periods based
on historical data were modelled in flooding shape layers, and a BAU scenario considering climate
change with an RCP 8.5, estimating the flooding that could occur in the year 2100. As is normal, in the
results obtained, the BAU scenario introduced higher risk and consequently higher costs.

Depending on the fragility curve applied, the differences between both scenarios change, but
counting the maximum change experienced in both cities, the maximum increase in the number of
DCs affected goes in the LFP category with a 2.38% increment in Barcelona and 3.37% increment in
Bristol. Also, big increases are presented for MFP with 1.64% rise in Barcelona and 1.12% in Bristol.
These increments seem to be very low but when translated into cost, the average increase is a 22%
respective difference to the current scenario, but depending on the case analyzed, the percentage can
vary (Figure 17).
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Figure 17. Radial chart that represents the cost increase provoked by climate change in a future scenario
by taking into account all return periods for different fragility curves, scenarios and cities.
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5.3. Comparison between Cities

It is difficult to make a complete comparison between both cities due to different return periods
being analyzed (in Bristol these were lower than in Barcelona), and because of the context of each city.
With regards to context, it has to be taken into account that the extent of both cities studied is more or
less within the same scale (Bristol with 111 km2 and Barcelona with 102 km2) but the effective territory
studied is much less in Barcelona (only 32% which means 33km2) and also 326,000 inhabitants against
460,000 in Bristol. In this aspect, the number of inhabitants of both cities is also similar.

In addition, the hydraulic models that simulate the flooding are different. In Barcelona, the whole
drainage system was included within the model, while in the underground Bristol sewer network only
larger diameter pipes, although in Bristol this considered both pluvial and fluvial flood events, while
in Barcelona, only the pluvial flooding was considered.

Bearing in mind the above statements and taking the unique return period (T100) run for both
cities an analysis comparing the cities was performed, resulting in quite similar losses for each fragility
curve applied but always resulting in Bristol being the city most affected by flooding. In Figure 18a
the total costs are represented for both cities, for the two scenarios analyzed and the different fragility
curves developed, showing a clear difference between cities in almost all cases analyzed. As this
difference could be linked to the number of DCs analyzed in each city, the total cost has been unified
taking into account the total number of DCs analyzed in each city (Figure 18b). In this case, the
difference between cities is even more noticeable, which is something reasonable taking into account
the great problem that Bristol has with flooding [14].
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6. Conclusions

This paper has gone through a methodology that aims to estimate and classify the DCs at
risk of flooding in different classes set by failure probabilities, as well as the energy losses and
their expenditures provoked by shortages caused by potential flooding. This methodology takes a
probabilistic GIS-based approach to quantify the risk of electrical shortage in different areas caused by
DCs flooded. In this research it has been demonstrated that it has become possible to implement this
method to any city where the locations of the DCs and a flooding model are available.

The method used to go through different steps for each city, depending on the data availability for
each one, offers several ways to estimate risk and electrical losses with, inevitably, different accuracy.

As a result, it can be drawn the potential losses incurred to put them into balance against the cost
of taking protective measures if the assets analyzed are not already under protection.
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