Analyzing an Extreme Rainfall Event in Himachal Pradesh, India, to Contribute to Sustainable Development
<p>The daily evolution of infrared brightness temperature (Unit: Kelvin) was derived from the INSAT-3DR satellite product. Panel figures (<b>a</b>–<b>f</b>) are plotted from 8 to 13 July 2023, respectively.</p> "> Figure 2
<p>The plotted area of the figure demonstrates the dimensions of the outer domain (D01). A rectangular box indicates the dimensions of the inner domain (D02), along with the topography of the study domains.</p> "> Figure 3
<p>(<b>a</b>) Climatological mean rainfall distribution (mm/day) for the six days (8 July to 13 July) over the 40 years (1984 to 2023); (<b>b</b>) Rainfall anomaly for the period from 8 July to 13 July for 2023.</p> "> Figure 4
<p>Spatiotemporal distribution of daily rainfall (mm) valid for six days (8 to 13 July 2023) from the IMD gridded data (<b>top row</b>), ERA5 (<b>second row</b>), MSWEP data (<b>third row</b>), and the WRF model’s inner domain simulation (<b>bottom row</b>).</p> "> Figure 5
<p>The Equitable Threat Score (ETS) for simulated rainfall (inner domain) validated against the MSWEP product at various threshold values from 8 July to 13 July 2023.</p> "> Figure 6
<p>Vertically integrated moisture transport (VIMT; kg.m<sup>−1</sup>.s<sup>−1</sup>) for all six days from the ERA5 data. The contours are presenting the VIMT and vectors denote the flow of moisture transport.</p> "> Figure 7
<p>Vertically integrated moisture transport (VIMT; kg.m<sup>−1</sup>.s<sup>−1</sup>) for all six days from the WRF model simulation.</p> "> Figure 8
<p>Area-averaged pressure vs. time vertical distribution of relative humidity (%) from (<b>a</b>) ERA5 and (<b>b</b>) WRF simulation for the inner domain.</p> "> Figure 9
<p>700 hPa daily geopotential height (m) and wind flow (m/s) from ERA5 (<b>first</b> and <b>second</b> rows) and WRF model’s outer domain simulation (<b>third</b> and <b>fourth</b> rows) valid for 8–13 July 2023.</p> "> Figure 10
<p>Extreme rainfall events disaster preparedness block diagram.</p> ">
Abstract
:1. Introduction
2. Credentials of Extreme Rainfall Event from Satellite Product
3. Materials and Methods
3.1. Vertically Integrated Moisture Transport (VIMT)
3.2. Equitable Threat Score (ETS)
3.3. Mean Bias Error (MBE) and Root Mean Square Error (RMSE)
4. Results and Discussion
4.1. Rainfall Analysis
4.2. Vertically Integrated Moisture Transport
4.3. Vertical Profile of Relative Humidity
4.4. 700 hPa Daily Geopotential Height and Wind Pattern
4.5. Applications of High-Resolution NWP Models in EREs Disaster Risk Reduction
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
WRF | Weather Research and Forecasting |
ECMWF | European Centre for Medium-Range Weather Forecasts |
MSWEP | Multi-Source Weighted-Ensemble Precipitation |
IMD | India Meteorological Department |
ERE | Extreme Rainfall Event |
NCEP | National Centers for Environmental Prediction |
ISM | Indian Summer Monsoon |
ENSO | El Niño–Southern Oscillation |
WD | Western Disturbance |
FNL | Final Analysis |
VIMT | Vertically Integrated Moisture Transport |
ETS | Equitable Threat Score |
MBE | Mean Bias Error |
CC | Correlation Coefficient |
References
- Alifu, H.; Hirabayashi, Y.; Imada, Y.; Shiogama, H. Enhancement of river flooding due to global warming. Sci. Rep. 2022, 12, 20687. [Google Scholar] [CrossRef] [PubMed]
- Friess, D.A.; Adame, M.F.; Adams, J.B.; Lovelock, C.E. Mangrove forests under climate change in a 2 °C world. WIREs Clim. Chang. 2022, 13, 792. [Google Scholar] [CrossRef]
- Goswami, B.N.; Venugopal, V.; Sengupta, D.; Madhusoodanan, M.S.; Xavier, P.K. Increasing Trend of Extreme Rain Events Over India in a Warming Environment. Science 2006, 314, 1442–1445. [Google Scholar] [CrossRef] [PubMed]
- Mohapatra, M.; Srivastava, A.K.; Balachandran, S.; Geetha, B. Inter-annual variation and trends in tropical cyclones and monsoon depressions over the north Indian Ocean. Obs. Clim. Var. Change Over Indian Reg. 2017, 89–106. [Google Scholar] [CrossRef]
- Rajeevan, M.; Bhate, J.; Jaswal, A.K. Analysis of variability and trends of extreme rainfall events over India using 104 years of gridded daily rainfall data. Geophys. Res. Lett. 2008, 35, 035143. [Google Scholar] [CrossRef]
- Guhathakurta, P.; Sreejith, O.P.; Menon, P.A. Impact of climate change on extreme rainfall events and flood risk in India. J. Earth Syst. Sci. 2011, 120, 359–373. [Google Scholar] [CrossRef]
- Gupta, V.; Syed, B.; Pathania, A.; Raaj, S.; Nanda, A.; Awasthi, S.; Shukla, D.P. Hydrometeorological analysis of July-2023 floods in Himachal Pradesh, India. Nat. Hazards 2024, 120, 7549–7574. [Google Scholar] [CrossRef]
- Kumar, P.; Shukla, M.V.; Varma, A.K. Impact of all-sky water vapour channel radiance from INSAT-3D/3DR satellite over South Asia region using WRF model. Q. J. R. Meteorol. Soc. 2022, 148, 2532–2545. [Google Scholar] [CrossRef]
- Pattanaik, D.R.; Rajeevan, M. Variability of extreme rainfall events over India during southwest monsoon season. Meteorol. Appl. 2010, 17, 88–104. [Google Scholar] [CrossRef]
- Roxy, M.K.; Ghosh, S.; Pathak, A.; Athulya, R.; Mujumdar, M.; Murtugudde, R.; Terray, P.; Rajeevan, M. A threefold rise in widespread extreme rain events over central India. Nat. Commun. 2017, 8, 708. [Google Scholar] [CrossRef]
- Fischer, E.M.; Knutti, R. Observed heavy precipitation increase confirms theory and early models. Nat. Clim. Chang. 2016, 6, 986–991. [Google Scholar] [CrossRef]
- Allan, R.P.; Barlow, M.; Byrne, M.P.; Cherchi, A.; Douville, H.; Fowler, H.J.; Gan, T.Y.; Pendergrass, A.G.; Rosenfeld, D.; Swann, A.L.S.; et al. Advances in understanding large-scale responses of the water cycle to climate change. Ann. N. Y. Acad. Sci. 2020, 1472, 49–75. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.; Glover, G.H. Effects of model-based physiological noise correction on default mode network anti-correlations and correlations. Neuroimage 2009, 47, 1448–1459. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Zhang, Y.; Gehne, M. Intermittency in precipitation: Duration, frequency, intensity, and amounts using hourly data. J. Hydrometeorol. 2017, 18, 1393–1412. [Google Scholar] [CrossRef]
- Mishra, V.; Aaadhar, S.; Shah, H.; Kumar, R.; Pattanaik, D.R.; Tiwari, A.D. The Kerala flood of 2018: Combined impact of extreme rainfall and reservoir storage. Hydrol. Earth Syst. Sci. Discuss. 2018, 2018, 1–13. [Google Scholar]
- Niu, Z.; Tang, F.; Wang, L. All-sky assimilation of FY-4A AGRI water vapor channels: An observing system experiment study for south Asian monsoon prediction. Q. J. R. Meteorol. Soc. 2024, 150, 2458–2471. [Google Scholar] [CrossRef]
- Schär, C.; Ban, N.; Fischer, E.M.; Rajczak, J.; Schmidli, J.; Frei, C.; Giorgi, F.; Karl, T.R.; Kendon, E.J.; Tank, A.M.G.K.; et al. Percentile indices for assessing changes in heavy precipitation events. Clim. Change 2016, 137, 201–216. [Google Scholar] [CrossRef]
- Yadav, R.K. The recent trends in the Indian summer monsoon rainfall. Environ. Dev. Sustain. 2024, 1–15. [Google Scholar] [CrossRef]
- Dash, C.J.; Shrimali, S.S.; Madhu, M.; Kumar, R.; Adhikary, P.P. Unveiling rainfall and erosivity dynamics in Od-isha’s varied agro-climatic zones for sustainable soil and water conservation planning. Theor. Appl. Climatol. 2024, 155, 7557–7574. [Google Scholar] [CrossRef]
- Singh, R.N.; Sah, S.; Das, B.; Potekar, S.; Chaudhary, A.; Pathak, H. Innovative trend analysis of spatio-temporal variations of rainfall in India during 1901–2019. Theor. Appl. Clim. 2021, 145, 821–838. [Google Scholar] [CrossRef]
- Gadgil, S. The Indian monsoon and its variability. Annu. Rev. Earth Planet. Sci. 2003, 31, 429–467. [Google Scholar] [CrossRef]
- Pattanaik, D.R.; Rathore, L.S.; Kumar, A. Observed and forecasted intraseasonal activity of southwest monsoon rainfall over India during 2010, 2011 and 2012. Pure Appl. Geophys. 2013, 170, 2305–2328. [Google Scholar] [CrossRef]
- Gadgil, S. The monsoon system: Land–sea breeze or the ITCZ? J. Earth Syst. Sci. 2018, 127, 5. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, Y.; Tabari, H.; Wang, J.; Wang, Q.; Song, S.; Hu, Z. Innovative trend analysis of annual and seasonal rainfall in the Yangtze River Delta, eastern China. Atmos. Res. 2020, 231, 104673. [Google Scholar] [CrossRef]
- Dimri, A.; Chevuturi, A.; Niyogi, D.; Thayyen, R.; Ray, K.; Tripathi, S.; Pandey, A.; Mohanty, U. Cloudbursts in Indian Himalayas: A review. Earth-Sci. Rev. 2017, 168, 1–23. [Google Scholar] [CrossRef]
- Hunt, K.M.R.; Fletcher, J.K. The relationship between Indian monsoon rainfall and low-pressure systems. Clim. Dyn. 2019, 53, 1859–1871. [Google Scholar] [CrossRef]
- Dimri, A.; Yasunari, T.; Kotlia, B.; Mohanty, U.; Sikka, D. Indian winter monsoon: Present and past. Earth-Sci. Rev. 2016, 163, 297–322. [Google Scholar] [CrossRef]
- Krishnan, R.; Sundaram, S.; Swapna, P.; Kumar, V.; Ayantika, D.C.; Mujumdar, M. The crucial role of ocean–atmosphere coupling on the Indian monsoon anomalous response during dipole events. Clim. Dyn. 2010, 37, 1–17. [Google Scholar] [CrossRef]
- Hunt, K.M.R.; Turner, A.G.; Stein, T.H.M.; Fletcher, J.K.; Schiemann, R.K.H. Modes of coastal precipitation over southwest India and their relationship with intraseasonal variability. Q. J. R. Meteorol. Soc. 2021, 147, 181–201. [Google Scholar] [CrossRef]
- Martius, O.; Sodemann, H.; Joos, H.; Pfahl, S.; Winschall, A.; Croci-Maspoli, M.; Graf, M.; Madonna, E.; Mueller, B.; Schemm, S.; et al. The role of upper-level dynamics and surface processes for the Pakistan flood of July 2010. Q. J. R. Meteorol. Soc. 2012, 139, 1780–1797. [Google Scholar] [CrossRef]
- Houze, R.A., Jr. Orographic effects on precipitating clouds. Rev. Geophys. 2012, 50, 1. [Google Scholar] [CrossRef]
- Kumar, A.; Asthana, A.; Priyanka, R.S.; Jayangondaperumal, R.; Gupta, A.K.; Bhakuni, S. Assessment of landslide hazards induced by extreme rainfall event in Jammu and Kashmir Himalaya, northwest India. Geomorphology 2017, 284, 72–87. [Google Scholar] [CrossRef]
- Lohan, N.; Routray, A.; Kumar, R.; Mahala, B.K.; Kumar, S. Validation and diagnostic study of cloudburst events over the Himalayan region using IMDAA and ERA5. Geomat. Nat. Hazards Risk 2025, 16, 2446589. [Google Scholar] [CrossRef]
- Allen, K.; Dupuy, J.M.; Gei, M.G.; Hulshof, C.; Medvigy, D.; Pizano, C.; Salgado-Negret, B.; Smith, C.M.; Trierweiler, A.; Van Bloem, S.J.; et al. Will seasonally dry tropical forests be sensitive or resistant to future changes in rainfall regimes? Environ. Res. Lett. 2017, 12, 023001. [Google Scholar] [CrossRef]
- Dobhal, D.P.; Gupta, A.K.; Mehta, M.; Khandelwal, D.D. Kedarnath disaster: Facts and plausible causes. Curr. Sci. 2013, 105, 00113891. [Google Scholar]
- Baidya, S.K.; Shrestha, M.L.; Sheikh, M.M. Trends in daily climatic extremes of temperature and precipitation in Nepal. J. Hydrol. Meteorol. 2008, 5, 38–51. [Google Scholar]
- Vogel, M.M.; Hauser, M.; Seneviratne, S.I. Projected changes in hot, dry and wet extreme events’ clusters in CMIP6 multi-model ensemble. Environ. Res. Lett. 2020, 15, 094021. [Google Scholar] [CrossRef]
- Patel, V.; Kuttippurath, J. Significant increase in water vapour over India and Indian Ocean: Implications for tropospheric warming and regional climate forcing. Sci. Total. Environ. 2022, 838, 155885. [Google Scholar] [CrossRef]
- Shukla, B.P.; Kishtawal, C.M.; Pal, P.K. Satellite-based nowcasting of extreme rainfall events over Western Hima-layan region. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 1681–1686. [Google Scholar] [CrossRef]
- Shah, N.H.; Priamvada, A.; Shukla, B.P. Validation of satellite-based cloudburst alerts: An assessment of location precision over Uttarakhand, India. J. Earth Syst. Sci. 2023, 132, 161. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Duda, M.G.; Powers, J.G. A description of the advanced research WRF version 3. NCAR Tech. Note 2008, 475, 10–5065. [Google Scholar]
- Chang, H.-I.; Kumar, A.; Niyogi, D.; Mohanty, U.; Chen, F.; Dudhia, J. The role of land surface processes on the mesoscale simulation of the July 26, 2005 heavy rain event over Mumbai, India. Glob. Planet. Chang. 2009, 67, 87–103. [Google Scholar] [CrossRef]
- Chen, C.-S.; Lin, Y.-L.; Peng, W.-C.; Liu, C.-L. Investigation of a heavy rainfall event over southwestern Taiwan associated with a subsynoptic cyclone during the 2003 Mei-Yu season. Atmos. Res. 2010, 95, 235–254. [Google Scholar] [CrossRef]
- Davis, S.; Pentakota, L.; Saptarishy, N.; Mujumdar, P.P. A Flood forecasting framework coupling a high resolution WRF ensemble with an urban hydrologic model. Front. Earth Sci. 2022, 10, 883842. [Google Scholar] [CrossRef]
- Hong, S.-Y.; Lee, J.-W. Assessment of the WRF model in reproducing a flash-flood heavy rainfall event over Korea. Atmos. Res. 2009, 93, 818–831. [Google Scholar] [CrossRef]
- Kadaverugu, R.; Matli, C.; Biniwale, R. Suitability of WRF model for simulating meteorological variables in rural, semi-urban and urban environments of Central India. Meteorol. Atmos. Phys. 2021, 133, 1379–1393. [Google Scholar] [CrossRef]
- Mukhopadhyay, P.; Prasad, V.S.; Krishna RP, M.; Deshpande, M.; Ganai, M.; Tirkey, S.; Sarkar, S.; Goswami, T.; Johny, C.J.; Roy, K.; et al. Performance of a very high-resolution global forecast system model (GFS T1534) at 12.5 km over the Indian region during the 2016–2017 monsoon seasons. J. Earth Syst. Sci. 2019, 128, 1–18. [Google Scholar] [CrossRef]
- Valappil, V.K.; Temimi, M.; Weston, M.; Fonseca, R.; Nelli, N.R.; Thota, M.; Kumar, K.N. Assessing bias correction methods in support of operational weather forecast in arid environment. Asia-Pac. J. Atmos. Sci. 2020, 56, 333–347. [Google Scholar] [CrossRef]
- Vellore, R.K.; Kaplan, M.L.; Krishnan, R.; Lewis, J.M.; Sabade, S.; Deshpande, N.; Singh, B.B.; Madhura, R.K.; Rama Rao, M.V.S. Mon-soon-extratropical circulation interactions in Himalayan extreme rainfall. Clim. Dyn. 2016, 46, 3517–3546. [Google Scholar] [CrossRef]
- Verma, S.; Panda, J.; Rath, S.S. Role of PBL and microphysical parameterizations during WRF simulated monsoonal heavy rainfall episodes over Mumbai. Pure Appl. Geophys. 2021, 178, 3673–3702. [Google Scholar] [CrossRef]
- Boyaj, A.; Dasari, H.P.; Hoteit, I.; Ashok, K. Increasing heavy rainfall events in south India due to changing land use and land cover. Q. J. R. Meteorol. Soc. 2020, 146, 3064–3085. [Google Scholar] [CrossRef]
- Chawla, I.; Osuri, K.K.; Mujumdar, P.P.; Niyogi, D. Assessment of the Weather Research and Forecasting (WRF) model for simulation of extreme rainfall events in the upper Ganga Basin. Hydrol. Earth Syst. Sci. 2018, 22, 1095–1117. [Google Scholar] [CrossRef]
- Deb, S.K.; Kishtawal, C.M.; Pal, P.K.; Joshi, P.C. Impact of TMI SST on the simulation of a heavy rainfall episode over Mumbai on 26 July 2005. Mon. Weather. Rev. 2008, 136, 3714–3741. [Google Scholar] [CrossRef]
- Kalra, S.; Kumar, S.; Routray, A. Simulation of heavy rainfall event along east coast of India using WRF modeling system: Impact of 3DVAR data assimilation. Model. Earth Syst. Environ. 2019, 5, 245–256. [Google Scholar] [CrossRef]
- Kedia, S.; Vellore, R.K.; Islam, S.; Kaginalkar, A. A study of Himalayan extreme rainfall events using WRF-Chem. Meteorol. Atmos. Phys. 2019, 131, 1133–1143. [Google Scholar] [CrossRef]
- Kumar, A.; Dudhia, J.; Rotunno, R.; Niyogi, D.; Mohanty, U.C. Analysis of the 26 July 2005 heavy rain event over Mumbai, India using the Weather Research and Forecasting (WRF) model. Q. J. R. Meteorol. Soc. 2008, 134, 1897–1910. [Google Scholar] [CrossRef]
- Mohanty, U.C.; Routray, A.; Osuri, K.K.; Prasad, S.K. A study on simulation of heavy rainfall events over indian region with ARW-3DVAR modeling system. Pure Appl. Geophys. 2012, 169, 381–399. [Google Scholar] [CrossRef]
- Mohapatra, G.N.; Rakesh, V.; Ramesh, K.V. Urban extreme rainfall events: Categorical skill of WRF model simulations for localized and non-localized events. Q. J. R. Meteorol. Soc. 2017, 143, 2340–2351. [Google Scholar] [CrossRef]
- Osuri, K.K.; Nadimpalli, R.; Mohanty, U.C.; Niyogi, D. Prediction of rapid intensification of tropical cyclone Phailin over the Bay of Bengal using the HWRF modelling system. Q. J. R. Meteorol. Soc. 2017, 143, 678–690. [Google Scholar] [CrossRef]
- Patel, P.; Ghosh, S.; Kaginalkar, A.; Islam, S.; Karmakar, S. Performance evaluation of WRF for extreme flood forecasts in a coastal urban environment. Atmos. Res. 2019, 223, 39–48. [Google Scholar] [CrossRef]
- Routray, A.; Mohanty, U.C.; Niyogi, D.; Rizvi, S.R.H.; Osuri, K.K. Simulation of heavy rainfall events over Indian monsoon region using WRF-3DVAR data assimilation system. Meteorol. Atmos. Phys. 2010, 106, 107–125. [Google Scholar] [CrossRef]
- Vaidya, S.S.; Kulkarni, J.R. Simulation of heavy precipitation over Santacruz, Mumbai on 26 July 2005, using Mesoscale model. Meteorol. Atmos. Phys. 2006, 98, 55–66. [Google Scholar] [CrossRef]
- Chevuturi, A.; Dimri, A.P.; Das, S.; Kumar, A.; Niyogi, D. Numerical simulation of an intense precipitation event over Rudraprayag in the central Himalayas during 13–14 September 2012. J. Earth Syst. Sci. 2015, 124, 1545–1561. [Google Scholar] [CrossRef]
- Kumar, M.S.; Shekhar, M.S.; Krishna, S.S.V.S.R.; Bhutiyani, M.R.; Ganju, A. Numerical simulation of cloud burst event on August 05, 2010, over Leh using WRF mesoscale model. Nat. Hazards 2012, 62, 1261–1271. [Google Scholar] [CrossRef]
- Garg, S.; Tiwari, G.; Azad, S. Evaluation of the WRF model for a heavy rainfall event over the complex mountainous topography of Mandi, India. Nat. Hazards 2024, 120, 2661–2681. [Google Scholar] [CrossRef]
- Karki, R.; Hasson, S.U.; Gerlitz, L.; Schickhoff, U.; Scholten, T.; Böhner, J. Quantifying the added value of convection-permitting climate simulations in complex terrain: A systematic evaluation of WRF over the Himalayas. Earth Syst. Dyn. 2017, 8, 507–528. [Google Scholar] [CrossRef]
- Navale, A.; Singh, C. Topographic sensitivity of WRF-simulated rainfall patterns over the North West Himalayan region. Atmos. Res. 2020, 242, 105003. [Google Scholar] [CrossRef]
- Norris, J.; Carvalho, L.M.; Jones, C.; Cannon, F.; Bookhagen, B.; Palazzi, E.; Tahir, A.A. The spatiotemporal variability of precipitation over the Himalaya: Evaluation of one-year WRF model simulation. Clim. Dyn. 2017, 49, 2179–2204. [Google Scholar] [CrossRef]
- Pai, D.S.; Rajeevan, M.; Sreejith, O.P.; Mukhopadhyay, B.; Satbha, N.S. Development of a new high spatial resolution (0.25 × 0.25) long period (1901–2010) daily gridded rainfall data set over India and its comparison with existing data sets over the region. Mausam 2014, 65, 1–18. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Beck, H.E.; Wood, E.F.; Pan, M.; Fisher, C.K.; Miralles, D.G.; Van Dijk, A.I.; Adler, R.F. MSWEP V2 global 3-hourly 0.1 precipitation: Methodology and quantitative assessment. Bull. Am. Meteorol. Soc. 2019, 100, 473–500. [Google Scholar] [CrossRef]
- Giri, R.; Yadav, R.; Ranalkar, M.; Singh, V. Validation of INSAT-3DR sounder retrieved temperature profile with GPS radiosonde and AIRS observations. Adv. Space Res. 2022, 69, 1100–1115. [Google Scholar] [CrossRef]
- Wang, X.; Bi, L.; Wang, H.; Wang, Y.; Han, W.; Shen, X.; Zhang, X. AI-NAOS: An AI-based nonspherical aerosol optical scheme for the chemical weather model GRAPES_Meso5.1/CUACE. Geosci. Model Dev. 2025, 18, 117–139. [Google Scholar] [CrossRef]
- Ullah, K.; Gao, S. Moisture transport over the Arabian Sea associated with summer rainfall over Pakistan in 1994 and 2002. Adv. Atmos. Sci. 2012, 29, 501–508. [Google Scholar] [CrossRef]
- Kalnay, E.C.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Joseph, D. The NMC/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 1996, 77, 437–472. [Google Scholar] [CrossRef]
- Ganjir, G.; Pattnaik, S.; Trivedi, D. Characteristics of dynamical and thermo-dynamical variables during heavy rainfall events over the Indian region. Dyn. Atmos. Ocean. 2022, 99, 101315. [Google Scholar] [CrossRef]
Description | Outer Domain | Inner Domain |
---|---|---|
No. of Grid points in X × Y | 272, 410 | 478, 502 |
Domain Resolution | 12 km | 4 km |
Vertical levels | 55 | 55 |
Time Step | 30 s | 10 s |
Duration of simulation | 144 h | |
Horizontal grid system | Arakawa C grid | |
Acoustic and gravity wave model | 3rd order Runge–Kutta scheme | |
Longwave radiation | Rapid radiative transfer model (RRTM) | |
Shortwave radiation | Dudhia scheme | |
Surface Physics | Revised MM5 scheme | |
Land surface | Unified Noah land surface model | |
Planetary boundary layer scheme | Yonsei University scheme | |
Cumulus parameterization scheme | Kain-Fritsch scheme | |
Cloud microphysics scheme | WRF single-moment six-class | |
Map projection | Mercator |
Data Source | Spatial Resolution | Purpose | Reference |
---|---|---|---|
IMD Gridded Rainfall | 0.25° × 0.25° | To verify daily spatial rainfall | [69] |
ERA5 | 0.25° × 0.25° | To verify large-scale features | [70] |
MSWEP | 0.25° × 0.25° | For comparison with WRF rainfall | [71] |
INSAT 3DR | 4 km | For synoptic scale features | [72] |
NCEP FNL | 0.25° × 0.25° | To prepare input forcings for the WRF model | [73] |
Day | MBE (mm) | Correlation Coefficient | MEA | RMSE |
---|---|---|---|---|
08/07/2023 | −0.13 | 0.65 | 6.70 | 13.84 |
09/07/2023 | 1.02 | 0.59 | 6.94 | 16.81 |
10/07/2023 | 1.9 | 0.56 | 5.99 | 14.74 |
11/07/2023 | 2.72 | 0.46 | 6.47 | 16.57 |
12/07/2023 | 2.5 | 0.31 | 5.94 | 17.33 |
13/07/2023 | 0.5 | 0.18 | 5.23 | 15.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lohan, N.; Kumar, S.; Singh, V.; Gupta, R.P.; Tiwari, G. Analyzing an Extreme Rainfall Event in Himachal Pradesh, India, to Contribute to Sustainable Development. Sustainability 2025, 17, 2115. https://doi.org/10.3390/su17052115
Lohan N, Kumar S, Singh V, Gupta RP, Tiwari G. Analyzing an Extreme Rainfall Event in Himachal Pradesh, India, to Contribute to Sustainable Development. Sustainability. 2025; 17(5):2115. https://doi.org/10.3390/su17052115
Chicago/Turabian StyleLohan, Nitin, Sushil Kumar, Vivek Singh, Raj Pritam Gupta, and Gaurav Tiwari. 2025. "Analyzing an Extreme Rainfall Event in Himachal Pradesh, India, to Contribute to Sustainable Development" Sustainability 17, no. 5: 2115. https://doi.org/10.3390/su17052115
APA StyleLohan, N., Kumar, S., Singh, V., Gupta, R. P., & Tiwari, G. (2025). Analyzing an Extreme Rainfall Event in Himachal Pradesh, India, to Contribute to Sustainable Development. Sustainability, 17(5), 2115. https://doi.org/10.3390/su17052115