Disaster-Pregnant Environment Stability Evaluation of Geohazards in the Yellow River–Huangshui River Valley, China
<p>Overview of the study area.</p> "> Figure 2
<p>Density map of geohazard sites in the YHV.</p> "> Figure 3
<p>Random forest schematic.</p> "> Figure 4
<p>Spatial characterization of the static disaster-pregnant environment in the study area. (<b>a</b>) Lithology, (<b>b</b>) fracture zone density, (<b>c</b>) topographic elevation, (<b>d</b>) slope, (<b>e</b>) river network density, (<b>f</b>) vegetation cover.</p> "> Figure 5
<p>Spatial characterization of the dynamic disaster-pregnant environment in the study area, 2003–2022. (<b>a</b>) R99p, (<b>b</b>) CWDs, (<b>c</b>) average annual rainfall, (<b>d</b>) monthly maximum temperature, (<b>e</b>) maximum monthly temperature difference, (<b>f</b>) average annual temperature, (<b>g</b>) human activity.</p> "> Figure 6
<p>Importance of the geohazard dynamic disaster-pregnant environment based on random forest.</p> "> Figure 7
<p>Inter-annual variation in the dynamic disaster-pregnant environment. (<b>a</b>) Average annual temperature, (<b>b</b>) maximum monthly temperature difference, (<b>c</b>) monthly maximum temperature, (<b>d</b>) human activity, (<b>e</b>) average annual rainfall, (<b>f</b>) R99p, (<b>g</b>) CWDs.</p> "> Figure 8
<p>Trend features and significance tests of the dynamic disaster-pregnant environment. (<b>a</b>) Average annual temperature, (<b>b</b>) average annual rainfall, (<b>c</b>) maximum monthly temperature difference, (<b>d</b>) monthly maximum temperature, (<b>e</b>) R99p, (<b>f</b>) CWDs, (<b>g</b>) human activity.</p> "> Figure 9
<p>Distribution of the stability of the static disaster-pregnant environments.</p> "> Figure 10
<p>Stability distribution of the dynamic disaster-pregnant environments.</p> "> Figure 11
<p>Distribution of the stability of the comprehensive disaster-pregnant environments.</p> "> Figure 12
<p>Comprehensive disaster-pregnant environment stability trend features.</p> ">
Abstract
:1. Introduction
2. Research Methods and Data Sources
2.1. Study Areas
2.2. Data Sources
- ①
- Geohazard site data
- ②
- Subsurface data
- ③
- Meteorological data
- ④
- Human activity data
2.3. Research Methods
2.3.1. The Random Forest Model
2.3.2. Sen’s Slope Estimation
2.3.3. Mann–Kendall Trend Test
3. Analysis of the Results
3.1. Spatial Characteristics of the Disaster-Pregnant Environment
3.1.1. Spatial Characteristics of the Static Disaster-Pregnant Environment
3.1.2. Spatial Characterization and Importance of the Dynamic Disaster-Pregnant Environment
3.1.3. Inter-Annual Variation in the Dynamic Disaster-Pregnant Environment
3.2. Spatial Characterization of the Stability Disaster-Pregnant Environment
3.2.1. Spatial Characterization of the Static Disaster-Pregnant Environment Stability
3.2.2. Spatial Characterization of the Dynamic Disaster-Pregnant Environment Stability
3.2.3. Spatial Characterization and Trend Features in the Comprehensive Disaster-Pregnant Environment Stability
4. Discussion and Conclusions
4.1. Discussion
4.1.1. Classification of Stability and Instability in Disaster-Inducing Environments
4.1.2. Selection of Indicators for Evaluating the Stability of Geologic Disaster-Prone Environments
4.1.3. Trends in Evaluating the Stability of Geologic Hazard-Prone Environments
4.2. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Burton, I.; Kates, R.W.; White, G.F. The Environment as Hazard, 2nd ed.; The Builford Press: New York, NY, USA, 1993. [Google Scholar]
- Blaikie, P.M.; Cannon, T.; Davis, I.; Wisner, B. At Risk: Natural Hazards, People’s Vulnerability, and Disasters; Routledge: London, UK, 1994. [Google Scholar]
- EL-Sabh, M.I.; Murty, T.S.; Venkalesh, S.; Siccardi, F.; Andah, K. Recent Studies in Geophysical Hazards; Kluwer Academic Publisher: Dordrecht, The Netherlands; Boston, MA, USA; London, UK, 1994. [Google Scholar]
- Bolt, B.A.; Horn, W.L.; Macedonald, G.A.; Scott, R.F. Geological Hazards Revised, 2nd ed.; Springer: New York, NY, USA, 1977. [Google Scholar]
- Tucker, B.E.; Erdik, M.; Hwang, C.N. Issues in Urban Earthquake Risk; Kluwer Academic Publishers: Dordrecht, The Netherlands; Boston, MA, USA; London, UK, 1994. [Google Scholar]
- Busoni, E.; Sanchis, P.S.; Calzolari, C.; Romagnoli, A. Mass Movement and Erosion Hazard Patterns by Multivariate Analysis of Landscape Integrated Data: The Upper Orcia River Valley (Siena, Italy) case. Catena 1995, 25, 169–185. [Google Scholar] [CrossRef]
- Varnes, D.J. Landslide Hazard Zonation: A review of Principles and Practice; UNESCO: Paris, France, 1984. [Google Scholar]
- EL-Sabh, M.I.; Murty, T.S. (Eds.) Natural and Man-Made Hazards; D. Reidel Publishing Company: Dordrecht, The Netherlands; Holland, The Netherlands, 1988. [Google Scholar]
- Mccall, G.J.H.; Laming, D.J.C.; Scott, S.C. Geoharzards—Natural and Man-Made; Chapman Hall: London, UK; New York, NY, USA; Tokyo, Japan; Milbourne, UK; Madras, India, 1992. [Google Scholar]
- Rossi, G.; Harmancioglu, N.; Yevjevich, V. Coping with Floods; Kluwer Academic Publishers: Dordrecht, The Netherlands; Boston, MA, USA; London, UK, 1994. [Google Scholar]
- Chung, R.M. (Ed.) Natural Disaster Studies an Investigative Series of the Committee on Natural Disasters Volume Six, Hurricane Hugo; National Academy Press: Washington, DC, USA, 1994. [Google Scholar]
- Turner, B.L., II; Meyer, W.B. Land Use and Land Cover in Global Environmental Change: Consideration for Study. Int. Soc. Sci. J. 1991, 43, 668–679. [Google Scholar]
- Parsons, M.L. Global Warming—The Truth Behind the Myth; Plenum Press: New York, NY, USA; London, UK, 1995. [Google Scholar]
- Zwerrer, S.; Rompaey, R.S.A.R.; Kok, M.J.; Berk, M.M. (Eds.) Climate Change Research—Evaluation and Policy Implications; Elsevier: Amsterdam, The Netherlands, 1995. [Google Scholar]
- Kasperson, J.X.; Kasperson, R.E.; Turner, B.L., II. Regions at Risk: Comparisons of Threatened Environments; United Nations University Press: Tokyo, Japan; New York, NY, USA; Paris, France, 1995. [Google Scholar]
- Eddy, J.A.; Baker, D.J.; Broecker, W.S.; Drake, C.; Eagleson, P.; Fyfe, W.S.; Gates, W.L.; Imbrie, J.; Loomis, R.; McCarthy, J.J.; et al. Global Change in the Greosphere Biosphere; National Academy Press: Washington, DC, USA, 1986. [Google Scholar]
- Committee on Environmental and Natural Resources Research of the National Science and Technology Council. Our Changing Planet—The Fiscal Year 1995; US Global Chanqu Research Program: Washington, DC, USA, 1995. [Google Scholar]
- Philander, S.G. EL Nino, La Nina, and the Southern Oscillation; Academic Press, Inc.: San Diego, CA, USA; New York, NY, USA, 1990. [Google Scholar]
- Park, C. Environment Issues. Prog. Phys. Geogr. 1995, 19, 379–390. [Google Scholar] [CrossRef]
- Sun, Z.; Liu, Y.; Qi, Q.; Liu, W.; Li, D.; Chai, J. Risk Assessment of Coal Mine Flood Disasters Based on Projection Pursuit Clustering Model. Sustainability 2022, 14, 11131. [Google Scholar] [CrossRef]
- Qin, X.; Wu, Y.; Lin, T.; Gao, L. Urban Flood Dynamic Risk Assessment Based on Typhoon Rainfall Process: A Case Study of Typhoon “Lupit” (2109) in Fuzhou, China. Remote Sens. 2023, 15, 3116. [Google Scholar] [CrossRef]
- Liu, L.; Xiao, H.; Wang, C.; Yao, T. Sensitivity analysis of disaster-causing factors for landslide geohazards in the red layer area of Hunan province. Min. Metall. Eng. 2024, 44, 169–174. [Google Scholar]
- Chu, C.; Wang, W.; Shi, Y.; Zhang, H.; Huang, L. Vulnerability assessment of composite hazards in Guangdong-Hong Kong-Macao Greater Bay Area. J. Three Gorges Univ. (Nat. Sci. Ed.) 2024, 46, 60–67. [Google Scholar]
- Li, Z.; Tang, X.; Li, L.; Chu, Y.; Wang, X.; Yang, D. GIS-based risk assessment of flood disaster in the Lijiang River Basin. Sci. Rep. 2023, 13, 6160. [Google Scholar]
- Wang, X.; Qu, Z.; Tian, F.; Wang, Y.; Yuan, X.; Xu, K. Ice-jam flood hazard risk assessment under simulated levee breaches using the random forest algorithm. Nat. Hazards 2023, 115, 331–355. [Google Scholar] [CrossRef]
- Ma, J.; Lei, D.; Ren, Z.; Tan, C.; Xia, D.; Guo, H. Automated Machine Learning-Based Landslide Susceptibility Mapping for the Three Gorges Reservoir Area, China. Math. Geosci. 2024, 56, 975–1010. [Google Scholar] [CrossRef]
- Tang, X.; Liu, S.; Zhan, D.; Wang, G.; Luo, Y.; Hu, S.; Xu, Q. Geothermal Accumulation Constrained by the Tectonic Transformation in the Gonghe Basin, Northeastern Tibetan Plateau. Lithosphere 2022, 2021, 3936881. [Google Scholar] [CrossRef]
- Tan, S.; Tian, X.; Zeng, X.; Nie, F.; Qu, C.; Yu, C. Crustal structure beneath the northern part of the southeastern Tibetan Plateau revealed by a seismic dense nodal array. J. Asian Earth Sci. 2023, 258, 105593. [Google Scholar] [CrossRef]
- Burchfiel, B.; Zhang, P.; Wang, Y.; Zhang, W.; Song, F.; Deng, Q.; Molnar, P.; Royden, L. Geology of the Haiyuan fault zone, Ningxia-Hui Autonomous Region, China, and its relation to the evolution of the northeastern margin of the Tibetan Plateau. Tectonics 1991, 10, 1091–1110. [Google Scholar] [CrossRef]
- Meyer, B.; Tapponnier, P.; Bourjot, L.; Metivier, F.; Gaudemer, Y.; Peltzer, G.; Shunmin, G.; Zhitai, C. Crustal thickening in Gansu-Qinghai, lithospheric mantle subduction, and oblique, strike-slip controlled growth of the Tibet plateau. Geophys. J. Int. 1998, 135, 1–47. [Google Scholar] [CrossRef]
- Tapponnier, P.; Zhiqin, X.; Roger, F.; Meyer, B.; Arnaud, N.; Wittlinger, G.; Jingsui, Y. Oblique stepwise rise and growth of the Tibet Plateau. Science 2001, 294, 1671–1677. [Google Scholar] [CrossRef]
- Zheng, W.; Zhang, P.; Ge, W.; Molnar, P.; Zhang, H.; Yuan, D.; Liu, J. Late Quaternary Slip Rate of the South Heli Shan Fault (Northern Hexi Corridor, NW China) and Its Implications for Northeastward Growth of the Tibetan Plateau. Tectonics 2013, 32, 271–293. [Google Scholar] [CrossRef]
- Dong, Z.; Yao, Z.; Lei, F. Active faults and modern tectonic stress field in eastern Qinghai. Crustal Deform. Earthq. 1992, 12, 64–71. [Google Scholar]
- Li, H.; Yang, Y.; Zhang, F.; Guo, X.; Li, Y.; Lin, L.; Li, Y.; Cao, G.; Zhou, H. Rainfall Determines Shallow Soil Seepage in a Piedmont Summer Pasture of Alpine Meadow on the Northeastern Qinghai–Tibetan Plateau. Water 2021, 13, 2815. [Google Scholar] [CrossRef]
- Zhao, D.; Lancuo, Z.; Hou, G.; Xu, C.; Li, W. Evaluation of geologic hazard susceptibility in the Yellow River-Huangshui River Valley of Qinghai Province. J. Geomech. 2021, 27, 83–95. [Google Scholar]
- Chen, T.; Zhu, L.; Niu, R.-Q.; Trinder, C.J.; Peng, L.; Lei, T. Mapping landslide susceptibility at the Three Gorges Reservoir, China, using gradient boosting decision tree, random forest and information value models. J. Mt. Sci. 2020, 17, 670–685. [Google Scholar] [CrossRef]
- Li, H.; Shi, Y.; Shen, A.; Ma, Y.; Liang, Y.; Li, X.; Dong, J.; Zhao, N.; Yu, J.; Wang, T.; et al. A study on microtopographic classification of the floodplain fan in the east foothills of Helan Mountains based on random forest algorithm. Quat. Res. 2024, 1–13. [Google Scholar]
- Asgari, M.; Yang, W.; Farnaghi, M. Spatiotemporal data partitioning for distributed random forest algorithm: Air quality prediction using imbalanced big spatiotemporal data on spark distributed framework. Environ. Technol. Innov. 2022, 27, 102776. [Google Scholar] [CrossRef]
- Qi, L.; Wang, X.; Wang, C.; Wang, H.; Li, X. Random forest-based screening of environmental geohazard probability factors in Panshi city, China. Adv. Space Res. 2025, 75, 414–431. [Google Scholar] [CrossRef]
- Wang, C.; Wang, K.; Liu, D.; Zhang, L.; Li, M.; Khan, M.; Li, T.; Cui, S. Development and application of a comprehensive assessment method of regional flood disaster risk based on a refined random forest model using beluga whale optimization. J. Hydrol. 2024, 633, 130963. [Google Scholar] [CrossRef]
- Alimujiang, K.; Zhang, X.; Liang, H. Analysis of the spatial relationship between seasonal surface temperature and landscape pattern in the urban agglomeration on the north slope of Tianshan Mountain. Geogr. Res. 2024, 43, 1267–1287. [Google Scholar]
- Alkama, R.; Marchand, L.; Ribes, A.; Decharme, B. Detection of global runoff changes: Results from observations and CMIP5 experiments. Hydrol. Earth Syst. Sci. 2013, 17, 2967–2979. [Google Scholar] [CrossRef]
- Bayazit, M. Nonstationarity of hydrological records and recent trends in trend analysis: A state-of-the-art review. Environ. Process. 2015, 2, 527–542. [Google Scholar] [CrossRef]
- Lettenmaier, D.P.; Wood, E.F.; Wallis, J.R. Hydro-climatological trends in the continental United States, 1948–1988. J. Clim. 1994, 7, 586–607. [Google Scholar] [CrossRef]
- Madsen, H.; Lawrence, D.; Lang, M.; Martinkova, M.; Kjeldsen, T. Review of trend analysis and climate change projections of extreme precipitation and floods in Europe. J. Hydrol. 2014, 519, 3634–3650. [Google Scholar] [CrossRef]
- Vogel, R.M.; Yaindl, C.; Walter, M. Nonstationarity: Flood magnification and recurrence reduction factors in the United States 1. J. Am. Water Resour. Assoc. 2011, 47, 464–474. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods, 4th ed.; Charles Grifin: London, UK, 1975. [Google Scholar]
- Mann, H.B. Non-parametric tests against trend. Econometrica 1945, 13, 245. [Google Scholar] [CrossRef]
- Shen, Z.; Zhang, Q.; Wu, W.; Song, C. Spatial pattern and driving factors of geohazard-prone areas in the Tibetan Plateau and Hengduan Mountains. J. Geogr. 2022, 77, 1211–1224. [Google Scholar]
- Qin, Y.; Zhang, D.; Zheng, W.; Liu, B.; Gong, Z. Spatial distribution of near-fault landslides along Litang fault zones, eastern Tibetan Plateau. Geomorphology 2024, 455, 109189. [Google Scholar] [CrossRef]
- Shaller, P.J.; Doroudian, M.; Hart, M.W. The Eureka Valley Landslide: Evidence of a Dual Failure Mechanism for a Long-Runout Landslide. Lithosphere 2020, 2020, 8860819. [Google Scholar] [CrossRef]
- Liu, Q.; Su, L.; Zhang, C.; Hu, B.; Xiao, S. Dynamic variations of interception loss-infiltration-runoff in three land-use types and their influence on slope stability: An example from the eastern margin of the Tibetan Plateau. J. Hydrol. 2022, 612 Pt B, 128218. [Google Scholar] [CrossRef]
- Zhang, X.; Jiang, L.; Deng, W.; Shu, Z.; Gao, M.; Liu, G. Risk Assessment of Geological Hazards in the Alpine Gorge Region and Its Influencing Factors: A Case Study of Jiulong County, China. Sustainability 2024, 16, 1949. [Google Scholar] [CrossRef]
- Yao, X.; Deng, J.; Liu, X.; Zhou, Z.; Yao, J.; Dai, F.; Ren, K.; Li, L. Primary recognition of active landslides and development rule analysis for pan three-river-parallel. Adv. Eng. Sci. 2020, 52, 16–37. [Google Scholar]
- Niyomukiza, J.; Eisazadeh, A.; Tangtermsirikul, S. Recent advances in slope stabilization using porous vegetation concrete in landslide-prone regions: A review. J. Build. Eng. 2023, 76, 107129. [Google Scholar] [CrossRef]
- Shi, P.; Yang, W. Impacts of earthquakes and extreme weather and climate on geohazards in a mountainous disaster-bearing environment. Prog. Clim. Chang. Res. 2020, 16, 405–414. [Google Scholar]
- Gao, Y.; Li, B.; Feng, Z.; Zuo, X. Analysis of global climate change and geohazard response. J. Geomech. 2017, 23, 65–77. [Google Scholar]
- Jiao, K.; Gao, J.; Liu, Z. Precipitation Drives the NDVI Distribution on the Tibetan Plateau While High Warming Rates May Intensify Its Ecological Droughts. Remote Sens. 2021, 13, 1305. [Google Scholar] [CrossRef]
- Li, Z.; Sun, W.; Yu, R. Analysis of the three-dimensional circulation structure that produced the “22-8” extreme precipitation in Qinghai. J. Meteorol. 2024, 82, 37–54. [Google Scholar]
- Yu, C.; Qing, Y.; Zi, C. Relationship between intense summer precipitation and large-scale circulation over the central-eastern Tibetan Plateau, 1961–2019. Glacial Permafr. 2021, 43, 1290–1300. [Google Scholar]
β | Z | Trend Type | Trend Features |
---|---|---|---|
β > 0 | 2.58 < Z | 4 | Extremely significant increase |
1.96 < Z ≤ 2.58 | 3 | Significant increase | |
1.65 < Z ≤ 1.96 | 2 | Slightly significant increase | |
Z ≤ 1.65 | 1 | No significant increase | |
β = 0 | Z | 0 | No changes |
β < 0 | Z ≤ 1.65 | −1 | No significant decrease |
1.65 < Z ≤ 1.96 | −2 | Slightly significant decrease | |
1.96 < Z ≤ 2.58 | −3 | Significant decrease | |
2.58 < Z | −4 | Extremely significant decrease |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, T.; Zhou, Q.; Ma, W.; Gao, Y.; Li, H.; Zhang, Q. Disaster-Pregnant Environment Stability Evaluation of Geohazards in the Yellow River–Huangshui River Valley, China. Sustainability 2025, 17, 732. https://doi.org/10.3390/su17020732
Zhang T, Zhou Q, Ma W, Gao Y, Li H, Zhang Q. Disaster-Pregnant Environment Stability Evaluation of Geohazards in the Yellow River–Huangshui River Valley, China. Sustainability. 2025; 17(2):732. https://doi.org/10.3390/su17020732
Chicago/Turabian StyleZhang, Tengyue, Qiang Zhou, Weidong Ma, Yuan Gao, Hanmei Li, and Qiuyang Zhang. 2025. "Disaster-Pregnant Environment Stability Evaluation of Geohazards in the Yellow River–Huangshui River Valley, China" Sustainability 17, no. 2: 732. https://doi.org/10.3390/su17020732
APA StyleZhang, T., Zhou, Q., Ma, W., Gao, Y., Li, H., & Zhang, Q. (2025). Disaster-Pregnant Environment Stability Evaluation of Geohazards in the Yellow River–Huangshui River Valley, China. Sustainability, 17(2), 732. https://doi.org/10.3390/su17020732