The Impact of Digitization on Urban Social–Ecological Resilience: Evidence from Big Data Policy Pilots in China
<p>Distribution of the national big data comprehensive pilot cities in China.</p> "> Figure 2
<p>Spatial pattern of China’s urban social–ecological resilience in 2013 and 2023.</p> "> Figure 3
<p>Spatial pattern of China’s urban digitization level in 2013 and 2023.</p> "> Figure 4
<p>Frequency distribution of the positive effect.</p> "> Figure 5
<p>Frequency distribution of the negative effect.</p> "> Figure 6
<p>Frequency distribution of the net effect.</p> ">
Abstract
:1. Introduction
2. Literature Review and Hypothesis Development
3. Research Area, Methods, and Data
3.1. Research Area
3.2. Research Design
3.2.1. Benchmark Regression
3.2.2. Two-Tier Stochastic Frontier Modeling
3.2.3. Spatial Effect Model
3.2.4. Mediating Effect Model
3.2.5. Panel Threshold Effect Model
3.3. Variable Selection and Measurement
3.3.1. Explained Variable
3.3.2. Independent Variable: DIG
3.3.3. Intermediate Variables
3.3.4. Control Variables
3.4. Data Sources
4. Results and Discussion
4.1. Results of Benchmark Regression
4.1.1. Analysis of the Independent Variable
4.1.2. Measurement of Effects of Digitization on Urban Social–Ecological Resilience
4.1.3. Robustness Test
4.1.4. Heterogeneity Test
4.2. Regress Results of a Spatial Econometric Model
4.2.1. Spatial Correlation Test and Model Selection
4.2.2. Regression Results of SDM
4.2.3. Spatial Spillover Effect Test
4.3. Mechanism Test
4.3.1. Mediating Effect Test
4.3.2. Panel Threshold Effect Test
5. Conclusions and Implications
5.1. Main Findings
5.2. Policy Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Variables | (1) | (2) | (3) | (4) |
---|---|---|---|---|
(OLS) | (RE) | (FE) | (MLE) | |
0.0657 *** | 0.1372 *** | 0.1203 *** | 0.0364 *** | |
(10.8260) | (6.1126) | (7.7684) | (0.0113) | |
−0.1455 *** | −0.0000 | −0.0000 *** | −0.0000 *** | |
(−27.3463) | (−1.1688) | (−3.1854) | (0.0000) | |
0.8538 *** | −0.0744 *** | −0.0539 *** | −0.0587 *** | |
(22.0898) | (−5.2916) | (−5.7467) | (0.0061) | |
0.0122 * | 0.2312 | 0.1463 ** | 0.6932 *** | |
(1.7658) | (1.6439) | (2.2998) | (0.0419) | |
0.1224 *** | −0.0841 *** | −0.0877 *** | −0.0637 *** | |
(33.2915) | (−8.8911) | (−17.1900) | (0.0064) | |
0.0615 *** | 0.0672 *** | 0.0672 *** | 0.0945 *** | |
(8.0582) | (13.5809) | (20.1742) | (0.0032) | |
0.0657 *** | 0.1364 *** | 0.1341 *** | 0.1210 *** | |
(10.8260) | (13.0145) | (23.3731) | (0.0068) | |
−0.2401 *** | −0.2553 *** | −0.2421 *** | ||
(−11.6142) | (−20.7285) | (0.0093) | ||
−0.1471 *** | −0.0185 | 0.1146 *** | ||
(−3.0480) | (−0.7550) | (0.0164) | ||
0.0806 *** | 0.0809 *** | 0.0555 *** | ||
(7.4068) | (9.9616) | (0.0045) | ||
−0.2275 *** | −0.2235 *** | −0.1801 *** | ||
(−13.8810) | (−23.5517) | (0.0122) | ||
−0.0615 *** | −0.3868 *** | −0.0252 *** | ||
(−4.6918) | (−17.4901) | (0.0039) | ||
Constant | −2.6831 *** | −3.9891 *** | −8.7448 *** | −4.2819 *** |
(−64.3521) | (−12.5066) | (−22.2406) | (0.1209) | |
Individual effect | NO | NO | YES | YES |
Time effect | NO | YES | YES | YES |
Log Likelihood | 1275.3657 | |||
Wald (chi2) | 12,460.78 | |||
Observations | 4305 | 4305 | 4305 | 4305 |
R-squared | 0.666 | 0.7081 | 0.956 | 0.746 |
References
- Sarker, S.; Arefin, M.S.; Kowsher, M.; Bhuiyan, T.; Dhar, P.K.; Kwon, O.-J. A Comprehensive Review on Big Data for Industries: Challenges and Opportunities. IEEE Access 2023, 11, 744–769. [Google Scholar] [CrossRef]
- Zemtsov, S. New Technologies, Potential Unemployment and ‘Nescience Economy’ during and after the 2020 Economic Crisis. Reg. Sci. Policy Pract. 2020, 12, 723–744. [Google Scholar] [CrossRef] [PubMed]
- Aly, H. Digital Transformation, Development and Productivity in Developing Countries: Is Artificial Intelligence a Curse or a Blessing? Rev. Econ. Political Sci. 2022, 7, 238–256. [Google Scholar] [CrossRef]
- Tao, J.; Wang, Z.; Xu, Y.; Zhao, B.; Liu, J. Can the Digital Economy Boost Rural Residents’ Income? Evidence from China Based on the Spatial Durbin Model. Econ. Anal. Policy 2024, 81, 856–872. [Google Scholar] [CrossRef]
- Del Río Castro, G.; Fernández, M.C.G.; Uruburu Colsa, Á. Unleashing the Convergence amid Digitalization and Sustainability towards Pursuing the Sustainable Development Goals (SDGs): A Holistic Review. J. Clean. Prod. 2021, 280, 122204. [Google Scholar] [CrossRef]
- Pastor-Escuredo, D.; Treleaven, P.; Vinuesa, R. An Ethical Framework for Artificial Intelligence and Sustainable Cities. AI 2022, 3, 961–974. [Google Scholar] [CrossRef]
- Gkontzis, A.F.; Kotsiantis, S.; Feretzakis, G.; Verykios, V.S. Enhancing Urban Resilience: Smart City Data Analyses, Forecasts, and Digital Twin Techniques at the Neighborhood Level. Futur. Internet 2024, 16, 47. [Google Scholar] [CrossRef]
- Ling, X.; Luo, Z.; Feng, Y.; Liu, X.; Gao, Y. How Does Digital Transformation Relieve the Employment Pressure in China? Empirical Evidence from the National Smart City Pilot Policy. Humanit. Soc. Sci. Commun. 2023, 10, 617. [Google Scholar] [CrossRef]
- Qiu, L.; Osman, S.; Hua, Y. Coupling Coordinated Development among Digital Economy, Regional Innovation, and Talent Employment: A Case Study in the Hangzhou Metropolitan Circle, China. Reg. Sustain. 2024, 5, 100115. [Google Scholar] [CrossRef]
- Das, D.K. Exploring the Symbiotic Relationship between Digital Transformation, Infrastructure, Service Delivery, and Governance for Smart Sustainable Cities. Smart Cities 2024, 7, 806–835. [Google Scholar] [CrossRef]
- Kitsios, F.; Kamariotou, M.; Mavromatis, A. Drivers and Outcomes of Digital Transformation: The Case of Public Sector Services. Information 2023, 14, 43. [Google Scholar] [CrossRef]
- He, C.; Li, A.; Li, D.; Yu, J. Does Digital Inclusive Finance Mitigate the Negative Effect of Climate Variation on Rural Residents’ Income Growth in China? Int. J. Environ. Res. Public Health 2022, 19, 8280. [Google Scholar] [CrossRef]
- Dionisio, M.; Junior, S.J.d.S.; Paula, F.; Pellanda, P.C. The Role of Digital Social Innovations to Address SDGs: A Systematic Review. Environ. Dev. Sustain. 2023, 26, 5709–5734. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Gao, G. How Does Digital Transformation Affect the Emissions of Environmental Pollutants? From the Perspective of Nonlinear Nexuses. Ann. Reg. Sci. 2024, 73, 599–637. [Google Scholar] [CrossRef]
- Ma, R.; Liu, H.; Li, Z.; Ma, Y.; Fu, S. Promoting Sustainable Development: Revisiting Digital Economy Agglomeration and Inclusive Green Growth through Two-Tier Stochastic Frontier Model. J. Environ. Manag. 2024, 355, 120491. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, H.; Irfan, M. How Does Digital Infrastructure Construction Affect Low-Carbon Development? A Multidimensional Interpretation of Evidence from China. J. Clean. Prod. 2023, 396, 136467. [Google Scholar] [CrossRef]
- Vassilakopoulou, P.; Hustad, E. Bridging Digital Divides: A Literature Review and Research Agenda for Information Systems Research. Inf. Syst. Front. 2023, 25, 955–969. [Google Scholar] [CrossRef] [PubMed]
- Luan, B.; Zou, H.; Huang, J. Digital Divide and Household Energy Poverty in China. Energy Econ. 2023, 119, 106543. [Google Scholar] [CrossRef]
- Jin, L.; Dai, J.; Jiang, W.; Cao, K. Digital Finance and Misallocation of Resources among Firms: Evidence from China. N. Am. J. Econ. Finance 2023, 66, 101911. [Google Scholar] [CrossRef]
- de Pablos, P.O. Editorial: Digital Innovation and Green Economy for More Resilient and Inclusive Societies: Understanding Challenges Ahead for the Green Growth. J. Sci. Technol. Policy Manag. 2023, 14, 461–466. [Google Scholar] [CrossRef]
- Scown, M.W.; Craig, R.K.; Allen, C.R.; Gunderson, L.; Angeler, D.G.; Garcia, J.H.; Garmestani, A. Towards a Global Sustainable Development Agenda Built on Social–Ecological Resilience. Glob. Sustain. 2023, 6, e8. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Wu, S.-D.; Zeng, Y.-E.; Wu, B.-W. Exploring the Relationship between Urbanization, Energy Consumption, and CO 2 Emissions in Different Provinces of China. Renew. Sustain. Energy Rev. 2016, 54, 1563–1579. [Google Scholar] [CrossRef]
- Hanlon, W.W.; Miscio, A. Agglomeration: A Long-Run Panel Data Approach. J. Urban Econ. 2017, 99, 1–14. [Google Scholar] [CrossRef]
- Yu, J.; Xu, Y.; Zhou, J.; Chen, W. Digital Transformation, Total Factor Productivity, and Firm Innovation Investment. J. Innov. Knowl. 2024, 9, 100487. [Google Scholar] [CrossRef]
- Liu, T. Run at Most Once. Zhejiang Experiences and Chinese Concept. J. Chin. Gov. 2020, 5, 269–271. [Google Scholar] [CrossRef]
- Forman, C.; van Zeebroeck, N. Digital Technology Adoption and Knowledge Flows within Firms: Can the Internet Overcome Geographic and Technological Distance? Res. Policy 2019, 48, 103697. [Google Scholar] [CrossRef]
- Oliveira, L.; Fleury, A.; Fleury, M.T. Digital Power: Value Chain Upgrading in an Age of Digitization. Int. Bus. Rev. 2021, 30, 101850. [Google Scholar] [CrossRef]
- Agnello, L.; Castro, V.; Jalles, J.T.; Sousa, R.M. What Determines the Likelihood of Structural Reforms? Eur. J. Political Econ. 2015, 37, 129–145. [Google Scholar] [CrossRef]
- Wang, H.; Cui, H.; Zhao, Q. Effect of Green Technology Innovation on Green Total Factor Productivity in China: Evidence from Spatial Durbin Model Analysis. J. Clean. Prod. 2021, 288, 125624. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, Y.; Chen, C. The Key Role of Digital Governance, Natural Resource Depletion, and Industrialization in Social Well-Being: A Case Study of China. Resour. Policy 2024, 93, 104969. [Google Scholar] [CrossRef]
- Teng, Q.; Bai, X.; Apuke, O.D. Modelling the Factors That Affect the Intention to Adopt Emerging Digital Technologies for a Sustainable Smart World City. Technol. Soc. 2024, 78, 102603. [Google Scholar] [CrossRef]
- Abid, N.; Marchesani, F.; Ceci, F.; Masciarelli, F.; Ahmad, F. Cities Trajectories in the Digital Era: Exploring the Impact of Technological Advancement and Institutional Quality on Environmental and Social Sustainability. J. Clean. Prod. 2022, 377, 134378. [Google Scholar] [CrossRef]
- Atobishi, T.; Abu Bakir, S.M.; Nosratabadi, S. How Do Digital Capabilities Affect Organizational Performance in the Public Sector? The Mediating Role of the Organizational Agility. Available online: https://www.mdpi.com/2076-3387/14/2/37 (accessed on 31 October 2024).
- Kumbhakar, S.C.; Parmeter, C.F. The Effects of Match Uncertainty and Bargaining on Labor Market Outcomes: Evidence from Firm and Worker Specific Estimates. J. Prod. Anal. 2009, 31, 1–14. [Google Scholar] [CrossRef]
- Lei, P.; Cai, Q.; Jiang, F. Assessing the Impact of Environmental Regulation on Enterprise High-Quality Development in China: A Two-Tier Stochastic Frontier Model. Energy Econ. 2024, 133, 107502. [Google Scholar] [CrossRef]
- Li, W.; Yi, P.; Zhang, D.; Zhou, Y. Assessment of Coordinated Development between Social Economy and Ecological Environment: Case Study of Resource-Based Cities in Northeastern China. Sustain. Cities Soc. 2020, 59, 102208. [Google Scholar] [CrossRef]
- Li, T.; Dong, Y.; Liu, Z. A Review of Social-Ecological System Resilience: Mechanism, Assessment and Management. Sci. Total. Environ. 2020, 723, 138113. [Google Scholar] [CrossRef] [PubMed]
- Partelow, S. A Review of the Social-Ecological Systems Framework: Applications, Methods, Modifications, and Challenges. Ecol. Soc. 2018, 23, 36. [Google Scholar] [CrossRef]
- Brunner, S.H.; Grêt-Regamey, A. Policy Strategies to Foster the Resilience of Mountain Social-Ecological Systems under Uncertain Global Change. Environ. Sci. Policy 2016, 66, 129–139. [Google Scholar] [CrossRef]
- Xu, X.; Wang, M.; Wang, M.; Yang, Y.; Wang, Y. The Coupling Coordination Degree of Economic, Social and Ecological Resilience of Urban Agglomerations in China. Int. J. Environ. Res. Public Health 2022, 20, 413. [Google Scholar] [CrossRef]
- Zhu, Y.; Zeng, S.; Lin, Z.; Ullah, K. Comprehensive Evaluation and Spatial-Temporal Differences Analysis of China’s Inter-Provincial Doing Business Environment Based on Entropy-CoCoSo Method. Front. Environ. Sci. 2023, 10, 1088064. [Google Scholar] [CrossRef]
- Miao, C.; Na, M.; Chen, H.; Ding, M. Urban Resilience Evaluation Based on Entropy-TOPSIS Model: A Case Study of County-Level Cities in Ningxia, Northwest China. Int. J. Environ. Sci. Technol. 2024, 21, 1–16. [Google Scholar] [CrossRef]
- Datola, G. Implementing Urban Resilience in Urban Planning: A Comprehensive Framework for Urban Resilience Evaluation. Sustain. Cities Soc. 2023, 98, 104821. [Google Scholar] [CrossRef]
- Chen, B.; Sharifi, A.; Schlör, H. Integrated Social-Ecological-Infrastructural Management for Urban Resilience. Resour. Conserv. Recycl. 2022, 181, 106268. [Google Scholar] [CrossRef]
- Jiang, N.; Jiang, W.; Wang, Y.; Zhang, J. Impact of Financial Reform on Urban Resilience: Evidence from the Financial Reform Pilot Zones in China. Socio-Econ. Plan. Sci. 2024, 94, 101962. [Google Scholar] [CrossRef]
- Li, Y.; Hao, S.; Han, Q.; Guo, X.; Zhong, Y.; Zou, T.; Fan, C. Study on Urban Economic Resilience of Beijing, Tianjin and Hebei Based on Night Light Remote Sensing Data during COVID-19. Sci. Remote Sens. 2024, 9, 100126. [Google Scholar] [CrossRef]
- Yang, Y.; Fang, Y.-P.; Xu, Y.; Zhang, Y. Assessment of Urban Resilience Based on the Transformation of Resource-Based Cities: A Case Study of Panzhihua, China. Ecol. Soc. 2021, 26, 20. [Google Scholar] [CrossRef]
- Han, S.; Wang, B.; Ao, Y.; Bahmani, H.; Chai, B. The Coupling and Coordination Degree of Urban Resilience System: A Case Study of the Chengdu–Chongqing Urban Agglomeration. Environ. Impact Assess. Rev. 2023, 101, 107145. [Google Scholar] [CrossRef]
- Jiang, N.; Jiang, W. How Does Regional Integration Policy Affect Urban Resilience? Evidence from Urban Agglomeration in China. Environ. Impact Assess. Rev. 2024, 104, 107298. [Google Scholar] [CrossRef]
- Sheergojri, I.A.; Rashid, I.; Aneaus, S.; Rashid, I.; Qureshi, A.A.; Rehman, I.U. Enhancing the Social-Ecological Resilience of an Urban Lake for Sustainable Management. Environ. Dev. Sustain. 2023, 25, 1–26. [Google Scholar] [CrossRef]
- Sharifi, A. Resilience of Urban Social-Ecological-Technological Systems (SETS): A Review. Sustain. Cities Soc. 2023, 99, 104910. [Google Scholar] [CrossRef]
- Zhang, L.; Huang, Q.; He, C.; Yue, H.; Zhao, Q. Assessing the Dynamics of Sustainability for Social-Ecological Systems Based on the Adaptive Cycle Framework: A Case Study in the Beijing-Tianjin-Hebei Urban Agglomeration. Sustain. Cities Soc. 2021, 70, 102899. [Google Scholar] [CrossRef]
- Yu, H.; Wang, J.; Xu, J.; Ding, B. Does Digital Economy Agglomeration Promote Green Economy Efficiency? A Spatial Spillover and Spatial Heterogeneity Perspective. Environ. Dev. Sustain. 2024, 26, 1–28. [Google Scholar] [CrossRef]
- Liu, Z.; Ding, Y. Dispersion or Agglomeration. J. Glob. Inf. Manag. 2023, 31, 1–17. [Google Scholar] [CrossRef]
- Zhang, Z.; Cheng, Y.; Zhang, J. Spatial Spillover and Threshold Effects of Digital Economy on Green Innovation Efficiency–Based on Provincial Level Data in China. Environ. Dev. Sustain. 2023, 25, 1–23. [Google Scholar] [CrossRef]
- Yang, L.; Ma, Z.; Xu, Y. How Does the Digital Economy Affect Ecological Well-Being Performance? Evidence from Three Major Urban Agglomerations in China. Ecol. Indic. 2023, 157, 111261. [Google Scholar] [CrossRef]
- Chang, Y.; Wang, S. China’s Pilot Free Trade Zone and High-Quality Economic Development: The Mediation Effect of Data Real Integration and the Regulating Effect of Technological Innovation. Environ. Dev. Sustain. 2024, 26, 1–39. [Google Scholar] [CrossRef]
- Zhong, X.; Duan, Z.; Liu, C.; Chen, W. Research on the Coupling Mechanism and Influencing Factors of Digital Economy and Green Technology Innovation in Chinese Urban Agglomerations. Sci. Rep. 2024, 14, 5150. [Google Scholar] [CrossRef]
- Chen, W.; Yao, L. The Impact of Digital Economy on Carbon Total Factor Productivity: A Spatial Analysis of Major Urban Agglomerations in China. J. Environ. Manag. 2024, 351, 119765. [Google Scholar] [CrossRef]
- Dou, Q.; Gao, X. The Double-Edged Role of the Digital Economy in Firm Green Innovation: Micro-Evidence from Chinese Manufacturing Industry. Environ. Sci. Pollut. Res. 2022, 29, 67856–67874. [Google Scholar] [CrossRef]
- Zhu, Y.; Lu, S. Digital Economy and Carbon Neutrality: Exploring the Pathways and Implications for China’s Sustainable Development. J. Knowl. Econ. 2024, 15, 1–18. [Google Scholar] [CrossRef]
- Du, K.; Cheng, Y.; Yao, X. Environmental Regulation, Green Technology Innovation, and Industrial Structure Upgrading: The Road to the Green Transformation of Chinese Cities. Energy Econ. 2021, 98, 105247. [Google Scholar] [CrossRef]
- Ren, X.; Zeng, G.; Gozgor, G. How Does Digital Finance Affect Industrial Structure Upgrading? Evidence from Chinese Prefecture-Level Cities. J. Environ. Manag. 2023, 330, 117125. [Google Scholar] [CrossRef]
- Yu, L.-R.; Li, X.-Y. The Effects of Social Security Expenditure on Reducing Income Inequality and Rural Poverty in China. J. Integr. Agric. 2021, 20, 1060–1067. [Google Scholar] [CrossRef]
- Wang, K.-H.; Liu, L.; Adebayo, T.S.; Lobonț, O.-R.; Claudia, M.N. Fiscal Decentralization, Political Stability and Resources Curse Hypothesis: A Case of Fiscal Decentralized Economies. Resour. Policy 2021, 72, 102071. [Google Scholar] [CrossRef]
- Yu, C.; Zheng, H. Efficiency of Green and Low-Carbon Coordinated Development for Mega Urban Agglomerations: An Empirical Study. Front. Environ. Sci. 2024, 12, 1336322. [Google Scholar] [CrossRef]
- Xie, J.; Wei, N.; Gao, Q. Assessing Spatiotemporal Population Density Dynamics from 2000 to 2020 in Megacities Using Urban and Rural Morphologies. Sci. Rep. 2024, 14, 14166. [Google Scholar] [CrossRef] [PubMed]
Dimension | Secondary Indicator | Tertiary Indicator | Criterion Attribute | Literature Support |
---|---|---|---|---|
Urban social–ecological resilience | Economic development and quality | GDP per capita | + | [44] |
Advanced industrial structure index | + | [21] | ||
Financial self-sufficiency rate | + | [45] | ||
External trade dependence | − | [46] | ||
Social well-being and improvement | Per capita disposable income of urban residents | + | [47] | |
Urban registered unemployment rate | − | [48] | ||
Urban social security expenditure | + | [49] | ||
Hospital beds per 10,000 population | + | [46] | ||
Ecological adaptation and adjustment | Greening coverage | + | [43] | |
Energy consumption per unit of GDP | − | [50] | ||
Industrial sulfur dioxide emissions per capita | − | [51] | ||
Solid waste emissions per capita | − | [52] | ||
Level of digitization | Basic conditions | Big data infrastructure investment | + | [26,53] |
Number of employees in the information technology industry | + | [15,45] | ||
Digital application | Digital public services | + | [54] | |
Digital finance and Internet development | + | [55,56] | ||
Driving force for innovation | Investment in science and technology research and development | + | [57,58] | |
Information technology industry inputs | + | [27,59] |
Variables | Symbol | Unit | Obs | Mean | SD | Min | Max |
---|---|---|---|---|---|---|---|
Urban social ecological resilience | - | 4305 | 0.225 | 0.0840 | 0.0960 | 0.485 | |
Digitization level | - | 4305 | 0.112 | 0.104 | 0.0240 | 0.613 | |
Fiscal decentralization | ln% | 4305 | −1.726 | 0.427 | −2.585 | −0.558 | |
Industrial structure upgrading | ln% | 4305 | 0.771 | 0.0960 | 0.486 | 0.954 | |
Technological innovation | ln% | 4305 | −4.332 | 1.328 | −7.918 | −1.497 | |
Social security level | ln% | 4305 | 5.424 | 0.975 | 3.198 | 7.370 | |
Average wage level | lnWage | CNY | 4305 | 14.38 | 0.948 | 12.52 | 16.54 |
Urban unemployment rate | lnunemp | % | 4305 | 3.064 | 0.731 | 1.610 | 2.460 |
Population density | - | 4305 | −13.31 | 1.033 | −15.83 | −10.72 | |
Per capita GDP | CNY | 4305 | 53,594 | 31,665 | 11,222 | 146,266 | |
Urbanization level | urbanrate | % | 4305 | 56.29 | 14.63 | 28.70 | 89.16 |
Variables | (1) | (2) | (3) | (4) |
---|---|---|---|---|
(OLS) | (RE) | (FE) | (MLE) | |
0.1746 *** | 0.1294 *** | 0.1014 *** | 0.062 *** | |
(19.1125) | (7.3250) | (9.3819) | (0.016) | |
−0.0962 | −0.3683 *** | −0.3079 *** | −0.284 | |
(−1.3047) | (−3.7708) | (−5.9357) | (0.212) | |
−0.0788 *** | −0.0237 *** | −0.0192 *** | −0.007 | |
(−18.1427) | (−5.1859) | (−6.2809) | (0.005) | |
0.8920 *** | 0.2532 * | 0.1709 *** | 0.039 | |
(23.7069) | (1.8392) | (2.6817) | (0.157) | |
0.0091 | −0.0915 *** | −0.0930 *** | −0.133 *** | |
(1.2953) | (−9.6507) | (−18.0761) | (0.016) | |
0.1102 *** | 0.0612 *** | 0.0623 *** | 0.043 *** | |
(28.7892) | (12.9571) | (19.7054) | (0.009) | |
0.0386 *** | 0.1306 *** | 0.1291 *** | 0.167 *** | |
(4.9799) | (13.0540) | (23.4685) | (0.018) | |
−0.2797 *** | −0.2842 *** | −0.167 *** | ||
(−15.9022) | (−26.5951) | (0.023) | ||
−0.1054 ** | 0.0231 | 0.186 *** | ||
(−2.3767) | (0.9924) | (0.053) | ||
0.0858 *** | 0.0888 *** | 0.067 *** | ||
(7.9880) | (11.1931) | (0.022) | ||
−0.2296 *** | −0.2259 *** | −0.231 *** | ||
(−13.7790) | (−23.5054) | (0.022) | ||
−0.0728 *** | −0.4024 *** | −0.541 *** | ||
(−5.8594) | (−18.2744) | (0.049) | ||
Constant | −2.1101 *** | −3.6194 *** | −8.5413 *** | −10.400 *** |
(−40.8582) | (−11.3053) | (−21.1582) | (0.938) | |
Individual effect | NO | NO | YES | YES |
Time effect | NO | YES | YES | YES |
Log likelihood | 1315.0482 | |||
Wald (chi2) | 13,582.62 | |||
Observations | 4305 | 4305 | 4305 | 4305 |
R-squared | 0.661 | 0.7382 | 0.957 | 0.746 |
Definition | Variables | Coefficient | |
---|---|---|---|
Random error | 0.1365 | ||
Positive effect | 0.1136 | ||
Variance decomposition | Negative effect | 0.0376 | |
Net effect | 0.0761 | ||
The total variance of the random error term | 0.0330 | ||
The proportion of the two in the total variable | 0.4347 | ||
The proportion of positive effect | 0.9015 | ||
The proportion of negative effect | 0.0985 |
Variables | Mean | Std. Dev | Q1 | Q2 | Q3 |
---|---|---|---|---|---|
Positive effect | 0.114 | 0.079 | 0.066 | 0.089 | 0.133 |
Negative effect | 0.038 | 0.009 | 0.031 | 0.035 | 0.041 |
Net effect | 0.076 | 0.085 | 0.101 | 0.053 | 0.025 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
East | Central | West | North | |
0.0634 *** | 0.0295 ** | 0.1700 *** | 0.0984 *** | |
(5.2653) | (2.1971) | (6.9863) | (5.3654) | |
−0.2642 *** | −0.0573 | −0.3244 *** | −0.1961 * | |
(−5.0772) | (−0.6284) | (−3.1973) | (−1.6664) | |
DIG_entropy | −0.0058 | −0.0034 | −0.0337 *** | −0.0311 *** |
(−1.3604) | (−0.5345) | (−5.6630) | (−2.9833) | |
Constant | −7.0854 *** | −9.1256 *** | −8.5640 *** | −8.5542 *** |
(−17.7600) | (−9.3893) | (−9.6265) | (−10.7506) | |
R-squared | 0.9766 | 0.9612 | 0.9298 | 0.9727 |
F | 112.4348 *** | 93.7877 *** | 76.1550 *** | 140.1006 *** |
Observations | 1058 | 795 | 1511 | 941 |
Year | ||||||
---|---|---|---|---|---|---|
Moran’s I | Z-Statistic | p-Value | Moran’s I | Z-Statistic | p-Value | |
2009 | 0.4791 | 6.9558 | 0.0000 | 0.2180 | 6.1560 | 0.0000 |
2010 | 0.4528 | 6.5774 | 0.0000 | 0.2292 | 6.5167 | 0.0000 |
2011 | 0.4546 | 6.6050 | 0.0000 | 0.2880 | 8.0220 | 0.0000 |
2012 | 0.4365 | 6.3431 | 0.0000 | 0.3444 | 9.3810 | 0.0000 |
2013 | 0.4380 | 6.3666 | 0.0000 | 0.3609 | 9.8692 | 0.0000 |
2014 | 0.4188 | 6.0938 | 0.0000 | 0.3721 | 10.1166 | 0.0000 |
2015 | 0.4584 | 6.6642 | 0.0000 | 0.4543 | 12.1074 | 0.0000 |
2016 | 0.4313 | 6.2712 | 0.0000 | 0.4471 | 11.8432 | 0.0000 |
2017 | 0.4494 | 6.5310 | 0.0000 | 0.4415 | 11.6654 | 0.0000 |
2018 | 0.4588 | 6.6681 | 0.0000 | 0.4328 | 11.4171 | 0.0000 |
2019 | 0.4149 | 6.0351 | 0.0000 | 0.3913 | 10.3226 | 0.0000 |
2020 | 0.4762 | 6.9176 | 0.0000 | 0.3717 | 9.7837 | 0.0000 |
2021 | 0.4431 | 6.4404 | 0.0000 | 0.4247 | 11.1416 | 0.0000 |
2022 | 0.4884 | 7.0938 | 0.0000 | 0.4299 | 11.2451 | 0.0000 |
2023 | 0.4536 | 6.5919 | 0.0000 | 0.4324 | 11.3231 | 0.0000 |
Test | Statistic | p-Value |
---|---|---|
LM-lag | 16.260 *** | 0.0000 |
LM-error | 129.156 *** | 0.0000 |
Robust LM-lag | 28.461 *** | 0.0000 |
Robust LM-error | 141.357 *** | 0.0000 |
Wald-SEM | 4792.21 *** | 0.0000 |
Wald-SAR | 3211.30 *** | 0.0000 |
LR-lag | 924.06 *** | 0.0000 |
LR-error | 218.05 *** | 0.0000 |
Hausman | 76.88 *** | 0.0000 |
LR test for spatial fixed effects | 5056.83 *** | 0.0000 |
LR test for time fixed effects | 3237.21 *** | 0.0000 |
Variable | SDM | SLM | SEM |
---|---|---|---|
0.0540 *** | −0.0111 | 0.0258 *** | |
(5.5491) | (−1.3794) | (2.7110) | |
0.1485 *** | 0.1093 *** | 0.1388 *** | |
(18.1553) | (17.5518) | (18.1238) | |
−0.4778 *** | −0.6206 *** | −0.5397 *** | |
(−7.4276) | (−9.7051) | (−8.3266) | |
−0.0353 *** | −0.0258 *** | −0.0315 *** | |
(−12.1293) | (−9.0423) | (−11.1703) | |
−0.0669 ** | −0.1629 *** | −0.0984 *** | |
(−2.0586) | (−5.3869) | (−3.0338) | |
0.0039 | 0.0063 *** | 0.0105 *** | |
(1.5825) | (2.6581) | (4.3376) | |
0.0689 *** | 0.0576 *** | 0.0710 *** | |
(23.2475) | (23.3302) | (24.2841) | |
−0.1499 *** | |||
(−9.6317) | |||
−0.1080 *** | |||
(−9.6834) | |||
0.1491 | |||
(1.3875) | |||
0.0105 ** | |||
(1.9931) | |||
0.0805 | |||
(1.5385) | |||
−0.0281 *** | |||
(−7.4843) | |||
−0.0345 *** | |||
(−8.4502) | |||
Spatial rho | 0.5903 *** | 0.4557 *** | 0.6536 *** |
(45.1564) | (35.9621) | (54.7605) | |
R-squared | 0.378 | 0.488 | 0.560 |
Variable | |||||||
---|---|---|---|---|---|---|---|
Direct | 0.0349 *** | 0.1446 *** | −0.4913 *** | −0.0369 *** | −0.0596 * | −0.0002 | 0.0697 *** |
(−3.6849) | (−18.6818) | (−7.7422) | (−12.3230) | (−1.8620) | (−0.0774) | (−21.715) | |
Indirect | −0.2608 *** | −0.0483 ** | −0.2757 | −0.0219 ** | 0.0935 | −0.0566 *** | 0.0112 |
(−9.3099) | (−2.4528) | (−1.2443) | (−1.9958) | −0.8859 | (−7.2784) | (−1.5365) | |
Total | −0.2259 *** | 0.0963 *** | −0.7670 *** | −0.0588 *** | 0.0339 | −0.0568 *** | 0.0809 *** |
(−8.0052) | −4.5717 | (−3.1422) | (−4.7634) | −0.2919 | (−6.2744) | (−10.349) |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
0.013 *** | 1.082 *** | 0.706 *** | 0.150 *** | |
(0.004) | (0.048) | (0.041) | (0.008) | |
−0.094 *** | 0.668 * | −0.099 | −0.516 *** | |
(0.030) | (0.401) | (0.337) | (0.065) | |
−0.001 | −0.211 *** | −0.172 *** | −0.036 *** | |
(0.001) | (0.018) | (0.015) | (0.003) | |
−0.265 | 0.039 | −0.070 ** | ||
(0.203) | (0.170) | (0.033) | ||
−0.002 | −0.065 *** | 0.006 ** | ||
(0.001) | (0.013) | (0.002) | ||
0.001 | −0.094 *** | 0.070 *** | ||
(0.001) | (0.018) | (0.003) | ||
0.050 *** | −1.254 *** | −0.750 *** | −0.113 *** | |
(0.005) | (0.066) | (0.057) | (0.011) | |
−0.175 *** | 2.378 *** | 1.924 *** | 0.075 | |
(0.050) | (0.663) | (0.557) | (0.108) | |
−0.003 | 0.268 *** | 0.049 * | 0.014 *** | |
(0.002) | (0.032) | (0.027) | (0.005) | |
−1.141 *** | 0.170 | −0.023 | ||
(0.317) | (0.267) | (0.052) | ||
−0.005 *** | 0.120 *** | −0.030 *** | ||
(0.002) | (0.019) | (0.004) | ||
−0.001 | 0.126 *** | −0.036 *** | ||
(0.002) | (0.025) | (0.004) | ||
Spatial rho | 0.442 *** | 0.345 *** | 0.601 *** | 0.579 *** |
(0.017) | (0.017) | (0.013) | (0.013) | |
sigma2_e | 0.002 *** | 0.374 *** | 0.264 *** | 0.010 *** |
(0.000) | (0.008) | (0.006) | (0.000) | |
C.V. | YES | YES | YES | YES |
u | YES | YES | YES | YES |
v | YES | YES | YES | YES |
N | 4305 | 4305 | 4305 | 4305 |
Variable | Number | Value | Confidence Interval | F-Value | p-Value | 10% | 5% | 1% |
---|---|---|---|---|---|---|---|---|
Single | 0.6778 | [0.6728,0.6792] | 62.54 ** | 0.0400 | 51.1605 | 61.0073 | 70.3194 | |
None | −4.7589 | [−4.817, −4.7523] | 23.77 | 0.5300 | 40.3970 | 47.6600 | 60.5126 | |
Single | 5.5305 | [5.5115, 5.5387] | 103.27 ** | 0.0100 | 71.0246 | 76.7956 | 86.6803 |
Variables | Threshold | |||
---|---|---|---|---|
(1) | (2) | (3) | ||
( ≤ 0.6778) | 0.13105 *** | |||
( > 0.6778) | 0.10802 *** | |||
( ≤ −4.7558) | 0.11509 *** | |||
( > −4.7558) | 0.12909 *** | |||
( ≤ 5.5305) | 0.10238 *** | |||
( > 5.5305) | 0.13277 *** | |||
Control variables | Yes | Yes | Yes | |
Constant | −1.4043 *** | −1.6803 *** | ||
Observations | 4305 | 4305 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Wang, Z.; Liu, L.; Peng, Y.; Ihimbazwe, B. The Impact of Digitization on Urban Social–Ecological Resilience: Evidence from Big Data Policy Pilots in China. Sustainability 2025, 17, 509. https://doi.org/10.3390/su17020509
Zhou Y, Wang Z, Liu L, Peng Y, Ihimbazwe B. The Impact of Digitization on Urban Social–Ecological Resilience: Evidence from Big Data Policy Pilots in China. Sustainability. 2025; 17(2):509. https://doi.org/10.3390/su17020509
Chicago/Turabian StyleZhou, Yucen, Zhong Wang, Lifeng Liu, Yanran Peng, and Beatrice Ihimbazwe. 2025. "The Impact of Digitization on Urban Social–Ecological Resilience: Evidence from Big Data Policy Pilots in China" Sustainability 17, no. 2: 509. https://doi.org/10.3390/su17020509
APA StyleZhou, Y., Wang, Z., Liu, L., Peng, Y., & Ihimbazwe, B. (2025). The Impact of Digitization on Urban Social–Ecological Resilience: Evidence from Big Data Policy Pilots in China. Sustainability, 17(2), 509. https://doi.org/10.3390/su17020509