Determination of the Key Factors to Uncover the True Benefits of Embracing Climate-Resilient Napier Grass Among Dairy Farmers in Southern India
<p>Number of milk-producing buffaloes in Andhra Pradesh represented year-wise to compare the changes across the years. The graph shows that policy interventions can decrease the necessity to keep more cattle, as higher outputs can be obtained from a lower number of cattle (source: baseline data form, Government of Andhra Pradesh, see <a href="#app1-sustainability-17-00495" class="html-app">Supplementary Table S2</a>).</p> "> Figure 2
<p>Year-wise average milk productivity (kg/day/animal) in Andhra Pradesh. The graph shows the effect of measures taken by the government on per capita milk yield (source: baseline data form, Government of Andhra Pradesh, see <a href="#app1-sustainability-17-00495" class="html-app">Supplementary Table S3</a>).</p> "> Figure 3
<p>Year-wise per capita milk availability (gm/day) in Andhra Pradesh. The graph shows that the improved output from cattle ensured the better availability of milk per person, which showed little variation after the year 2018 (source: baseline data form, Government of Andhra Pradesh, see <a href="#app1-sustainability-17-00495" class="html-app">Supplementary Table S4</a>).</p> "> Figure 4
<p>Steps involved in propensity score matching approach used in this study.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Econometric Framework
2.2. Study Area and Sampling
3. Results and Discussions
3.1. Socioeconomic Characteristics and Impact of Napier Adoption
3.2. Determinants of Napier Grass Adoption
3.3. Quality of Matching Through the Covariate Balancing Test
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations (FAO). Achieving Zero Hunger. The Critical Role of Investments in Social Protection and Agriculture; FAO: Rome, Italy, 2015; Available online: http://www.fao.org/3/a-i4951e.pdf (accessed on 15 October 2024).
- Costa-Pierce, B.A. Farming systems research and extension methods for the development of sustainable aquaculture ecosystems. In Ecological Aquaculture: The Evolution of the Blue Revolution; Blackwell Science: Oxford, UK, 2002. [Google Scholar]
- Russelle, M.P.; Entz, M.H.; Franzluebbers, A.J. Reconsidering integrated crop–livestock systems in North America. Agron. J. 2007, 99, 325–334. [Google Scholar] [CrossRef]
- Ryschawy, J.; Choisis, N.; Choisis, J.P.; Joannon, A.; Gibon, A. Mixed crop-livestock systems: An economic and environmental-friendly way of farming? Animal 2012, 6, 1722–1730. [Google Scholar] [CrossRef] [PubMed]
- Wilkins, R.J. Eco-efficient approaches to land management: A case for increased integration of crop and animal production systems. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 517–525. [Google Scholar] [CrossRef]
- Bell, L.W.; Moore, A.D. Integrated crop–livestock systems in Australian agriculture: Trends, drivers and implications. Agric. Syst. 2012, 111, 1–12. [Google Scholar] [CrossRef]
- Devendra, C.; Thomas, D. Crop–animal interactions in mixed farming systems in Asia. Agric. Syst. 2002, 71, 27–40. [Google Scholar] [CrossRef]
- Prein, M. Integration of aquaculture into crop–animal systems in Asia. Agric. Syst. 2002, 71, 127–146. [Google Scholar] [CrossRef]
- SNV. Study on the Kenyan animal feed and fodder sub-sectors. (Sub-report I: Summary report). In Kenya Market-Led Dairy Programme (KMDP) of SNV/Kenya Netherlands Development Organisation; SNV: Hague, The Netherlands, 2013; p. 26. [Google Scholar]
- Njarui, D.M.G.; Gichangi, E.M.; Gatheru, M.; Nyambati, E.M. A comparative analysis of livestock farming in smallholder mixed crop-livestock systems in Kenya: 2. Feed utilization, availability and mitigation strategies to feed scarcity. Livest. Res. Rural. Dev. 2016, 28. Available online: http://www.lrrd.org/lrrd28/4/njar28066.html (accessed on 1 October 2024).
- Koakoski, D.L.; Bordin, T.; Cavallini, D.; Buonaiuto, G. A Preliminary Study of the Effects of Gaseous Ozone on the Microbiological and Chemical Characteristics of Whole-Plant Corn Silage. Fermentation 2024, 10, 398. [Google Scholar] [CrossRef]
- Felini, R.; Cavallini, D.; Buonaiuto, G.; Bordin, T. Assessing the impact of thermoregulatory mineral supplementation on thermal comfort in lactating Holstein cows. Vet. Anim. Sci. 2024, 24, 100363. [Google Scholar] [CrossRef] [PubMed]
- Gasparini, M.; Brambilla, G.; Menotta, S.; Albrici, G.; Avezzù, V.; Vitali, R.; Buonaiuto, G.; Lamanna, M.; Cavallini, D. Sustainable dairy farming and fipronil risk in circular feeds: Insights from an Italian case study. Food Addit. Contam. Part A 2024, 41, 1582–1593. [Google Scholar] [CrossRef]
- Palmonari, A.; Cavallini, D.; Sniffen, C.J.; Fernandes, L.; Holder, P.; Fusaro, I.; Giammarco, M.; Formigoni, A.; Mammi, L.M.E. In vitro evaluation of sugar digestibility in molasses. Ital. J. Anim. Sci. 2021, 20, 571–577. [Google Scholar] [CrossRef]
- Cavallini, D.; Mammi, L.M.E.; Biagi, G.; Fusaro, I.; Giammarco, M.; Formigoni, A.; Palmonari, A. Effects of 00-rapeseed meal inclusion in Parmigiano Reggiano hay-based ration on dairy cows’ production, reticular pH and fibre digestibility. Ital. J. Anim. Sci. 2021, 20, 295–303. [Google Scholar] [CrossRef]
- Vastolo, A.; Serrapica, F.; Cavallini, D.; Fusaro, I.; Atzori, A.S.; Todaro, M. Editorial: Alternative and novel livestock feed: Reducing environmental impact. Front. Vet. Sci. 2024, 11, 1441905. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, I.Y.; Abakr, Y.A.; Kazi, F.K. In-situ Upgrading of Napier Grass Pyrolysis Vapour Over Microporous and Hierarchical Mesoporous Zeolites. Waste Biomass Valorization 2018, 9, 1415–1428. [Google Scholar] [CrossRef]
- Norsuwan, T.; Marohn, C.; Jintrawet, A. Effects of irrigation treatments and nitrogen applications on Napier grass planted in dry season as energy crop at Chiang Mai province. Khon Kaen Agric. J. 2014, 42, 1–7. [Google Scholar]
- Singh, B.P.; Singh, H.P.; Obeng, E. Elephant grass. In Biofuel Crops: Production, Physiology and Genetics; Singh, B.P., Ed.; CAB International: Wallingford, UK; Fort Valley State University: Fort Valley, GA, USA, 2013; Volume 2013, pp. 271–291. [Google Scholar]
- Mwendia, S.; Yunusa, I.; Whalley, R.; Sindel, B.; Kenney, D.; Kariuki, I. Use of plant water relations to assess forage quality and growth for two cultivars of Napier grass (Pennisetum purpureum) subjected to different levels of soil water supply and temperature regimes. Crop Pasture Sci. 2014, 64, 1008–1019. [Google Scholar] [CrossRef]
- Rengsirikul, K.; Ishii, Y.; Kangvansaichol, K.; Sripichitt, P.; Punsuvon, V.; Vaithanomsat, P.; Nakamanee, G.; Tudsri, S. Biomass yield, chemical composition and potential ethanol yields of eight cultivars of Napier grass (Pennisetum purpureum Schumach.) harvested 3-monthly in central Thailand. J. Sustain. Bioenergy Syst. 2013, 3, 107. [Google Scholar]
- Kabirizi, J.; Nielsen, S.; Nicolaisen, M.; Byenkya, S.; Alacai, T. Napier stunt disease in Uganda: Farmers’ perceptions and impact on fodder production. In Proceedings of the 8th African Crop Science Society Conference Proceedings, El-Minia, Egypt, 27–31 October 2007; Ahmed, K.Z., Ed.; Volume 8, pp. 895–897. [Google Scholar]
- Maria, L.F.O.; Rogrio, F.D.; Geraldo, d.A.G.; Vernica, B.d.S.; Erina, V.R.; Aldo, S.; Antnio, T.D.A.J.; Bruna, R.d.S.M.; Avelino, d.S.R. Pre-breeding of elephant grass for energy purposes and biomass analysis in Campos dos Goytacazes-RJ, Brazil. Afr. J. Agric. Res. 2014, 9, 2743–2758. [Google Scholar] [CrossRef]
- Mukhtar, M.; Ishii, Y.; Tudsri, S.; Idota, S.; Sonoda, T. Dry matter productivity and overwintering ability of the dwarf and normal Napier grasses as affected by the planting density and cutting frequency. Plant Prod. Sci. 2003, 6, 65–73. [Google Scholar] [CrossRef]
- Jos, C.; Aranguiz, A.A. Quick Scan of Uganda’s Forage Sub-Sector; Netherlands East African Dairy Partnership: Utrecht, The Netherlands, 2019. [Google Scholar]
- Misra, A.K.; Shivrudrappa, B.; Ramakrishna, Y.S. Strategies for enhancing forage production in rainfed regions of India. Range Manag. Agrofor. 2007, 28, 368–370. [Google Scholar]
- Kumar, A.; Singh, D.K. Livestock production systems in India: An appraisal across agro-ecological regions. Indian J. Agric. Econ. 2008, 63, 577–597. [Google Scholar]
- Department of Animal Husbandry and Dairying, Ministry of Fisheries, Animal Husbandry and Dairying, & Government of India. Annual Report; Department of Animal Husbandry and Dairying: New Delhi, India, 2022; pp. 2022–2023. [Google Scholar]
- Parthasarathy Rao, P.; Birthal, P.S.; Dharmendra, K.; Wickramaratne, S.H.G.; Shrestha, H.R. Increasing Livestock Productivity in Mixed Crop-Livestock Systems in South Asia; Project Report; National Centre for Agricultural Economics and Policy Research & ICRISAT (International Crops Research Institute for the Semi-Arid Tropics): Patancheru, India, 2004. [Google Scholar]
- Subrahmanyam, S.; Jagadeswar Rao, M.; Ratnam, C.; Nageswar Rao, R. Bovine Development in Andhra Pradesh, an Analysis of Regional Variations; Centre for Economic and Social Studies and Indo-Swiss Project Andhra Pradesh: Hyderabad, India, 1995. [Google Scholar]
- Prasad, V.; Bezkorowajnyj, P.; Reddy, K.G.; Mahesh, V.; Romney, D. Scale-Up of Napier Fodder: A Case Of Institutional Innovation in Small Farmer Dairying. In Proceedings of the Innovation Africa Symposium, Kampala, Uganda, 20–23 November 2006. [Google Scholar]
- Ajzen, I. The Theory of planned behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Singh, S.; Rajni, R. Importance of quality fodder for higher milk production in dairy animals. Indian Farming 2018, 67. Available online: https://epubs.icar.org.in/index.php/IndFarm/article/view/84563 (accessed on 1 October 2024).
- Singh, K.; Prasad, C.S. Potential of nutritional technologies in improving livestock productivity. In Technology Options for Sustainable Livestock Production in India, Proceedings of the Workshop on Documentation, Adoption and Impact of Livestock Technologies in India, ICRISAT, Patancheru, India, 18–19 January 2001; Birthal, P., Parthasarthy Rao, P., Eds.; ICRSAT: Patancheru, India, 2002; pp. 132–146. [Google Scholar]
- Sarker, N.R.; Habib, M.A.; Yeasmin, D.; Tabassum, F.; Mohammed, R.A. Studies on Biomass Yield, Morphological Characteristics and Nutritive Quality of Napier Cultivars under Two Different Geo-Topographic Conditions of Bangladesh. Am. J. Plant Sci. 2021, 12, 914–925. [Google Scholar] [CrossRef]
- Kabirizi, J.; Muyekho, F.; Mulaa, M.; Msangi, R.; Pallangyo, B.; Kawube, G.; Zziwa, E.; Mugerwa, S.; Ajanga, S.; George, L.; et al. Napier Grass Feed Resource: Production, Constraints and Implications for Smallholder Farmers in East and Central Production, Constraints and Farmers in Eastern and Central Africa; EAAPP: Nairobi, Kenya, 2015; ISBN 978-9970-9269-1-6. [Google Scholar]
- Kassie, M.; Zikhali, P.; Manjur, K.; Edwards, S. Adoption of sustainable agriculture practices: Evidence from a semi-arid region of Ethiopia. Nat. Resour. Forum 2009, 33, 189–198. [Google Scholar] [CrossRef]
- Kabirizi, J.; Ziiwa, E.; Mugerwa, S.; Ndikumana, J.; Nanyennya, W. Dry season forages for improving dairy production in smallholder systems in Uganda. Trop. Grassl.—Forrajes Trop. 2013, 1, 212. [Google Scholar] [CrossRef]
- Devendra, C. Crop-animal systems in Asia: Future perspectives. Agric. Syst. 2002, 71, 179–186. [Google Scholar] [CrossRef]
- Ashley, K.; Young, J.R.; Kea, P.; Suon, S.; Windsor, P.A.; Bush, R.D. Socioeconomic impact of forage-technology adoption by smallholder cattle farmers in Cambodia. Anim. Prod. Sci. 2018, 58, 393. [Google Scholar] [CrossRef]
- Kassie, M.; Shiferaw, B.; Muricho, G. Agricultural Technology, Crop Income, and Poverty Alleviation in Uganda. World Dev. 2011, 39, 1784–1795. [Google Scholar] [CrossRef]
- Kassie, M.; Teklewold, H.; Jaleta, M.; Marenya, P.; Erenstein, O. Understanding the adoption of a portfolio of sustainable intensification practices in eastern and southern Africa. Land Use Policy 2015, 42, 400–411. [Google Scholar] [CrossRef]
- Murage, A.W.; Midega, C.A.O.; Pittchar, J.O.; Pickett, J.A.; Khan, Z.R. Determinants of adoption of climate-smart push-pull technology for enhanced food security through integrated pest management in eastern Africa. Food Secur. 2015, 7, 709–724. [Google Scholar] [CrossRef]
- Ndiritu, S.W.; Kassie, M.; Shiferaw, B. Are there systematic gender differences in the adoption of sustainable agricultural intensification practices? Evidence from Kenya. Food Policy 2014, 49, 117–127. [Google Scholar] [CrossRef]
- Tadesse, G.; Kassie, G.T. Measuring trust and commitment in collective actions Evidence from farmers’ marketing organizations in rural Ethiopia. Int. J. Soc. Econ. 2017, 44, 980–996. [Google Scholar] [CrossRef]
- Teklewold, H.; Kassie, M.; Shiferaw, B. Adoption of Multiple Sustainable Agricultural Practices in Rural Ethiopia. J. Agric. Econ. 2013, 64, 597–623. [Google Scholar] [CrossRef]
- Mwansakilwa, C.; Tembo, G.; Zulu, M.M.; Wamulume, M. Village savings and loan associations and household welfare: Evidence from Eastern and Western Zambia. Afr. J. Agric. Resour. Econ. 2017, 12, 85–97. [Google Scholar] [CrossRef]
- Khandker, S.R. Microfinance and Poverty: Evidence Using Panel Data from Bangladesh. World Bank Econ. Rev. 2005, 19, 263–286. [Google Scholar] [CrossRef]
- Abadie, A.; Imbens, G.W. On the Failure of the Bootstrap for Matching Estimators. Econometrica 2008, 6, 1537–1557. [Google Scholar] [CrossRef]
- Ali, A.; Abdulai, A. The Adoption of Genetically Modified Cotton and Poverty Reduction in Pakistan. J. Agric. Econ. 2010, 61, 175–192. [Google Scholar] [CrossRef]
- Khandker, S.R.; Koolwal, G.B. How has microcredit supported agriculture? Evidence using panel data from Bangladesh. Agric. Econ. 2016, 47, 157–168. [Google Scholar] [CrossRef]
- Yamane, T. Statistics: An Introductory Analysis, 2nd ed.; Harper & Row: New York, NY, USA, 1967. [Google Scholar]
- Islam, M.R.; Garcia, S.C.; Sarker, N.R.; Islam, A.; Clark, C.E.F. Napier grass (Pennisetum purpureum Schum) management strategies for dairy and meat production in the tropics and subtropics: Yield and nutritive value. Front. Plant Sci. 2023, 14, 1269976. [Google Scholar] [CrossRef]
- Rivas, L.; Holmann, F. Potential economic impact from the adoption of Brachiaria hybrids resistant to spittlebugs in livestock systems of Colombia, Mexico and Central America. Livest. Res. Rural. Dev. 2005, 17, 1–8. Available online: http://www.lrrd.org/lrrd17/5/holm17054.htm (accessed on 1 October 2024).
- Kanyenji, G.M.; Oluoch-Kosura, W.; Onyango, C.M.; Ng’Ang’A, S.K. Prospects and constraints in smallholder farmers’ adoption of multiple soil carbon enhancing practices in Western Kenya. Heliyon 2020, 6, e03226. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization of the United Nations, Technical Centre for Agricultural and Rural Cooperation, & International Fund for Agricultural Development. Youth and agriculture: Key challenges and concrete solutions. In Youth and Agriculture: Key Challenges and Concrete Solutions; Food and Agriculture Organization of the United Nations: Rome, Italy, 2024; Available online: https://www.fao.org/3/i3947e/i3947e.pdf (accessed on 1 October 2024).
- Valle, C.B.D.; Euclides, V.P.; Montagner, D.B.; Valério, J.R.; Fernandes, C.D.; Macedo, M.C.; Verzignassi, J.R.; Machado, L.A. BRS Paiaguás: A new Brachiaria (Urochloa) cultivar for tropical pastures in Brazil. Trop. Grassl.—Forrajes Trop. 2013, 1, 121–122. [Google Scholar] [CrossRef]
- Liu, L.; Li, Q.; Yang, Y.; Guo, A. Biological Function of Short-Chain Fatty Acids and Its Regulation on Intestinal Health of Poultry. Front. Vet. Sci. 2021, 8, 736739. [Google Scholar] [CrossRef]
- Hare, M.D.; Phengphet, S.; Songsiri, T.; Sutin, N.; Stern, E. Effect of cutting interval on yield and quality of three brachiaria hybrids in Thailand. Dev. Impact Sown Trop. Species 2013, 1, 197–198. [Google Scholar] [CrossRef]
- Kassie, M.; Stage, J.; Diiro, G.; Muriithi, B.; Muricho, G.; Ledermann, S.T.; Pittchar, J.; Midega, C.; Khan, Z. Push–pull farming system in Kenya: Implications for economic and social welfare. Land Use Policy 2018, 77, 186–198. [Google Scholar] [CrossRef]
- Marwa, M.E.; Mburu, J.; Oburu, R.E.J.; Mwai, O.; Kahumbu, S. Impact of ICT Based Extension Services on Dairy Production and Household Welfare: The Case of iCow Service in Kenya. J. Agric. Sci. 2020, 12, 141. [Google Scholar] [CrossRef]
- Census-2019. Available online: https://www.data.gov.in/resource/district-wise-details-livestock-population-andhra-pradesh-20th-livestock-census-2019 (accessed on 10 August 2024).
Variable | Type | Definition and Measurement |
---|---|---|
Treatment variable | ||
Adoption of Napier cultivation | Dummy | If the household adopted Napier on or before 2021 and is still continuing = 1. Never cultivated Napier = 0 |
Outcome variables | ||
Average milk production (L/day/cow) | Continuous | Amount of milk produced by each cow (non-exotic breed) daily |
Total milk production per household per year (L) | Continuous | Overall milk production (considering only non-exotic cows) in a year |
Time dedicated to feeding the livestock (minutes/livestock) | Continuous | Time dedicated to feeding each livestock |
Women’s hours dedicated to feeding the livestock (minutes/livestock) | Continuous | Time dedicated (by women) to feeding each livestock |
Net monthly income (Rs/cow/month) | Continuous | (Average monthly milk yield by a cow × Average price of milk per liter × No. of milk-producing cows)—amount spent for feeding each cow per month |
Per capita milk consumption (ml/day/person) | Continuous | Amount of milk retained for consumption / No. of family members who consumed milk daily |
Livestock health | Dummy | If the farmer feels the cow’s health remains good throughout the year = 1; otherwise = 0 |
Veterinary doctor visit (per cow per year) | Continuous | No. of times the veterinary doctor visits a cow for a medical emergency |
Independent variables | ||
Age | Continuous | Age of household head in years |
Gender | Dummy | Male headed = 1; female headed = 0 |
Education | Continuous | Number of years in formal education |
Household size | Continuous | Number of family members (>12 years) take food together |
Farm experience | Continuous | Family head involved in farming (in years) |
Livestock units | Continuous | Number of tropical livestock(s) in the household |
Assured irrigation | Dummy | Having irrigation facility = 1; otherwise = 0 |
Member of farmers’ organization | Dummy | Having membership in farmers’ organization/group = 1; otherwise = 0 |
Institutional credit access | Dummy | Taken institutional credit in last three years = 1; otherwise = 0 |
Agricultural extension | Dummy | Meet with agriculture extension persons/experts = 1; otherwise = 0 |
Training | Dummy | Received training about Napier farming = 1; otherwise = 0 |
Off-farm income | Dummy | Household having income from off-farm sources = 1; otherwise = 0 |
Farm size (acre) | Continuous | Agricultural field area |
Explanatory Variables | Napier Adopters | Napier Non-Adopters | Mean Difference Test | ||
---|---|---|---|---|---|
Mean | SD | Mean | SD | ||
Age | 46.36 | 10.46 | 42.3 | 9.81 | 0.076 |
Education | 7.19 | 2.18 | 5.54 | 1.83 | 0.043 |
Gender | 0.96 | 0.14 | 0.98 | 0.16 | 0.246 |
Household size | 4.75 | 1.15 | 4.79 | 1.32 | 0.441 |
Membership in farmers organization | 0.48 | 0.08 | 0.35 | 0.06 | 0.037 |
Farm experience | 31.32 | 8.33 | 27.18 | 7.11 | 0.062 |
Off-farm income | 0.32 | 0.08 | 0.33 | 0.06 | 0.283 |
Farm size | 2.97 | 0.46 | 2.63 | 0.42 | 0.037 |
Assured irrigation | 0.76 | 0.15 | 0.73 | 0.11 | 0.242 |
Livestock units | 3.08 | 0.32 | 2.77 | 0.26 | 0.019 |
Institutional credit access | 0.56 | 0.18 | 0.55 | 0.22 | 0.423 |
Agricultural extension | 0.98 | 0.16 | 0.86 | 0.2 | 0.056 |
Training | 0.89 | 0.13 | 0.82 | 0.15 | 0.239 |
Outcome Variables | NNM | KM | RM | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Napier Adopters | Napier Non-Adopters | ATT | SE | Critical Level of Hidden Bias | Napier Adopters | Napier Non-Adopters | ATT | SE | Critical Level of Hidden Bias | Napier Adopters | Napier Non-Adopters | ATT | SE | Critical Level of Hidden Bias | ||
Average milk production (L/day/cow) | ATT | 6.09 | 4.83 | 1.26 *** | 0.57 | 2.15–2.20 | 6.04 | 4.88 | 1.16 *** | 0.53 | 2.20–2.25 | 6.11 | 4.93 | 1.18 *** | 0.61 | 2.15–2.20 |
Total milk production per household per year (L) | ATT | 3351.6 | 2071.1 | 1280.5 *** | 143.8 | 2.85–2.90 | 3286.4 | 2028.6 | 1257.8 *** | 149.1 | 2.80–2.85 | 3186.9 | 1994.2 | 1192.7 *** | 133.6 | 2.70–2.75 |
Time dedicated to feeding the livestock (minutes/livestock) | ATT | 128 | 156 | −28 *** | 10.83 | 1.85–1.90 | 122 | 153 | −31 *** | 11.84 | 1.75–1.80 | 123 | 154 | −31 *** | 11.06 | 1.95–2.00 |
Women’s hour dedicated to feeding the livestock (minutes/livestock) | ATT | 92 | 68 | 24 *** | 6.17 | 2.20–2.25 | 97 | 75 | 22 *** | 7.02 | 2.10–2.15 | 89 | 63 | 26 ** | 5.46 | 2.35–2.40 |
Net monthly income (Rs/cow/month) | ATT | 4734.16 | 2686.87 | 2047.29 *** | 169.1 | 2.35–2.40 | 4689.18 | 2144 | 2545.18 *** | 2122.3 | 2.20–2.25 | 4716 | 2161 | 2555 *** | 2110 | 2.20–2.25 |
Per capita milk consumption (ml/day/person) | ATT | 383.18 | 240.17 | 143.01 *** | 5.54 | 2.15–2.20 | 395.6 | 243.7 | 151.9 *** | 6.03 | 2.35–2.40 | 388.6 | 237.6 | 151 *** | 5.3 | 2.20–2.25 |
Livestock health | ATT | 0.86 | 0.65 | 0.21 *** | 0.17 | 2.05–2.10 | 0.83 | 0.61 | 0.22 *** | 0.14 | 2.25–2.30 | 0.84 | 0.69 | 0.15 *** | 0.15 | 2.25–2.30 |
Veterinary doctor visit (per cow per year) | ATT | 3.56 | 4.76 | −1.2 *** | 0.21 | 2.55–2.60 | 3.45 | 4.61 | −1.16 *** | 0.23 | 2.45–2.50 | 3.51 | 4.73 | −1.22 *** | 0.24 | 2.50–2.55 |
Skewness-Kurtosis Test (Jarque–Bera) |
---|
Ho: Normal Distribution |
Chi2 (2) = 1.391 |
Prob > Ch2 = 0.316 |
Explanatory Variables | VIF | Tolerance |
---|---|---|
Age | 1.43 | 0.70 |
Education | 1.27 | 0.79 |
Gender | 1.19 | 0.84 |
Household size | 1.33 | 0.75 |
Membership in farmers organization | 1.26 | 0.79 |
Farm experience | 1.18 | 0.85 |
Off-farm income | 1.12 | 0.89 |
Farm size | 1.26 | 0.79 |
Assured irrigation | 1.22 | 0.82 |
Livestock units | 1.36 | 0.74 |
Institutional credit access | 1.45 | 0.69 |
Agricultural extension | 1.41 | 0.71 |
Training | 1.2 | 0.83 |
Explanatory Variables | Coefficient | Standard Error | Marginal Effects |
---|---|---|---|
Age | 0.112 ** | 0.051 | 0.061 |
Education | 0.161 *** | 0.043 | 0.092 |
Gender | 0.008 | 0.003 | 0.002 |
Household size | 0.005 | 0.002 | 0.001 |
Membership in farmers organization | 0.103 ** | 0.003 | 0.069 |
Farm experience | 0.159 ** | 0.003 | 0.083 |
Off-farm income | 0.023 | 0.016 | 0.009 |
Farm size | 0.186 *** | 0.014 | 0.119 |
Assured irrigation | 0.126 | 0.091 | 0.008 |
Livestock units | 0.166 *** | 0.024 | 0.103 |
Institutional credit access | 0.082 | 0.055 | 0.047 |
Agricultural extension | 0.094 ** | 0.003 | 0.024 |
Training | 0.139 | 0.086 | 0.176 |
Matching Algorithm | Pseudo-R2 Before Matching | Pseudo-R2 After Matching | > χ2 Before Matching | > χ2 After Matching | Mean Standardized Bias Before Matching | Mean Standardized Bias After Matching | (Total)% |Bias| Reduction | |
---|---|---|---|---|---|---|---|---|
Napier grass adoption | NNM | 0.193 | 0.032 | 0.003 | 0.397 | 28.23 | 14.66 | 48.06 |
RM | 0.177 | 0.026 | 0.017 | 0.517 | 29.81 | 15.47 | 48.10 | |
KBM | 0.183 | 0.033 | 0.020 | 0.773 | 27.06 | 14.12 | 47.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dey, S.; Abbhishek, K.; Saraswathibatla, S.; Das, D.; Rongali, H.B. Determination of the Key Factors to Uncover the True Benefits of Embracing Climate-Resilient Napier Grass Among Dairy Farmers in Southern India. Sustainability 2025, 17, 495. https://doi.org/10.3390/su17020495
Dey S, Abbhishek K, Saraswathibatla S, Das D, Rongali HB. Determination of the Key Factors to Uncover the True Benefits of Embracing Climate-Resilient Napier Grass Among Dairy Farmers in Southern India. Sustainability. 2025; 17(2):495. https://doi.org/10.3390/su17020495
Chicago/Turabian StyleDey, Shiladitya, Kumar Abbhishek, Suman Saraswathibatla, Debabrata Das, and Hari Babu Rongali. 2025. "Determination of the Key Factors to Uncover the True Benefits of Embracing Climate-Resilient Napier Grass Among Dairy Farmers in Southern India" Sustainability 17, no. 2: 495. https://doi.org/10.3390/su17020495
APA StyleDey, S., Abbhishek, K., Saraswathibatla, S., Das, D., & Rongali, H. B. (2025). Determination of the Key Factors to Uncover the True Benefits of Embracing Climate-Resilient Napier Grass Among Dairy Farmers in Southern India. Sustainability, 17(2), 495. https://doi.org/10.3390/su17020495