Spatiotemporal Changes and Trade-Offs/Synergies of Waterfront Ecosystem Services Globally
<p>(<b>a</b>) Global waterfront extent (global and continental). (<b>b</b>): Europe; (<b>c</b>): Africa; (<b>d</b>): Asia; (<b>e</b>): Oceania; (<b>f</b>): North America; (<b>g</b>): North America.</p> "> Figure 2
<p>Spatiotemporal distributions of four ecosystem services in waterfronts globally during 2010–2020. (<b>a</b>–<b>c</b>) shows WY in 2010, 2020, and from 2010 to 2020; (<b>d</b>–<b>f</b>) shows CS in 2010, 2020, and from 2010 to 2020; (<b>g</b>–<b>i</b>) shows SDR in 2010, 2020, and from 2010 to 2020; (<b>j</b>–<b>l</b>) shows WY in 2010, 2020, and from 2010 to 2020.</p> "> Figure 2 Cont.
<p>Spatiotemporal distributions of four ecosystem services in waterfronts globally during 2010–2020. (<b>a</b>–<b>c</b>) shows WY in 2010, 2020, and from 2010 to 2020; (<b>d</b>–<b>f</b>) shows CS in 2010, 2020, and from 2010 to 2020; (<b>g</b>–<b>i</b>) shows SDR in 2010, 2020, and from 2010 to 2020; (<b>j</b>–<b>l</b>) shows WY in 2010, 2020, and from 2010 to 2020.</p> "> Figure 3
<p>(<b>a</b>) Spatiotemporal changes in ecosystem services in waterfronts globally in 2020. Detailed: (<b>b</b>): Europe; (<b>c</b>): Africa; (<b>d</b>): Asia; (<b>e</b>): Oceania; (<b>f</b>): North America; (<b>g</b>): North America; (<b>g</b>): Changes in Global Waterfront Ecosystem Service from 2010 to 2020; (<b>h</b>): Spatiotemporal changes in ecosystem services in waterfronts globally during from 2010 to 2020.</p> "> Figure 3 Cont.
<p>(<b>a</b>) Spatiotemporal changes in ecosystem services in waterfronts globally in 2020. Detailed: (<b>b</b>): Europe; (<b>c</b>): Africa; (<b>d</b>): Asia; (<b>e</b>): Oceania; (<b>f</b>): North America; (<b>g</b>): North America; (<b>g</b>): Changes in Global Waterfront Ecosystem Service from 2010 to 2020; (<b>h</b>): Spatiotemporal changes in ecosystem services in waterfronts globally during from 2010 to 2020.</p> "> Figure 4
<p>Changes in ecosystem services in waterfront areas globally during 2010–2020.</p> "> Figure 5
<p>Trade-offs and synergies of ecosystem services in waterfront areas globally. Notes: *** and ** indicate statistical significance at the 1%,5% levels, respectively.</p> "> Figure 6
<p>Area transfer map of waterfront land-use types in China during 2000–2020.</p> "> Figure 7
<p>Spatiotemporal variation in ecosystem services in China’s waterfronts during 2000–2020. (<b>a</b>,<b>b</b>): WY2010, 2000–2020; (<b>c</b>,<b>d</b>): CS2010, 2000–2020; (<b>e</b>,<b>f</b>): SDR2010, 2000–2020; (<b>g</b>,<b>h</b>): SDR2010, 2000–2020; (<b>i</b>,<b>j</b>): ES2010, 2000–2020.</p> "> Figure 7 Cont.
<p>Spatiotemporal variation in ecosystem services in China’s waterfronts during 2000–2020. (<b>a</b>,<b>b</b>): WY2010, 2000–2020; (<b>c</b>,<b>d</b>): CS2010, 2000–2020; (<b>e</b>,<b>f</b>): SDR2010, 2000–2020; (<b>g</b>,<b>h</b>): SDR2010, 2000–2020; (<b>i</b>,<b>j</b>): ES2010, 2000–2020.</p> "> Figure 7 Cont.
<p>Spatiotemporal variation in ecosystem services in China’s waterfronts during 2000–2020. (<b>a</b>,<b>b</b>): WY2010, 2000–2020; (<b>c</b>,<b>d</b>): CS2010, 2000–2020; (<b>e</b>,<b>f</b>): SDR2010, 2000–2020; (<b>g</b>,<b>h</b>): SDR2010, 2000–2020; (<b>i</b>,<b>j</b>): ES2010, 2000–2020.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Research Methodology
2.2.1. Water Yield Services
2.2.2. Carbon Stock Services
2.2.3. Soil Conservation Services
2.2.4. Habitat Quality Services
2.2.5. Grading Basis
2.2.6. Trade-Off Synergy Analysis
2.3. Data Sources
3. Results
3.1. Changes in Spatiotemporal Patterns of Waterfront Ecosystem Services Globally
3.2. Synergistic Analysis of Ecosystem Service Trade-Offs in Waterfronts Globally
3.3. Spatiotemporal Pattern of Ecosystem Services in China’s Waterfronts
3.3.1. Spatiotemporal Changes in Land Use in China’s Waterfronts
3.3.2. Spatiotemporal Variation in Ecosystem Services in China’s Waterfronts
3.4. Synergistic Analysis of Ecosystem Service Trade-Offs in China’s Waterfronts
4. Discussion
4.1. Analysis of the Influencing Factors
Influencing Factors of Ecosystem Services in Waterfront Areas
4.2. Trade-Offs and Synergistic Changes in Waterfront Ecosystem Services
4.3. Recommendations
5. Conclusions
6. Outlook
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Raymond, C.M.; Singh, G.G.; Benessaiah, K.; Bernhardt, J.R.; Levine, J.; Nelson, H.; Turner, N.J.; Norton, B.; Tam, J.; Chan, K.M.A. Ecosystem services and beyond: Using multiple metaphors to understand human–environment relationships. BioScience 2013, 63, 536–546. [Google Scholar] [CrossRef]
- Costanza, R.; De Groot, R.; Braat, L.; Kubiszewski, I.; Fioramonti, L.; Sutton, P.; Farber, S.; Grasso, M. Twenty years of ecosystem services: How far have we come and how far do we still need to go? Ecosyst. Serv. 2017, 28, 1–16. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment (MEA). Ecosystems and Human Well-Being; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2015. [Google Scholar]
- Bennett, E.M.; Peterson, G.D.; Gordon, L.J. Understanding relationships among multiple ecosystem services. Ecol. Lett. 2009, 12, 1394–1404. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.-Y.; Xiao, W.-F.; Li, Q.; Tian, Y.; Zhang, Q.-R.; Zhu, J.-H. Spatiotemporal variations and trade-offs of ecosystem services in Beijing. Chin. J. Ecol. 2021, 40, 209–219. (In Chinese) [Google Scholar]
- Wu, Y.; Zhang, X.; Li, C.; Xu, Y.; Hao, F.; Yin, G. Ecosystem service trade-offs and synergies under influence of climate and land cover change in an afforested semiarid basin, China. Ecol. Eng. 2021, 159, 106083. [Google Scholar] [CrossRef]
- Wang, L.; Yu, E.; Li, S.; Fu, X.; Wu, G. Analysis of Ecosystem Service Trade-Offs and Synergies in Ulansuhai Basin. Sustainability 2021, 13, 9839. [Google Scholar] [CrossRef]
- Ren, J.; Zhao, X.Y.; Xu, X.C.; Ma, P.Y.; Du, Y.X. Spatial-temporal evolution, tradeoffs and synergies of ecosystem services in the middle Yellow River. J. Earth Environ. 2022, 13, 477–490. (In Chinese) [Google Scholar]
- Li, Z.; Cheng, X.; Han, H. Analyzing land-use change scenarios for ecosystem services and their trade-offs in the ecological conservation area in Beijing, China. Int. J. Environ. Res. Public Health 2020, 17, 8632. [Google Scholar] [CrossRef]
- Hasan, S.S.; Zhen, L.; Miah, M.G.; Ahamed, T.; Samie, A. Impact of land use change on ecosystem services: A review. Environ. Dev. 2020, 34, 100527. [Google Scholar] [CrossRef]
- Arunyawat, S.; Shrestha, R.P. Assessing land use change and its impact on ecosystem services in Northern Thailand. Sustainability 2016, 8, 768. [Google Scholar] [CrossRef]
- Zhong, S.Z.; Sun, H.Y. Assessment on spatiotemporal variation and synergies/tradeoffs relationships of ecosystem services in Qilian mountain national nature reserve under different scenarios. Res. Soil Water Conserv. 2023, 30, 358–369. (In Chinese) [Google Scholar]
- Yang, Y.; Dou, Y.; Wang, Y.; An, S. Ecosystem service tradeoffs and synergies in typical small watersheds of the hilly and gully region of the Loess Platea. Acta Ecol. Sin. 2022, 42, 8152–8168. (In Chinese) [Google Scholar]
- Zhou, Y.G.; Shen, X.W. Research on the development orientations of urban waterfront based on space-time dimension. Urban Probl. 2011, 2, 30–35. (In Chinese) [Google Scholar]
- Bonoli, A.; Di Fusco, E.; Zanni, S.; Lauriola, I.; Ciriello, V.; Di Federico, V. Green Smart Technology for Water (GST4Water): Life cycle analysis of urban water consumption. Water 2019, 11, 389. [Google Scholar] [CrossRef]
- Ciampa, F.; De Medici, S.; Viola, S.; Pinto, M.R. Regeneration criteria for adaptive reuse of the waterfront ecosystem: Learning from the US case study to improve european approach. Sustainability 2021, 13, 4156. [Google Scholar] [CrossRef]
- Avni, N.; Fischler, R. Social and environmental justice in waterfront redevelopment: The Anacostia river, Washington, DC. Urban Aff. Rev. 2020, 56, 1779–1810. [Google Scholar] [CrossRef]
- Ferah, B.; Gemci, A.G.; Algburi, O. An analysis of the spatial qualities of the waterfronts: Conceptual proposal projects for Istanbul Sarayburnu. Open House Int. 2023, 48, 402–424. [Google Scholar] [CrossRef]
- Üzümcüoğlu, D.; Polay, M. Urban waterfront development, through the lens of the Kyrenia waterfront case study. Sustainability 2022, 14, 9469. [Google Scholar] [CrossRef]
- Follmann, A. Urban mega-projects for a ‘world-class’ riverfront–The interplay of informality, flexibility and exceptionality along the Yamuna in Delhi, India. Habitat Int. 2015, 45, 213–222. [Google Scholar] [CrossRef]
- Zhang, H.Z.; Shen, X.W.; Gao, J. Spatial structure of the leisure zone in urban waterfront: A case study of the Grand Canal in downtown Hangzhou. Geogr. Res. 2011, 30, 1891–1900. (In Chinese) [Google Scholar]
- Zheng, L.; Liu, H.; Huang, Y.; Yin, S.; Jin, G. Assessment and analysis of ecosystem services value along the Yangtze River under the background of the Yangtze River protection strategy. J. Geogr. Sci. 2020, 30, 553–568. [Google Scholar] [CrossRef]
- Li, W.; Geng, J.; Bao, J.; Lin, W.; Wu, Z.; Fan, S. Analysis of spatial and temporal variations in ecosystem service functions and drivers in Anxi county based on the InVEST model. Sustainability 2023, 15, 10153. [Google Scholar] [CrossRef]
- Treviño, E.; Hoyos, D.; Sainz de Murieta, E. Economic Valuation of Ocean-Based and Ocean-Related Tourism and Recreation. In The Blue Economy: An Asian Perspective; Springer International Publishing: Cham, Switzerland, 2022; pp. 221–243. [Google Scholar]
- Wang, R.; Zhao, J.; Chen, G.; Lin, Y.; Yang, A.; Cheng, J. Coupling PLUS–InVEST Model for Ecosystem Service Research in Yunnan Province, China. Sustainability 2022, 15, 271. [Google Scholar] [CrossRef]
- Zhang, W.J.; Sun, X.Y.; Zhou, J. Spatio-temporal dynamics of tradeoffs between crucial ecosystem services in Nansihu Lake Basin. Acta Ecol. Sin. 2021, 41, 8003–8015. [Google Scholar]
- Zhang, Y.; Zhang, B.; Yao, R.; Wang, L. Temporal and spatial changes of vegetation coverage and water production in the Weihe River Basin from 2000 to 2020. J. Desert Res. 2022, 42, 223–233. (In Chinese) [Google Scholar]
- Wu, L.; Fan, F. Assessment of ecosystem services in new perspective: A comprehensive ecosystem service index (CESI) as a proxy to integrate multiple ecosystem services. Ecol. Indic. 2022, 138, 108800. [Google Scholar] [CrossRef]
- Wang, L.; Mao, X.; Song, X.; Tang, W.; Wang, W.; Yu, H.; Deng, Y.; Zhang, Z.; Zhang, Z.; Zhou, H. How rising water levels altered ecosystem provisioning services of the area around Qinghai lake from 2000 to 2020: An InVEST-RF-GTWR combined method. Land 2022, 11, 1570. [Google Scholar] [CrossRef]
- Yang, Q.; Zhang, P.; Qiu, X.; Xu, G.; Chi, J. Spatial-Temporal Variations and Trade-Offs of Ecosystem Services in Anhui Province, China. Int. J. Environ. Res. Public Health 2023, 20, 855. (In Chinese) [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Yu, B.Y.; Yang, W.F. Evolution mechanism of ecosystem service relationship in the Fenhe River Basin based on multiscale geographically weighted regression. Natl. Remote Sens. Bull. 2023, 27, 1667–1679. (In Chinese) [Google Scholar] [CrossRef]
- Xu, Y.; Song, X.; Deng, M.; Bai, T.; Tao, W. Shifting from Trade-Offs to Synergies in Ecosystem Services Through Effective Ecosystem Management in Arid Areas. Remote Sens. 2024, 16, 4115. [Google Scholar] [CrossRef]
- Qu, Y.; Gong, H.; Zheng, Y.; Shi, J.; Zeng, X.; Yang, H.; Wang, J.; Niu, Z.; Li, L.; Wang, S.; et al. Global conservation priorities for wetlands and setting post-2025 targets. Commun. Earth Environ. 2024, 5, 4. [Google Scholar] [CrossRef]
- Wang, J.G.; Lu, Z.P. A historic review of world urban waterfront development. City Plan. Rev. 2001, 25, 41–46. (In Chinese) [Google Scholar]
- Zhang, B.; Xiong, W.; Ma, M.; Wang, M.; Wang, D.; Huang, X.; Yu, L.; Zhang, Q.; Lu, H.; Hong, D.; et al. Super-resolution reconstruction of a 3 arc-second global DEM dataset. Sci. Bull. 2022, 67, 2526–2530. [Google Scholar] [CrossRef]
- Store, C.C.D. Land Cover Classification Gridded Maps from 1992 to Present Derived from Satellite Observations; Copernicus Climate Change Service: Reading, UK, 2019; pp. 7–9. [Google Scholar]
- Harris, I.; Osborn, T.J.; Jones, P.; Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 2020, 7, 109. [Google Scholar] [CrossRef]
- Zheng, C.; Jia, L.; Hu, G. Global land surface evapotranspiration monitoring by ETMonitor model driven by multi-source satellite earth observations. J. Hydrol. 2022, 613, 128444. [Google Scholar] [CrossRef]
- Fischer, G.; Nachtergaele, F.; Prieler, S.; van Velthuizen, H.T.; Verelst, L.; Wiberg, D. Global Agro-Ecological Zones Assessment for Agriculture (GAEZ 2008); IIASA: Laxenburg, Austria; FAO: Rome, Italy, 2008. [Google Scholar]
- Ren, D.F.; Qiu, A.Y.; Cao, A.H.; Zhang, W.Z.; Xu, M.W. Spatial responses of ecosystem service trade-offs and synergies to impact factors in Liaoning province. Environ. Manag. 2023, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Liu, Y.; Yao, P.; Xie, X.; Zhang, G.; Deng, C. Spatial and temporal changes and prediction of habitat quality in key ecological function area of Hu’nan province. Bull. Soil Water Conserv. 2022, 42, 347–356, 364. (In Chinese) [Google Scholar]
- Deng, X.; Xiong, K.; Yu, Y.; Zhang, S.; Kong, L.; Zhang, Y. A review of ecosystem service trade-offs/synergies: Enlightenment for the optimization of forest ecosystem functions in karst desertification control. Forests 2023, 14, 88. [Google Scholar] [CrossRef]
- Lyu, F.; Tang, J.; Olhnuud, A.; Hao, F.; Gong, C. The impact of large-scale ecological restoration projects on trade-offs/synergies and clusters of ecosystem services. J. Environ. Manag. 2024, 365, 121591. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, T.M.; Haensel, M.; Kaim, A.; Lee, H.; Reinermann, S.; Koellner, T. Recreation and its synergies and trade-offs with other ecosystem services of Alpine and pre-Alpine grasslands. Reg. Environ. Change 2024, 24, 57. [Google Scholar] [CrossRef]
- Pellowe, K.E.; Meacham, M.; Peterson, G.D.; Lade, S.J. Global analysis of reef ecosystem services reveals synergies, trade-offs and bundles. Ecosyst. Serv. 2023, 63, 101545. [Google Scholar] [CrossRef]
- Zeng, M.X.; Lin, S.Q.; Zhang, D.S. Analysis of factors influencing waterfront holiday vitality based on spatial function. In Proceedings of the Chinese society of Landscape Architecture 2020 Annual Conference Proceedings (Volume I), Online, 12–13 December 2020; pp. 219–225. (In Chinese). [Google Scholar]
- Luo, R.; Yang, S.; Wang, Z.; Zhang, T.; Gao, P. Impact and trade off analysis of land use change on spatial pattern of ecosystem services in Chishui River Basin. Environ. Sci. Pollut. Res. 2022, 29, 20234–20248. [Google Scholar] [CrossRef]
- Xu, C.; Jiang, Y.; Su, Z.; Liu, Y.; Lyu, J. Assessing the impacts of Grain-for-Green Programme on ecosystem services in Jinghe River basin, China. Ecol. Indic. 2022, 137, 108757. [Google Scholar] [CrossRef]
- Abera, W.; Tamene, L.; Kassawmar, T.; Mulatu, K.; Kassa, H.; Verchot, L.; Quintero, M. Impacts of land use and land cover dynamics on ecosystem services in the Yayo coffee forest biosphere reserve, southwestern Ethiopia. Ecosyst. Serv. 2021, 50, 101338. [Google Scholar] [CrossRef]
- Wu, J.; Li, J.; Ma, Y. Exploring the relationship between potential and actual of urban waterfront spaces in Wuhan based on social networks. Sustainability 2019, 11, 3298. [Google Scholar] [CrossRef]
- Yu, G.; Zhong, S. Borrowed production: Spatial processes of urban waterfront tourism in Guangzhou. J. Tour. Cult. Chang. 2022, 20, 601–616. [Google Scholar] [CrossRef]
- Schulz, T.; Ohmura, T.; Zabel, A. Sustainable economy trade-offs and conflicts in and with the forest (Research Trend). For. Policy Econ. 2023, 150, 102936. [Google Scholar] [CrossRef]
Lulc_Name | Lulc_Veg | Root_Depth | Kc |
---|---|---|---|
Agriculture | 1 | 1000 | 0.672 |
Forest | 1 | 5000 | 1.008 |
Grassland | 1 | 2000 | 0.935 |
Wetland | 0 | −1 | 0.834 |
Settlement | 0 | −1 | 0 |
Shrubland | 1 | 2500 | 0.800 |
Sparse vegetation | 1 | 1500 | 0.350 |
Bare area | 0 | −1 | 0.200 |
Water | 0 | −1 | 1 |
Snow/Ice | 0 | −1 | 0 |
Lulc_Name | C_above | C_below | C_soil | C_dead |
---|---|---|---|---|
Agriculture | 3 | 2 | 8 | 1 |
Forest | 140 | 70 | 35 | 12 |
Grassland | 15 | 35 | 30 | 4 |
Wetland | 1 | 0 | 0 | 0 |
Settlement | 5 | 5 | 12 | 2 |
Shrubland | 30 | 30 | 30 | 13 |
Sparse vegetation | 20 | 20 | 20 | 5 |
Bare area | 1 | 1 | 0 | 0 |
Water | 0 | 0 | 0 | 0 |
Snow/Ice | 0 | 0 | 0 | 0 |
Lulc_Name | Usle_c | Usle_p |
---|---|---|
Agriculture | 0.30 | 1 |
Forest | 0.03 | 1 |
Grassland | 0.08 | 1 |
Wetland | 1 | 1 |
Settlement | 0 | 0 |
Shrubland | 0.06 | 1 |
Sparse vegetation | 0.01 | 1 |
Bare area | 1 | 1 |
Water | 0 | 0 |
Snow/Ice | 0 | 0 |
Province | WY (mm) | CS (×108 t) | SDR (×108 t) | HQ |
---|---|---|---|---|
National | 400.24 | 25.67 | 132.17 | 0.68 |
Anhui | 864.16 | 0.81 | 0.72 | 0.54 |
Beijing | 134.18 | 0.04 | 0.06 | 0.63 |
Chongqing | 816.14 | 0.54 | 1.81 | 0.52 |
Fujian | 827.26 | 0.17 | 0.79 | 0.68 |
Gansu | 146.48 | 0.44 | 0.83 | 0.76 |
Guangdong | 1085.53 | 0.84 | 1.69 | 0.43 |
Guangxi | 711.12 | 1.2 | 3.63 | 0.74 |
Guizhou | 657.41 | 0.45 | 1.88 | 0.8 |
Hainan | 772.35 | 0.01 | 0.03 | 0.98 |
Hebei | 146.63 | 0.41 | 0.23 | 0.48 |
Henan | 388.62 | 0.71 | 0.2 | 0.36 |
Heilongjiang | 222.8 | 1.89 | 0.67 | 0.65 |
Hubei | 911.56 | 1.49 | 3.71 | 0.52 |
Hunan | 933.32 | 1.34 | 1.97 | 0.54 |
Jilin | 218.06 | 0.66 | 0.75 | 0.63 |
Jiangsu | 794.97 | 0.85 | 0.11 | 0.49 |
Jiangxi | 1100.7 | 1.03 | 0.69 | 0.6 |
Liaoning | 293.91 | 0.33 | 0.39 | 0.49 |
Inner Mongolia | 65.93 | 1.63 | 0.32 | 0.72 |
Ningxia | 2.87 | 0.27 | 0.01 | 0.49 |
Qinghai | 149.3 | 1.15 | 4.42 | 0.93 |
Shandong | 288.88 | 0.57 | 0.07 | 0.34 |
Shanxi | 162.25 | 0.48 | 0.32 | 0.53 |
Shaanxi | 260.3 | 0.57 | 1.54 | 0.64 |
Shanghai | 841.71 | 0.26 | 0.01 | 0.37 |
Sichuan | 415.84 | 1.71 | 23.51 | 0.75 |
Taiwan | 2182.24 | 0.05 | 1.67 | 0.52 |
Tianjin | 218.5 | 0.03 | 0.01 | 0.2 |
Tibet | 175.65 | 2.11 | 43.66 | 0.97 |
Xinjiang | 2.16 | 0.56 | 0.12 | 0.56 |
Yunnan | 411.51 | 2.78 | 47.61 | 0.86 |
Zhejiang | 1011.01 | 0.25 | 0.98 | 0.64 |
The Name of the Data | Data Source | Data Download Link |
---|---|---|
DEM dataset | Zhang et al., 2022 [36] | https://doi.org/10.1016/j.scib.2022.11.021, accessed on 5 February 2024. |
Land cover classification | Store, 2019 [37] | http://doi.org/10.24381/cds.006f2c9a, accessed on 10 February 2024. |
Monthly high-resolution gridded multivariate climate dataset | Harris et al., 2020 [38] | https://doi.org/10.1038/s41597-020-0453-3, accessed on 5 February 2024. |
ETMonitor Global Actual Evapotranspiration Dataset | Zheng, 2022 [39] | https://doi.org/10.1016/j.jhydrol.2022.128444, accessed on 15 March 2024. |
Harmonized World Soil Database v 1.2 | Fischer et al., 2008 [40] | https://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/, accessed on 20 March 2024. |
Province | Cities or Famous Attractions |
---|---|
Tibet | Nyingchi, Mapanyongcuo, Yangzhuo Yongcuo, Namco |
Qinghai | Qinghai Lake |
Yunnan | Baise, Nujiang Lisu Autonomous Prefecture, western Dali Bai Autonomous Prefecture, Lincang, Pu’er |
Guangxi | Hechi, Ganzi Tibetan Autonomous Prefecture, Aba Tibetan and Qiang Autonomous Prefecture, Laibin, Guigang |
Sichuan | Liangshan Yi Autonomous Prefecture |
Hunan | Yiyang, Yueyang, Jiujiang, Chenzhou |
Guangdong | Foshan, Zhongshan, Dongguan |
ES | WY | CS | SDR | HQ | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2010 | 2015 | 2020 | 2010 | 2015 | 2020 | 2010 | 2015 | 2020 | 2010 | 2015 | 2020 | |
WY | 1 | 1 | 1 | 0.46 *** | 0.45 *** | 0.35 *** | 0.27 *** | 0.26 *** | 0.23 *** | −0.13 *** | −0.21 *** | −0.32 *** |
CS | 0.46 *** | 0.45 *** | 0.35 *** | 1 | 1 | 1 | 0.21 *** | 0.21 *** | 0.21 *** | 0.03 *** | 0.09 *** | 0.11 *** |
SDR | 0.27 *** | 0.26 *** | 0.23 *** | 0.21 *** | 0.21 *** | 0.21 *** | 1 | 1 | 1 | 0.22 *** | 0.21 *** | 0.19 *** |
HQ | −0.13 *** | −0.21 *** | −0.32 *** | 0.03 *** | 0.09 *** | 0.11 *** | 0.22 *** | 0.21 *** | 0.19 *** | 1 | 1 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Y.; Yang, H.; Gong, H.; Shi, J.; Zhang, Y.; Wang, J.; Zhang, X.; Cheng, R.; Chen, Y. Spatiotemporal Changes and Trade-Offs/Synergies of Waterfront Ecosystem Services Globally. Sustainability 2025, 17, 472. https://doi.org/10.3390/su17020472
Zheng Y, Yang H, Gong H, Shi J, Zhang Y, Wang J, Zhang X, Cheng R, Chen Y. Spatiotemporal Changes and Trade-Offs/Synergies of Waterfront Ecosystem Services Globally. Sustainability. 2025; 17(2):472. https://doi.org/10.3390/su17020472
Chicago/Turabian StyleZheng, Yaomin, Huize Yang, Huixin Gong, Jinlian Shi, Yanhui Zhang, Jiaxin Wang, Xin Zhang, Ruifen Cheng, and Yu Chen. 2025. "Spatiotemporal Changes and Trade-Offs/Synergies of Waterfront Ecosystem Services Globally" Sustainability 17, no. 2: 472. https://doi.org/10.3390/su17020472
APA StyleZheng, Y., Yang, H., Gong, H., Shi, J., Zhang, Y., Wang, J., Zhang, X., Cheng, R., & Chen, Y. (2025). Spatiotemporal Changes and Trade-Offs/Synergies of Waterfront Ecosystem Services Globally. Sustainability, 17(2), 472. https://doi.org/10.3390/su17020472