Sustainable Green Synthesis of ZnO Nanoparticles from Bromelia pinguin L.: Photocatalytic Properties and Their Contribution to Urban Habitability
<p>ATR-IR analysis of the nanoparticles biosynthesized with <span class="html-italic">Bromelia pinguin</span> L.</p> "> Figure 2
<p>Morphological analysis of the nanoparticles biosynthesized with <span class="html-italic">Bromelia pinguin</span> L. (<b>a</b>,<b>b</b>) Micrographs of BP 1%-ZnO, (<b>c</b>) size distribution of BP 1%-ZnO, (<b>d</b>,<b>e</b>) Micrographs of BP 2%-ZnO, (<b>f</b>) size distribution of BP 2%-ZnO, (<b>g</b>,<b>h</b>) Micrographs of BP 4%-ZnO and (<b>i</b>) size distribution of BP 4%-ZnO.</p> "> Figure 3
<p>XRD spectra of the nanoparticles biosynthesized with <span class="html-italic">Bromelia pinguin</span> L. (<b>a</b>) BP 1%-ZnO nanoparticles, (<b>b</b>) BP 2%-ZnO nanoparticles and (<b>c</b>) BP 4%-ZnO nanoparticles.</p> "> Figure 4
<p>TGA/DSC results of the nanoparticles synthesized using 1%, 2%, and 4% of <span class="html-italic">Bromelia pinguin</span> L.</p> "> Figure 5
<p>BET analysis of the nanoparticles synthesized using 1%, 2%, and 4% of <span class="html-italic">Bromelia pinguin</span> L.</p> "> Figure 6
<p>UV–Vis spectra of nanoparticles synthesized using 1%, 2%, and 4% of <span class="html-italic">Bromelia pinguin</span> L.</p> "> Figure 7
<p>Band gaps of the nanoparticles synthesized using 1%, 2%, and 4% of <span class="html-italic">Bromelia pinguin</span> L. calculated with the help of the TAUC model.</p> "> Figure 8
<p>Formation mechanism of nanoparticles biosynthesized with <span class="html-italic">Bromelia pinguin</span> L.</p> "> Figure 9
<p>Photocatalytic activity of nanoparticles biosynthesized with <span class="html-italic">Bromelia pinguin</span> L. (<b>a</b>) Degradation of MB under solar radiation; (<b>b</b>) degradation of MB under UV radiation; (<b>c</b>) MO degradation under solar radiation; (<b>d</b>) degradation of MO under UV radiation; (<b>e</b>) degradation of RhB under solar radiation; and (<b>f</b>) degradation of RhB under UV radiation.</p> "> Figure 10
<p>Proposed photocatalytic degradation mechanism of ZnO nanoparticles biosynthesized with <span class="html-italic">Bromelia pinguin</span> L.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haseena, M.; Malik, M.F.; Javed, A.; Arshad, S.; Asif, N.; Zulfiqar, S.; Hanif, J. Water Pollution and Human Health. Environ. Risk Assess. Remediat. 2017, 1. [Google Scholar] [CrossRef]
- Leyva Morales, J.B.; Valdez Torres, J.B.; Bastidas Bastidas, P.d.J.; Angulo Escalante, M.Á.; Sarmiento Sánchez, J.I.; Barraza Lobo, A.L.; Olmeda Rubio, C.; Chaidez Quiroz, C. Monitoring of Pesticides Residues in Northwestern Mexico Rivers. Acta Univ. 2017, 27, 45–54. [Google Scholar] [CrossRef]
- Schweitzer, L.; Noblet, J. Water Contamination and Pollution. In Green Chemistry; Elsevier: Amsterdam, The Netherlands, 2018; pp. 261–290. [Google Scholar]
- Sánchez, M.B.; Uribe, C. Contaminación de Los Ambientes Acuáticos Generados Por La Industria Textil. Rev. Campus 2018, 23, 129–144. [Google Scholar] [CrossRef]
- Zaruma, P.; Proal, J.; Hernández, I.C.; Salas, H.I. Los Colorantes Textiles Industriales y Tratamientos Óptimos de Sus Efluentes de Agua Residual: Una Breve Revisión. Available online: https://publicaciones.ucuenca.edu.ec/ojs/index.php/quimica/article/view/2216 (accessed on 1 December 2024).
- Manzoor, J.; Sharma, M. Impact of Textile Dyes on Human Health and Environment. In Impact of Textile Dyes on Public Health and the Environment; IGI Global: Hershey, PA, USA, 2020; pp. 162–169. [Google Scholar]
- Srivastava, R.; Sofi, I.R. Impact of Synthetic Dyes on Human Health and Environment. In Impact of Textile Dyes on Public Health and the Environment; IGI Global: Hershey, PA, USA, 2020; pp. 146–161. [Google Scholar]
- Bhattacharjee, N.; Som, I.; Saha, R.; Mondal, S. A Critical Review on Novel Eco-Friendly Green Approach to Synthesize Zinc Oxide Nanoparticles for Photocatalytic Degradation of Water Pollutants. Int. J. Environ. Anal. Chem. 2022, 104, 489–516. [Google Scholar] [CrossRef]
- Hoseinpour, V.; Ghaemi, N. Green Synthesis of Manganese Nanoparticles: Applications and Future Perspective–A Review. J. Photochem. Photobiol. B Biol. 2018, 189, 234–243. [Google Scholar] [CrossRef]
- Nadeem, M.; Tungmunnithum, D.; Hano, C.; Abbasi, B.H.; Hashmi, S.S.; Ahmad, W.; Zahir, A. The Current Trends in the Green Syntheses of Titanium Oxide Nanoparticles and Their Applications. Green Chem. Lett. Rev. 2018, 11, 492–502. [Google Scholar] [CrossRef]
- Akintelu, S.A.; Folorunso, A.S.; Folorunso, F.A.; Oyebamiji, A.K. Green Synthesis of Copper Oxide Nanoparticles for Biomedical Application and Environmental Remediation. Heliyon 2020, 6, e04508. [Google Scholar] [CrossRef] [PubMed]
- Dowlath, M.J.H.; Musthafa, S.A.; Khalith, S.B.M.; Varjani, S.; Karuppannan, S.K.; Ramanujam, G.M.; Arunachalam, A.M.; Arunachalam, K.D.; Chandrasekaran, M.; Chang, S.W. Comparison of Characteristics and Biocompatibility of Green Synthesized Iron Oxide Nanoparticles with Chemical Synthesized Nanoparticles. Environ. Res. 2021, 201, 111585. [Google Scholar] [CrossRef]
- Ortíz, M.d.J.R.; Valencia, R.H.; Parra, G.A.; Morales, P.A.L. Síntesis Verde de Materiales Nanoestructurados de ZnO En La Degradación de Contaminantes Orgánicos Por Medio de La Fotocatálisis Heterogénea. J. Technol. Sci. 2021, 4, 299–313. [Google Scholar]
- Vasantharaj, S.; Sathiyavimal, S.; Senthilkumar, P.; Kalpana, V.N.; Rajalakshmi, G.; Alsehli, M.; Elfasakhany, A.; Pugazhendhi, A. Enhanced Photocatalytic Degradation of Water Pollutants Using Bio-Green Synthesis of Zinc Oxide Nanoparticles (ZnO NPs). J. Environ. Chem. Eng. 2021, 9, 105772. [Google Scholar] [CrossRef]
- Sayadi, M.H.; Ghollasimood, S.; Ahmadpour, N.; Homaeigohar, S. Biosynthesis of the ZnO/SnO2 Nanoparticles and Characterization of Their Photocatalytic Potential for Removal of Organic Water Pollutants. J. Photochem. Photobiol. A Chem. 2022, 425, 113662. [Google Scholar] [CrossRef]
- Luque-Morales, P.A.; Lopez-Peraza, A.; Nava-Olivas, O.J.; Amaya-Parra, G.; Baez-Lopez, Y.A.; Orozco-Carmona, V.M.; Garrafa-Galvez, H.E.; Chinchillas-Chinchillas, M.d.J. ZnO Semiconductor Nanoparticles and Their Application in Photocatalytic Degradation of Various Organic Dyes. Materials 2021, 14, 7537. [Google Scholar] [CrossRef] [PubMed]
- Nagajyothi, P.C.; Prabhakar Vattikuti, S.V.; Devarayapalli, K.C.; Yoo, K.; Shim, J.; Sreekanth, T.V.M. Green Synthesis: Photocatalytic Degradation of Textile Dyes Using Metal and Metal Oxide Nanoparticles-Latest Trends and Advancements. Crit. Rev. Environ. Sci. Technol. 2020, 50, 2617–2723. [Google Scholar] [CrossRef]
- Santhosh, P.B.; Genova, J.; Chamati, H. Green Synthesis of Gold Nanoparticles: An Eco-Friendly Approach. Chemistry 2022, 4, 345–369. [Google Scholar] [CrossRef]
- Wang, G.; Zhao, K.; Gao, C.; Wang, J.; Mei, Y.; Zheng, X.; Zhu, P. Green Synthesis of Copper Nanoparticles Using Green Coffee Bean and Their Applications for Efficient Reduction of Organic Dyes. J. Environ. Chem. Eng. 2021, 9, 105331. [Google Scholar] [CrossRef]
- Singh, J.; Dutta, T.; Kim, K.-H.; Rawat, M.; Samddar, P.; Kumar, P. ‘Green’ Synthesis of Metals and Their Oxide Nanoparticles: Applications for Environmental Remediation. J. Nanobiotechnol. 2018, 16, 84. [Google Scholar] [CrossRef]
- Hornung-Leoni, C.T. Avances Sobre Usos Etnobotánicos de Las Bromeliaceae En Latinoamérica. Bol. Latinoam. Caribe Plantas Med. Aromat. 2011, 10, 297–314. [Google Scholar]
- Rojas-García, A.R.; de los Ángeles Maldonado-Peralta, M. Cualidades Morfológicas de Frutos de Tres Especies de Bromelia (Bromeliaceae). Rev. Fitotec. Mex. 2021, 44, 521. [Google Scholar] [CrossRef]
- Abreu Payrol, J.; Miranda Martínez, M.; Toledo Carrabeo, G.; Castillo García, O. Actividad Farmacológica Preliminar Del Fruto de Bromelia pinguin L.(Piña de Ratón). Rev. Cuba. Farm. 2001, 35, 56–60. [Google Scholar]
- Efigenia, M.-G.; Miguel, A.-E.L.; Osiris, M.-O.A.; Pay, A.; Alberto, S.-B.J.; de Lourdes, G.-M.M. Physiological and Physicochemical Behavior of Guamara (Bromelia pinguin ) and Cocuixtle (Bromelia karatas) Fruits, as Well as the Antibacterial Effect of Their Pre-Purified Proteases. Emir. J. Food Agric. 2021, 277–286. [Google Scholar] [CrossRef]
- Meza-Espinoza, L.; de Lourdes García-Magaña, M.; de los Ángeles Vivar-Vera, M.; Sáyago-Ayerdi, S.G.; Chacón-López, A.; Becerra-Verdín, E.M.; Muy-Rangel, M.D.; Montalvo-González, E. Aspectos Etnobotánicos, Nutricionales y Actividad Biológica de Extractos de Frutos Del Género Bromelia. Rev. Fitotec. Mex. 2017, 40, 425–437. [Google Scholar] [CrossRef]
- Sadiq, H.; Sher, F.; Sehar, S.; Lima, E.C.; Zhang, S.; Iqbal, H.M.N.; Zafar, F.; Nuhanović, M. Green Synthesis of ZnO Nanoparticles from Syzygium Cumini Leaves Extract with Robust Photocatalysis Applications. J. Mol. Liq. 2021, 335, 116567. [Google Scholar] [CrossRef]
- Soto-Robles, C.A.; Luque, P.A.; Gómez-Gutiérrez, C.M.; Nava, O.; Vilchis-Nestor, A.R.; Lugo-Medina, E.; Ranjithkumar, R.; Castro-Beltrán, A. Study on the Effect of the Concentration of Hibiscus Sabdariffa Extract on the Green Synthesis of ZnO Nanoparticles. Results Phys. 2019, 15, 102807. [Google Scholar] [CrossRef]
- Sasi, S.; Fasna, P.H.F.; Sharmila, T.K.B.; Chandra, C.S.J.; Antony, J.V.; Raman, V.; Nair, A.B.; Ramanathan, H.N. Green Synthesis of ZnO Nanoparticles with Enhanced Photocatalytic and Antibacterial Activity. J. Alloys Compd. 2022, 924, 166431. [Google Scholar] [CrossRef]
- Sahai, A.; Goswami, N. Structural and Vibrational Properties of ZnO Nanoparticles Synthesized by the Chemical Precipitation Method. Phys. E Low-dimens. Syst. Nanostruct. 2014, 58, 130–137. [Google Scholar] [CrossRef]
- Sato-Berrú, R.Y.; Vázquez-Olmos, A.; Fernández-Osorio, A.L.; Sotres-Martínez, S. Micro-Raman Investigation of Transition-metal-doped ZnO Nanoparticles. J. Raman Spectrosc. An Int. J. Orig. Work all Asp. Raman Spectrosc. Incl. High. Order Process. Brillouin Rayleigh Scatt. 2007, 38, 1073–1076. [Google Scholar] [CrossRef]
- Karthik, K.V.; Raghu, A.V.; Reddy, K.R.; Ravishankar, R.; Sangeeta, M.; Shetti, N.P.; Reddy, C.V. Green Synthesis of Cu-Doped ZnO Nanoparticles and Its Application for the Photocatalytic Degradation of Hazardous Organic Pollutants. Chemosphere 2022, 287, 132081. [Google Scholar] [CrossRef]
- Pillai, A.M.; Sivasankarapillai, V.S.; Rahdar, A.; Joseph, J.; Sadeghfar, F.; Anuf A, R.; Rajesh, K.; Kyzas, G.Z. Green Synthesis and Characterization of Zinc Oxide Nanoparticles with Antibacterial and Antifungal Activity. J. Mol. Struct. 2020, 1211, 128107. [Google Scholar] [CrossRef]
- Thirumoorthy, G.S.; Balasubramaniam, O.; Kumaresan, P.; Muthusamy, P.; Subramani, K. Tetraselmis Indica Mediated Green Synthesis of Zinc Oxide (ZnO) Nanoparticles and Evaluating Its Antibacterial, Antioxidant, and Hemolytic Activity. Bionanoscience 2021, 11, 172–181. [Google Scholar] [CrossRef]
- Sagar Raut, D.P.; Thorat, R. Green Synthesis of Zinc Oxide (ZnO) Nanoparticles Using OcimumTenuiflorum Leaves. Int. J. Sci. Res. 2015, 4, 1225–1228. [Google Scholar]
- Duan, H.; Wang, D.; Li, Y. Green Chemistry for Nanoparticle Synthesis. Chem. Soc. Rev. 2015, 44, 5778–5792. [Google Scholar] [CrossRef]
- Luque, P.A.; Garrafa-Gálvez, H.E.; Nava, O.; Olivas, A.; Martínez-Rosas, M.E.; Vilchis-Nestor, A.R.; Villegas-Fuentes, A.; Chinchillas-Chinchillas, M.J. Efficient Sunlight and UV Photocatalytic Degradation of Methyl Orange, Methylene Blue and Rhodamine B, Using Citrus×paradisi Synthesized SnO2 Semiconductor Nanoparticles. Ceram. Int. 2021, 47, 23861–23874. [Google Scholar] [CrossRef]
- Suresh, D.; Shobharani, R.M.; Nethravathi, P.C.; Pavan Kumar, M.A.; Nagabhushana, H.; Sharma, S.C. Artocarpus Gomezianus Aided Green Synthesis of ZnO Nanoparticles: Luminescence, Photocatalytic and Antioxidant Properties. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 141, 128–134. [Google Scholar] [CrossRef]
- Gawade, V.V.; Gavade, N.L.; Shinde, H.M.; Babar, S.B.; Kadam, A.N.; Garadkar, K.M. Green Synthesis of ZnO Nanoparticles by Using Calotropis Procera Leaves for the Photodegradation of Methyl Orange. J. Mater. Sci. Mater. Electron. 2017, 28, 14033–14039. [Google Scholar] [CrossRef]
- Liu, Y.C.; Li, J.; Ahn, J.; Pu, J.; Rupa, E.J.; Huo, Y.; Yang, D.C. Biosynthesis of Zinc Oxide Nanoparticles by One-Pot Green Synthesis Using Fruit Extract of Amomum Longiligulare and Its Activity as a Photocatalyst. Optik 2020, 218, 165245. [Google Scholar] [CrossRef]
- Chakraborty, S.; Farida, J.J.; Simon, R.; Kasthuri, S.; Mary, N.L. Averrhoe Carrambola Fruit Extract Assisted Green Synthesis of Zno Nanoparticles for the Photodegradation of Congo Red Dye. Surf. Interfaces 2020, 19, 100488. [Google Scholar] [CrossRef]
- Zhao, S.; Sun, Y.; Lü, X.; Li, Q. Energy Consumption and Product Release Characteristics Evaluation of Oil Shale Non-Isothermal Pyrolysis Based on TG-DSC. J. Pet. Sci. Eng. 2020, 187, 106812. [Google Scholar] [CrossRef]
- Channa, I.A.; Ashfaq, J.; Gilani, S.J.; Shah, A.A.; Chandio, A.D.; Jumah, M.N. UV Blocking and Oxygen Barrier Coatings Based on Polyvinyl Alcohol and Zinc Oxide Nanoparticles for Packaging Applications. Coatings 2022, 12, 897. [Google Scholar] [CrossRef]
- Kumar, A. Sol Gel Synthesis of Zinc Oxide Nanoparticles and Their Application as Nano-Composite Electrode Material for Supercapacitor. J. Mol. Struct. 2020, 1220, 128654. [Google Scholar] [CrossRef]
- Khan, M.S.; Dhavan, P.P.; Jadhav, B.L.; Shimpi, N.G. Ultrasound-Assisted Green Synthesis of Ag-Decorated ZnO Nanoparticles UsingExcoecaria AgallochaLeaf Extract and Evaluation of Their Photocatalytic and Biological Activity. ChemistrySelect 2020, 5, 12660–12671. [Google Scholar] [CrossRef]
- Naiel, B.; Fawzy, M.; Halmy, M.W.A.; Mahmoud, A.E.D. Green Synthesis of Zinc Oxide Nanoparticles Using Sea Lavender (Limonium pruinosum L. Chaz.) Extract: Characterization, Evaluation of Anti-Skin Cancer, Antimicrobial and Antioxidant Potentials. Sci. Rep. 2022, 12, 20370. [Google Scholar] [CrossRef] [PubMed]
- Dmochowska, A.; Czajkowska, J.; Jędrzejewski, R.; Stawiński, W.; Migdał, P.; Fiedot-Toboła, M. Pectin Based Banana Peel Extract as a Stabilizing Agent in Zinc Oxide Nanoparticles Synthesis. Int. J. Biol. Macromol. 2020, 165, 1581–1592. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, N.; Singh, V.; Kumar, S.; Kumari, M.; Sirohi, K. Preparation of Silver and Nitrogen Co-Doped Mesoporous Zinc Oxide Nanoparticles by Evaporation Induced Self Assembly Process to Study Their Photocatalytic Activity. J. Sol-Gel Sci. Technol. 2019, 90, 390–403. [Google Scholar] [CrossRef]
- Mustapha, S.; Tijani, J.O.; Ndamitso, M.M.; Abdulkareem, S.A.; Shuaib, D.T.; Mohammed, A.K.; Sumaila, A. The Role of Kaolin and Kaolin/ZnO Nanoadsorbents in Adsorption Studies for Tannery Wastewater Treatment. Sci. Rep. 2020, 10, 13068. [Google Scholar] [CrossRef]
- Bayrami, A.; Haghgooie, S.; Rahim Pouran, S.; Mohammadi Arvanag, F.; Habibi-Yangjeh, A. Synergistic Antidiabetic Activity of ZnO Nanoparticles Encompassed by Urtica Dioica Extract. Adv. Powder Technol. 2020, 31, 2110–2118. [Google Scholar] [CrossRef]
- Shebl, A.; Hassan, A.A.; Salama, D.M.; Abd El-Aziz, M.E.; Abd Elwahed, M.S.A. Green Synthesis of Nanofertilizers and Their Application as a Foliar for Cucurbita Pepo L. J. Nanomater. 2019, 2019, 3476347. [Google Scholar] [CrossRef]
- Miri, A.; Khatami, M.; Ebrahimy, O.; Sarani, M. Cytotoxic and Antifungal Studies of Biosynthesized Zinc Oxide Nanoparticles Using Extract of Prosopis Farcta Fruit. Green Chem. Lett. Rev. 2020, 13, 27–33. [Google Scholar] [CrossRef]
- Huang, G.; He, J.; Zhang, X.; Feng, M.; Tan, Y.; Lv, C.; Huang, H.; Jin, Z. Applications of Lambert-Beer Law in the Preparation and Performance Evaluation of Graphene Modified Asphalt. Constr. Build. Mater. 2021, 273, 121582. [Google Scholar] [CrossRef]
- Viezbicke, B.D.; Patel, S.; Davis, B.E.; Birnie III, D.P. Evaluation of the Tauc Method for Optical Absorption Edge Determination: ZnO Thin Films as a Model System. Phys. Status Solidi 2015, 252, 1700–1710. [Google Scholar] [CrossRef]
- Chattopadhyay, S.; Misra, K.P.; Agarwala, A.; Shahee, A.; Jain, S.; Halder, N.; Rao, A.; Babu, P.D.; Saran, M.; Mukhopadhyay, A.K. Dislocations and Particle Size Governed Band Gap and Ferromagnetic Ordering in Ni Doped ZnO Nanoparticles Synthesized via Co-Precipitation. Ceram. Int. 2019, 45, 23341–23354. [Google Scholar] [CrossRef]
- Mahdi Ismail, S.M.; Ahmed, S.M.; Abdulrahman, A.F.; AlMessiere, M.A. Characterization of Green Synthesized of ZnO Nanoparticles by Using Pinus Brutia Leaves Extracts. J. Mol. Struct. 2023, 1280, 135063. [Google Scholar] [CrossRef]
- Sarwar, N.; Shahzad, M.; Ghaffar, R.; Javed, K.; Munam, M.; Pervez, A.; Ghaffar, A. Fabrication of DSSC Based on Capsicum annuum and Tamarindus Indica Plant Seeds Extract as Natural Photosensitizers. Sol. Energy 2023, 257, 314–323. [Google Scholar] [CrossRef]
- Chan, Y.Y.; Pang, Y.L.; Lim, S.; Chong, W.C. Facile Green Synthesis of ZnO Nanoparticles Using Natural-Based Materials: Properties, Mechanism, Surface Modification and Application. J. Environ. Chem. Eng. 2021, 9, 105417. [Google Scholar] [CrossRef]
- Matinise, N.; Fuku, X.G.; Kaviyarasu, K.; Mayedwa, N.; Maaza, M. ZnO Nanoparticles via Moringa Oleifera Green Synthesis: Physical Properties & Mechanism of Formation. Appl. Surf. Sci. 2017, 406, 339–347. [Google Scholar] [CrossRef]
- Li, S.; Shen, Y.; Xie, A.; Yu, X.; Qiu, L.; Zhang, L.; Zhang, Q. Green Synthesis of Silver Nanoparticles Using Capsicum annuum L. Extract. Green Chem. 2007, 9, 852–858. [Google Scholar] [CrossRef]
- Bandeira, M.; Giovanela, M.; Roesch-Ely, M.; Devine, D.M.; da Silva Crespo, J. Green Synthesis of Zinc Oxide Nanoparticles: A Review of the Synthesis Methodology and Mechanism of Formation. Sustain. Chem. Pharm. 2020, 15, 100223. [Google Scholar] [CrossRef]
- Ahmed, S.; Annu; Chaudhry, S.A.; Ikram, S. A Review on Biogenic Synthesis of ZnO Nanoparticles Using Plant Extracts and Microbes: A Prospect towards Green Chemistry. J. Photochem. Photobiol. B Biol. 2017, 166, 272–284. [Google Scholar] [CrossRef]
- Hussein, B.Y.; Mohammed, A.M. Green Synthesis of ZnO Nanoparticles in Grape Extract: Their Application as Anti-Cancer and Anti-Bacterial. Mater. Today Proc. 2021, 42, A18–A26. [Google Scholar] [CrossRef]
- Anju Chanu, L.; Joychandra Singh, W.; Jugeshwar Singh, K.; Nomita Devi, K. Effect of Operational Parameters on the Photocatalytic Degradation of Methylene Blue Dye Solution Using Manganese Doped ZnO Nanoparticles. Results Phys. 2019, 12, 1230–1237. [Google Scholar] [CrossRef]
- Mahmoud, Z.H. Photodegradation of Methylene Blue Solution via Au Doped TiO2 Nanocomposite Catalysts Prepared Using Novel Photolysis Method. Iran. J. Chem. Chem. Eng. 2019, 38, 29–35. [Google Scholar]
- Han, C.; Cheng, C.; Liu, F.; Li, X.; Wang, G.; Li, J. Preparation of CdS–Ag2S Nanocomposites by Ultrasound-Assisted UV Photolysis Treatment and Its Visible Light Photocatalysis Activity. Nanotechnol. Rev. 2023, 12, 20220503. [Google Scholar] [CrossRef]
- Alshamsi, H.A.; Jaffer, A.A. New Hibiscus Sabdariffa L Petals Extract Based Green Synthesis of Zinc Oxide Nanoparticles for Photocatalytic Degradation of Rhodamine B Dye under Solar Light. AIP Conf. Proc. 2022, 2394, 40017. [Google Scholar] [CrossRef]
- Soto-Robles, C.A.; Nava, O.; Cornejo, L.; Lugo-Medina, E.; Vilchis-Nestor, A.R.; Castro-Beltrán, A.; Luque, P.A. Biosynthesis, Characterization and Photocatalytic Activity of ZnO Nanoparticles Using Extracts of Justicia Spicigera for the Degradation of Methylene Blue. J. Mol. Struct. 2021, 1225, 129101. [Google Scholar] [CrossRef]
- Nguyen-Hong, Y.; Luu, T.V.H.; Doan, V. Green Synthesis of Ce-doped ZnO Nanoparticles Using Hedyotis Capitellata Leaf Extract for Efficient Photocatalytic Degradation of Methyl Orange. Vietnam J. Chem. 2021, 59, 648–659. [Google Scholar] [CrossRef]
- Ahmad, M.; Rehman, W.; Khan, M.M.; Qureshi, M.T.; Gul, A.; Haq, S.; Ullah, R.; Rab, A.; Menaa, F. Phytogenic Fabrication of ZnO and Gold Decorated ZnO Nanoparticles for Photocatalytic Degradation of Rhodamine B. J. Environ. Chem. Eng. 2021, 9, 104725. [Google Scholar] [CrossRef]
- Davis, K.; Yarbrough, R.; Froeschle, M.; White, J.; Rathnayake, H. Band Gap Engineered Zinc Oxide Nanostructures via a Sol–Gel Synthesis of Solvent Driven Shape-Controlled Crystal Growth. RSC Adv. 2019, 9, 14638–14648. [Google Scholar] [CrossRef]
- Villarreal, R.C.; Luque-Morales, M.; Chinchillas-Chinchillas, M.J.; Luque, P.A. Langmuir-Hinshelwood-Hougen-Watson Model for the Study of Photodegradation Properties of Zinc Oxide Semiconductor Nanoparticles Synthetized by Peumus boldus. Results Phys. 2022, 36, 105421. [Google Scholar] [CrossRef]
- Escobar-Alarcón, L.; Solís-Casados, D.A. Desarrollo de Fotocatalizadores Basados En TiO2 En Forma de Película Delgada Para La Degradación de Moléculas Orgánicas En Solución Acuosa. Mundo Nano. Rev. Interdiscip. Nanocienc. Nanotecnol. 2021, 14, 1e–23e. [Google Scholar] [CrossRef]
Samples | Section | Weight loss | Total Loss |
---|---|---|---|
BP 1%-ZnO | 1 | 1.1% | 2.6% |
2 | 0.5% | ||
3 | 1% | ||
BP 2%-ZnO | 1 | 3.2% | 5.7% |
2 | 1.1% | ||
3 | 1.4% | ||
BP 4%-ZnO | 1 | 6% | 8.9% |
2 | 1.6% | ||
3 | 1.3% |
Sample | Surface Area (m2/g) | Pore Volume (cc/g) | Pore Size (Å) |
---|---|---|---|
BP 1%-ZnO | 7.299 | 0.032 | 8.925 |
BP 2%-ZnO | 20.285 | 0.099 | 8.020 |
BP 4%-ZnO | 21.980 | 0.138 | 7.854 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chinchillas-Chinchillas, M.d.J.; Galvez, H.E.G.; Carmona, V.M.O.; Galindo Flores, H.; Morales, J.B.L.; Luque Morales, M.; Camacho, M.O.; Luque Morales, P.A. Sustainable Green Synthesis of ZnO Nanoparticles from Bromelia pinguin L.: Photocatalytic Properties and Their Contribution to Urban Habitability. Sustainability 2024, 16, 10745. https://doi.org/10.3390/su162310745
Chinchillas-Chinchillas MdJ, Galvez HEG, Carmona VMO, Galindo Flores H, Morales JBL, Luque Morales M, Camacho MO, Luque Morales PA. Sustainable Green Synthesis of ZnO Nanoparticles from Bromelia pinguin L.: Photocatalytic Properties and Their Contribution to Urban Habitability. Sustainability. 2024; 16(23):10745. https://doi.org/10.3390/su162310745
Chicago/Turabian StyleChinchillas-Chinchillas, Manuel de Jesus, Horacio Edgardo Garrafa Galvez, Victor Manuel Orozco Carmona, Hugo Galindo Flores, Jose Belisario Leyva Morales, Mizael Luque Morales, Mariel Organista Camacho, and Priscy Alfredo Luque Morales. 2024. "Sustainable Green Synthesis of ZnO Nanoparticles from Bromelia pinguin L.: Photocatalytic Properties and Their Contribution to Urban Habitability" Sustainability 16, no. 23: 10745. https://doi.org/10.3390/su162310745
APA StyleChinchillas-Chinchillas, M. d. J., Galvez, H. E. G., Carmona, V. M. O., Galindo Flores, H., Morales, J. B. L., Luque Morales, M., Camacho, M. O., & Luque Morales, P. A. (2024). Sustainable Green Synthesis of ZnO Nanoparticles from Bromelia pinguin L.: Photocatalytic Properties and Their Contribution to Urban Habitability. Sustainability, 16(23), 10745. https://doi.org/10.3390/su162310745