Effect of Exogenous Jasmonates on Plant Adaptation to Cold Stress: A Comprehensive Study Based on a Systematic Review with a Focus on Sustainability
<p>PRISMA flow diagram. We initially extracted 2665 potential references. Screening the titles and abstracts yielded 247 full-text articles, the eligibility of which was assessed for systematic evaluation. Eventually, 16 studies were included for qualitative and quantitative syntheses. PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-Analyses.</p> "> Figure 2
<p>Systemic evaluation of JAs in plant cold stress. (<b>A</b>) Number of published documents from 2018 to 2022; (<b>B</b>) statistics on the number of countries to which the first author belongs; (<b>C</b>) quantitative statistics of physiological indicators; and (<b>D</b>) dicotyledonous plant material quantity statistics.</p> "> Figure 3
<p>Weighted summary effect sizes (JA treatment/control response ratios, ln R). Horizontal bars associated with summary effects are 95% confidence intervals (CIs). n is the number of studies contributing to each summary effect. <span class="html-italic">p</span> ≤ 0.05 indicates that the summary effect was significantly different than zero (mark in bold).</p> "> Figure 4
<p>Weight analysis and 95% confidence interval analysis of the effects of five variables on the combined effect value of JA application on the survival rate of plants responding to cold stress. Note: (a) Category: the category of each variable; (b) change (%): the effect of JAs on the survival rate of plants under cold stress; (c) n: the number of studies.</p> "> Figure 5
<p>Weight analysis and 95% confidence interval analysis of the effects of four variables on the combined effect value of JA application on taproot length of plants responding to cold stress. Note: (a) Category: the category of each variable; (b) change (%): the effect degree of JA application on the combined effect value of taproot length of plants responding to cold stress; (c) n: the number of studies.</p> "> Figure 6
<p>Weight analysis and 95% confidence interval analysis of the effects of six variables on the combined effect size of JA application on APX activity in plants responding to cold stress. Note: (a) Category: the category of each variable; (b) change (%): the degree of influence of JA application on the comprehensive effect value of APX activity in plants responding to cold stress; (c) n: the number of studies.</p> "> Figure 7
<p>Weight analysis and 95% confidence interval analysis of the effects of five variables on the combined effect value of JA application on CAT activity in plants responding to cold stress. Note: (a) Category: the category of each variable; (b) change (%): the degree of influence of JA spray on the comprehensive effect value of CAT activity in plants responding to cold stress; (c) n: the number of studies.</p> "> Figure 8
<p>Weight analysis and 95% confidence interval analysis of the effects of JA application with six variables on the combined effect size of MDA in plants responding to cold stress. Note: (a) Category: the category of each variable; (b) change (%): the effect degree of JAs spraying on APX composite effect value of plants responding to cold stress; (c) n: the number of studies.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Effect Values and Variable Factors
2.3. Meta-Analysis
3. Results
3.1. Systematic Evaluation
3.2. Analysis of Combined Effects
3.3. Publication Bias
3.4. Heterogeneity Analysis
3.5. Subgroup Analyses
3.5.1. Effect of JA Treatment on Plant Biomass
3.5.2. Effect of JA Treatment on Plant Ability to Respond to Adversity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mao, W.; Han, Y.; Chen, Y.; Sun, M.; Feng, Q.; Li, L.; Liu, L.; Zhang, K.; Wei, L.; Han, Z.; et al. Low temperature inhibits anthocyanin accumulation in strawberry fruit by activating FvMAPK3-induced phosphorylation of FvMYB10 and degradation of Chalcone Synthase 1. Plant Cell 2022, 34, 1226–1249. [Google Scholar] [CrossRef] [PubMed]
- Lukatkin, A.S.; Brazaityte, A.; Bobinas, C.; Duchovskis, P. Chilling injury in chilling-sensitive plants: A review. Zemdirb.-Agric. 2012, 99, 111–124. [Google Scholar]
- Shi, Y.; Ding, Y.; Yang, S. Molecular Regulation of CBF Signaling in Cold Acclimation. Trends Plant Sci. 2018, 23, 623–637. [Google Scholar] [CrossRef] [PubMed]
- Miura, K.; Furumoto, T. Cold Signaling and Cold Response in Plants. Int. J. Mol. Sci. 2013, 14, 5312–5337. [Google Scholar] [CrossRef] [PubMed]
- Kuk, Y.I.; Shin, J.S.; Burgos, N.R.; Hwang, T.E.; Han, O.; Cho, B.H.; Jung, S.; Guh, J.O. Antioxidative Enzymes Offer Protection from Chilling Damage in Rice Plants. Crop Sci. 2003, 43, 2109–2117. [Google Scholar] [CrossRef]
- Badawy, A.A.; Alamri, A.A.; Hussein, H.-A.A.; Salem, N.F.G.; Mashlawi, A.M.; Kenawy, S.K.M.; El-Shabasy, A. Glycine Betaine Mitigates Heavy Metal Toxicity in Beta vulgaris (L.): An Antioxidant-Driven Approach. Agronomy 2024, 14, 797. [Google Scholar] [CrossRef]
- Matlok, N.; Piechowiak, T.; Krolikowski, K.; Balawejder, M. Mechanism of Reduction of Drought-Induced Oxidative Stress in Maize Plants by Fertilizer Seed Coating. Agriculture 2022, 12, 662. [Google Scholar] [CrossRef]
- Hussein, H.-A.A.; Alshammari, S.O.O.; Abd El-Sadek, M.E.E.; Kenawy, S.K.M.; Badawy, A.A.A. The Promotive Effect of Putrescine on Growth, Biochemical Constituents, and Yield of Wheat (Triticum aestivum L.) Plants under Water Stress. Agriculture 2023, 13, 587. [Google Scholar] [CrossRef]
- Kazan, K. Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends Plant Sci. 2015, 20, 219–229. [Google Scholar] [CrossRef]
- Ding, F.; Ren, L.; Xie, F.; Wang, M.; Zhang, S. Jasmonate and Melatonin Act Synergistically to Potentiate Cold Tolerance in Tomato Plants. Front. Plant Sci. 2022, 12, 284. [Google Scholar] [CrossRef]
- Han, Z.; Zhang, C.; Zhang, H.; Duan, Y.; Zou, Z.; Zhou, L.; Zhu, X.; Fang, W.; Ma, Y. CsMYB Transcription Factors Participate in Jasmonic Acid Signal Transduction in Response to Cold Stress in Tea Plant (Camellia sinensis). Plants 2022, 11, 2869. [Google Scholar] [CrossRef] [PubMed]
- Hedges, L.V.; Gurevitch, J.; Curtis, P.S. The meta-analysis of response ratios in experimental ecology. Ecology 1999, 80, 1150–1156. [Google Scholar] [CrossRef]
- Lu, M.; Zhou, X.; Yang, Q.; Li, H.; Luo, Y.; Fang, C.; Chen, J.; Yang, X.; Li, B. Responses of ecosystem carbon cycle to experimental warming: A meta-analysis. Ecology 2013, 94, 726–738. [Google Scholar] [CrossRef] [PubMed]
- Berkeljon, A.; Baldwin, S.A. An introduction to meta-analysis for psychotherapy outcome research. Psychother. Res. 2009, 19, 511–518. [Google Scholar] [CrossRef] [PubMed]
- Iacovelli, R.; Alesini, D.; Palazzo, A.; Trenta, P.; Santoni, M.; De Marchis, L.; Cascinu, S.; Naso, G.; Cortesi, E. Targeted therapies and complete responses in first line treatment of metastatic renal cell carcinoma. A meta-analysis of published trials. Cancer Treat. Rev. 2014, 40, 271–275. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Thompson, S.G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 2002, 21, 1539–1558. [Google Scholar] [CrossRef]
- Oswald, F.L. Book Review: Publication Bias in Meta-Analysis: Prevention, Assessment and Adjustments. Appl. Psychol. Meas. 2009, 33, 74–76. [Google Scholar] [CrossRef]
- Viechtbauer, W. Publication bias in meta-analysis: Prevention, assessment and adjustments. Psychometrika 2007, 72, 269–271. [Google Scholar] [CrossRef]
- Ma, Y.-C.; Auge, R.M.; Dong, C.; Cheng, Z.-M. Increased salt tolerance with overexpression of cation/proton antiporter 1 genes: A meta-analysis. Plant Biotechnol. J. 2017, 15, 162–173. [Google Scholar] [CrossRef]
- Sun, J.; Xu, Y.; Ye, S.; Jiang, H.; Chen, Q.; Liu, F.; Zhou, W.; Chen, R.; Li, X.; Tietz, O.; et al. Arabidopsis ASA1 Is Important for Jasmonate-Mediated Regulation of Auxin Biosynthesis and Transport during Lateral Root Formation. Plant Cell 2009, 21, 1495–1511. [Google Scholar] [CrossRef]
- Kaminska, M.; Tretyn, A.; Trejgell, A. Effect of jasmonic acid on cold-storage of Taraxacum pieninicum encapsulated shoot tips. Plant Cell Tissue Organ Cult. 2018, 135, 487–497. [Google Scholar] [CrossRef]
- An, J.-P.; Wang, X.-F.; Zhang, X.-W.; You, C.-X.; Hao, Y.-J. Apple B-box protein BBX37 regulates jasmonic acid mediated cold tolerance through the JAZ-BBX37-ICE1-CBF pathway and undergoes MIEL1-mediated ubiquitination and degradation. New Phytol. 2021, 229, 2707–2729. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Luo, L.; Wei, J.; Chen, Q.; Yang, Y.; Hu, X.; Kong, X. The glutamate receptors AtGLR1.2 and AtGLR1.3 increase cold tolerance by regulating jasmonate signaling in Arabidopsis thaliana. Biochem. Biophys. Res. Commun. 2018, 506, 895–900. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Min, D.; Fu, X.; Zhao, X.; Wang, J.; Zhang, X.; Li, F.; Li, X. The roles of SlMYC2 in regulating ascorbate-glutathione cycle mediated by methyl jasmonate in postharvest tomato fruits under cold stress. Sci. Hortic. 2021, 288, 110406. [Google Scholar] [CrossRef]
- Min, D.; Li, F.; Zhang, X.; Cui, X.; Shu, P.; Dong, L.; Ren, C. SIMYC2 Involved in Methyl Jasmonate-Induced Tomato Fruit Chilling Tolerance. J. Agric. Food Chem. 2018, 66, 3110–3117. [Google Scholar] [CrossRef]
- Liu, T.; Xu, J.; Li, J.; Hu, X. NO is involved in JA- and H2O2-mediated ALA-induced oxidative stress tolerance at low temperatures in tomato. Environ. Exp. Bot. 2019, 161, 334–343. [Google Scholar] [CrossRef]
- Saadati, S.; Baninasab, B.; Mobli, M.; Gholami, M. Enhancement of freezing tolerance of olive leaves by foliar application of methyl jasmonate and 24-epibrassinolide through changes in some metabolites and antioxidant activity. Sci. Hortic. 2021, 284, 110127. [Google Scholar] [CrossRef]
- Chen, W.-J.; Wang, X.; Yan, S.; Huang, X.; Yuan, H.-M. The ICE-like transcription factor HbICE2 is involved in jasmonate-regulated cold tolerance in the rubber tree (Hevea brasiliensis). Plant Cell Rep. 2019, 38, 699–714. [Google Scholar] [CrossRef]
- Ding, F.; Wang, C.; Xu, N.; Wang, M. The ethylene response factor SlERF.B8 triggers jasmonate biosynthesis to promote cold tolerance in tomato. Environ. Exp. Bot. 2022, 203, 105073. [Google Scholar] [CrossRef]
- Zheng, G.; Niu, X.; Zhang, J.; Wu, H.; Lin, X.; Pan, D. Differential Frost Tolerance and Enzymatic Activities in the Leaves and Immature Fruits of Loquat (Eriobotrya japonica Lindl.). Hortic. Sci. Technol. 2015, 33, 309–316. [Google Scholar] [CrossRef]
- Qi, F.; Li, J.; Hong, X.; Jia, Z.; Wu, B.; Lin, F.; Liang, Y. Overexpression of an Antioxidant Enzyme APX1 in cpr5 Mutant Restores its Pleiotropic Growth Phenotype. Antioxidants 2023, 12, 301. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Bodjrenou, D.M.; Zhang, S.; Wang, B.; Pan, H.; Yeh, K.-W.; Lai, Z.; Cheng, C. The Endophytic Fungus Piriformospora indica Reprograms Banana to Cold Resistance. Int. J. Mol. Sci. 2021, 22, 4973. [Google Scholar] [CrossRef] [PubMed]
- Tasgin, E.; Atici, Ö.; Nalbantoglu, B.; Popova, L.P. Effects of salicylic acid and cold treatments on protein levels and on the activities of antioxidant enzymes in the apoplast of winter wheat leaves. Phytochemistry 2006, 67, 710–715. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
Indicator Effect Size | Summary Effect | Funnel | Kendall | Egger | Duval and Tweedie | |||||
---|---|---|---|---|---|---|---|---|---|---|
N | LnR | p | Plot | Tau | p | β | p | Adjusted | #trim | |
Survival Rate | 11 | 0.680501 | 0 | NO | 0.29091 | 0.21291 | 1.28405 | 0.01519 | 0.63049 | 0 |
Primary Root Length | 12 | −0.99657 | 0 | YES | 0.39394 | 0.0746 | 2.26636 | 0.01878 | −1.04713 | 0 |
Chl Content | 7 | 0.137452 | 0.382 | NO | −0.28571 | 0.36752 | −1.53058 | 0.00822 | 1.23808 | 0 |
Electrolyte Leakage | 13 | −0.25643 | 0.13 | NO | −0.03846 | 0.85478 | 1.43902 | 0.20949 | −0.30867 | 0 |
MDA Content | 34 | −0.40008 | 0.01 | NO | −0.3 | 0.01276 | −2.5574 | 0.00269 | 0.74091 | 0 |
SOD Activity | 16 | 0.140883 | 0.422 | YES | −0.09167 | 0.62043 | −1.69639 | 0.29955 | 0.07982 | 0 |
POD Activity | 13 | 0.153129 | 0.371 | YES | 0 | 1 | −0.55104 | 0.80625 | −0.00251 | 0 |
CAT Activity | 16 | 0.238466 | 0.144 | YES | −0.4167 | 0.82189 | −1.3169 | 0.62795 | −0.32322 | 0 |
Fv/Fm | 3 | 0.362856 | 0.419 | NO | 0.66667 | 0.29627 | 2.74683 | 0.13618 | 0.34465 | 0 |
H2 O2 | 15 | −0.18833 | 0.179 | YES | 0.13333 | 0.48842 | 2.03359 | 0.14083 | −0.20399 | 0 |
APX Activity | 30 | 0.351028 | 0.001 | YES | 0.02529 | 0.84441 | 0.86568 | 0.68445 | 0.34764 | 0 |
GR Activity | 16 | 0.136835 | 0.406 | YES | 0.20168 | 0.2799 | 0.92412 | 0.05625 | 0.12394 | 0 |
Proline Cotent | 30 | 0.226221 | 0.164 | NO | 0.04368 | 0.73463 | 1.42177 | 0.12127 | 0.16955 | 0 |
REC | 4 | −0.04411 | 0.943 | YES | 0.5 | 0.30818 | 2.15718 | 0.11482 | −0.18571 | 0 |
Category | Qt | Phetero | I2 | Change (%) |
---|---|---|---|---|
Survival Rate | 1.1 | 1 | 0 | 89 |
Primary Root Length | 2.159 | 0.998 | 0 | −65 |
Chl Content | 1.07 | 0.983 | 0 | 27 |
Electrolyte Leakage | 6.021 | 0.915 | 0 | −27 |
MDA Content | 24.994 | 0.84 | 0 | −26 |
SOD Activity | 3.821 | 0.998 | 0 | 8 |
POD Activity | 3.725 | 1.988 | 0 | 0 |
CAT Activity | 8.354 | 0.909 | 0 | −28 |
Fv/Fm | 0.103 | 0.95 | 0 | 42 |
H2 O2 | 2.153 | 1 | 0 | −19 |
APX Activity | 10.557 | 0.999 | 0 | 42 |
GR Activity | 0.579 | 1 | 0 | 13 |
Proline Content | 20.749 | 0.868 | 0 | 19 |
REC | 0.098 | 0.992 | 0 | −17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, P.; Han, Z.; Chepkorir, D.; Fang, W.; Ma, Y. Effect of Exogenous Jasmonates on Plant Adaptation to Cold Stress: A Comprehensive Study Based on a Systematic Review with a Focus on Sustainability. Sustainability 2024, 16, 10654. https://doi.org/10.3390/su162310654
Li P, Han Z, Chepkorir D, Fang W, Ma Y. Effect of Exogenous Jasmonates on Plant Adaptation to Cold Stress: A Comprehensive Study Based on a Systematic Review with a Focus on Sustainability. Sustainability. 2024; 16(23):10654. https://doi.org/10.3390/su162310654
Chicago/Turabian StyleLi, Pingping, Zhaolan Han, Delfina Chepkorir, Wanping Fang, and Yuanchun Ma. 2024. "Effect of Exogenous Jasmonates on Plant Adaptation to Cold Stress: A Comprehensive Study Based on a Systematic Review with a Focus on Sustainability" Sustainability 16, no. 23: 10654. https://doi.org/10.3390/su162310654
APA StyleLi, P., Han, Z., Chepkorir, D., Fang, W., & Ma, Y. (2024). Effect of Exogenous Jasmonates on Plant Adaptation to Cold Stress: A Comprehensive Study Based on a Systematic Review with a Focus on Sustainability. Sustainability, 16(23), 10654. https://doi.org/10.3390/su162310654