A Viability Study of Thermal Pre-Treatment for Recycling of Pharmaceutical Blisters
<p>Types of pharmaceutical blisters: (<b>a</b>) plastic-rich, (<b>b</b>) aluminum-rich.</p> "> Figure 2
<p>Schematic of the furnace used for laboratory-scale thermal pre-treatment trials.</p> "> Figure 3
<p>SEM images and EDS mapping of the blisters from the cross-sections of (<b>a</b>) plastic-rich and (<b>b</b>) aluminum-rich blisters.</p> "> Figure 4
<p>Weight loss, derivative thermogravimetry (DTG), and heat flow during TGA-DSC analysis of thermal pre-treatment of (<b>A</b>) plastic-rich blisters and (<b>B</b>) aluminum-rich blisters.</p> "> Figure 5
<p>FTIR analysis of plastic fractions of plastic-rich and aluminum-rich blisters.</p> "> Figure 6
<p>Temperature profile and main species concentration (ppm) during thermal treatment of plastic-rich blisters using 0%, 5%, and 20% oxygen heated at temperatures ranging from 600 °C/h to 800 °C.</p> "> Figure 7
<p>Temperature profile and main species concentration (ppm) during thermal treatment of aluminum-rich blisters using 0%, 5%, and 20% oxygen heated at temperatures ranging from 600 °C/h to 800 °C.</p> "> Figure 8
<p>Weight loss after thermal treatment of (<b>a</b>) plastic-rich and (<b>b</b>) aluminum-rich blisters with 0, 5, and 20% O<sub>2</sub>.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Influence of Oxygen during Thermal Degradation
3.2. Mass Balance
3.3. Metallurgical Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zadbuke, N.; Shahi, S.; Gulecha, B.; Padalkar, A.; Thube, M. Recent trends and future of pharmaceutical packaging technology. J. Pharm. Bioallied Sci. 2013, 5, 98–110. [Google Scholar] [CrossRef] [PubMed]
- Das, P.S.; Sah, P.; Das, R. Pharmaceutical packaging technology: A brief outline. Res. J. Pharm. Dos. Forms Technol. 2018, 10, 23–28. [Google Scholar] [CrossRef]
- Pilchick, R. Pharmaceutical Blister Packaging. Part 1. Pharm. Technol. 2000, 24, 68–78. [Google Scholar]
- Sonyy, S.M.; Chowdhury, H.; Loganathan, B.; Mustary, I.; Alam, F.; Tippayawong, N. Waste to Energy by Incineration for a Pharmaceutical Industry: A Case Study. In Proceedings of the 3rd International Conference on Energy and Power, ICEP2021, Chiang Mai, Thailand, 18–20 November 2021; American Institute of Physics Inc.: College Park, MD, USA, 2022. [Google Scholar] [CrossRef]
- Kadam, A.; Patil, S.; Patil, S.; Tumkur, A. Pharmaceutical Waste Management An Overview. Indian J. Pharm. Pract. 2016, 9, 2–8. [Google Scholar] [CrossRef]
- Çapkın, İ.Y.; Gökelma, M. Characterization and Separation Behavior of Multi-layers in Aluminum-Rich Waste Pharmaceutical Blisters. JOM 2023, 75, 4672–4679. [Google Scholar] [CrossRef]
- Wang, B.; Yao, Z.; Reinmöller, M.; Kishore, N.; Tesfaye, F.; Luque, R. Pyrolysis behavior, kinetics, and thermodynamics of waste pharmaceutical blisters under CO2 atmosphere. J. Anal. Appl. Pyrolysis 2023, 170, 105883. [Google Scholar] [CrossRef]
- Klejnowska, K.; Pikoń, K.; Ścierski, W.; Skutil, K.; Bogacka, M. Influence of temperature on the composition and calorific value of gases produced during the pyrolysis of waste pharmaceutical blisters. Appl. Sci. 2020, 10, 737. [Google Scholar] [CrossRef]
- Pikoń, K.; Ścierski, W.; Klejnowska, K.; Myćka, Ł.; Janoszka, A.; Sinek, A. Determination of fuel properties of char obtained during the pyrolysis of waste pharmaceutical blisters. Energies 2021, 14, 1782. [Google Scholar] [CrossRef]
- Xu, B.; Argyle, M.D.; Shi, X.; Goroncy, A.K.; Rony, A.H.; Tan, G.; Fan, M. Effects of mixture of CO2/CH4 as pyrolysis atmosphere on pine wood pyrolysis products. Renew. Energy 2020, 162, 1243–1254. [Google Scholar] [CrossRef]
- Armenise, S.; SyieLuing, W.; Ramírez-Velásquez, J.M.; Launay, F.; Wuebben, D.; Ngadi, N.; Rams, J.; Muñoz, M. Plastic waste recycling via pyrolysis: A bibliometric survey and literature review. J. Anal. Appl. Pyrolysis 2021, 158, 105265. [Google Scholar] [CrossRef]
- Shen, Y.; Ma, D.; Ge, X. CO2-looping in biomass pyrolysis or gasification. R. Soc. Chem. 2017, 1, 1700–1729. [Google Scholar] [CrossRef]
- Steglich, J.; Dittrich, R.; Rombach, G.; Rosefort, M.; Friedrich, B.; Pichat, A. Dross Formation Mechanisms of Thermally Pre-Treated Used Beverage Can Scrap Bales with Different Density. In Minerals, Metals and Materials Series; Springer International Publishing: Cham, Switzerland, 2017; pp. 1105–1113. [Google Scholar] [CrossRef]
- Diaz, F.; Flerus, B.; Nagraj, S.; Bokelmann, K.; Stauber, R.; Friedrich, B. Comparative Analysis About Degradation Mechanisms of Printed Circuit Boards (PCBs) in Slow and Fast Pyrolysis: The Influence of Heating Speed. J. Sustain. Metall. 2018, 4, 205–221. [Google Scholar] [CrossRef]
- Pang, E.; Liu, W.; Zhang, S.; Fu, N.; Tian, Z. Characteristics of low-temperature polyvinyl chloride carbonization by catalytic CuAl layered double hydroxide. Processes 2020, 8, 120. [Google Scholar] [CrossRef]
- Cruz, P.P.R.; da Silva, L.C.; Fiuza-Jr, R.A.; Polli, H. Thermal dehydrochlorination of pure PVC polymer: Part I—Thermal degradation kinetics by thermogravimetric analysis. J. Appl. Polym. Sci. 2021, 138, 50598. [Google Scholar] [CrossRef]
- Zhu, T.; Yang, X.; He, X.; Zheng, Y.; Luo, J. Aromatic polyamides and copolyamides containing fluorene group: Synthesis, thermal stability, and gas transport properties. High Perform. Polym. 2018, 30, 821–832. [Google Scholar] [CrossRef]
- Jung, M.R.; Horgen, F.D.; Orski, S.V.; Rodriguez, C.V.; Beers, K.L.; Balazs, G.H.; Jones, T.T.; Work, T.M.; Brignac, K.C.; Royer, S.-J.; et al. Validation of ATR FT-IR to identify polymers of plastic marine debris, including those ingested by marine organisms. Mar. Pollut. Bull. 2018, 127, 704–716. [Google Scholar] [CrossRef] [PubMed]
- Higgins, F.; Zieschang, F. Pharmaceutical Packaging Materials Quality Control and USP Chapter <661.1> Compliance; Agilent: Santa Clara, CA, USA, 2021. [Google Scholar]
- Zięba-Palus, J. The usefulness of infrared spectroscopy in examinations of adhesive tapes for forensic purposes. Forensic Sci. Criminol 2017, 2, 1–9. [Google Scholar] [CrossRef]
- Buch, V.; Mohamed, F.; Parrinello, M.; Devlin, J.P. Elusive structure of HCl monohydrate. J. Chem. Phys. 2007, 126, 074503. [Google Scholar] [CrossRef]
- Nieminen, J.; Anugwom, I.; Kallioinen, M.; Mänttäri, M. Green solvents in recovery of aluminium and plastic from waste pharmaceutical blister packaging. Waste Manag. 2020, 107, 20–27. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, S.; Han, X.; Zhang, X.; Yi, M.; Yang, S.; Yu, D.; Liu, W. Catalytic Dechlorination and Charring Reaction of Polyvinyl Chloride by CuAl Layered Double Hydroxide. Energy Fuels 2018, 32, 2407–2413. [Google Scholar] [CrossRef]
- Ramesh, S.; Leen, K.H.; Kumutha, K.; Arof, A.K. FTIR studies of PVC/PMMA blend based polymer electrolytes. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2007, 66, 1237–1242. [Google Scholar] [CrossRef] [PubMed]
- Diaz, F.; Latacz, D.; Friedrich, B. Enabling the recycling of metals from the shredder light fraction derived from waste of electrical and electronic equipment via continuous pyrolysis process. Waste Manag. 2023, 172, 335–346. [Google Scholar] [CrossRef] [PubMed]
- Dittrich, R.; Friedrich, B.; Rombach, G.; Steglich, J.; Pichat, A. Understanding of Interactions Between Pyrolysis Gases and Liquid Aluminum and Their Impact on Dross Formation. In The Minerals, Metals & Materials Series; Springer International Publishing: Cham, Switzerland, 2017; pp. 1457–1464. [Google Scholar]
- Magomedov, R.N.; Nikitin, A.V.; Savchenko, V.I.; Arutyunov, V.S. Production of gas mixtures with regulated ratios between ethylene and carbon monoxide by the gas-phase oxidative cracking of light alkanes. Kinet. Catal. 2014, 55, 556–565. [Google Scholar] [CrossRef]
- Scholz, R.; Beckmann, M.; Schulenburg, F. Abfallbehandlung in Thermischen Verfahren; Vieweg+Teubner Verlag Wiesbaden: Wiesbaden, Germany, 2001. [Google Scholar]
- Msheik, M.; Rodat, S.; Abanades, S. Methane cracking for hydrogen production: A review of catalytic and molten media pyrolysis. Energies 2021, 14, 3107. [Google Scholar] [CrossRef]
- Gai, W.Z.; Fang, C.S.; Deng, Z.Y. Hydrogen generation by the reaction of Al with water using oxides as catalysts. Int. J. Energy Res. 2014, 38, 918–925. [Google Scholar] [CrossRef]
- Basu, P. Biomass Gasification and Pyrolysis: Practical Design and Theory; Academic Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Kurzweil, P. Grundlagen, Komponenten, Systeme, Anwendungen. In Brennstoffzellentechnik, 2nd ed.; Springer: Wiesbaden, Germany, 2013. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gökelma, M.; Diaz, F.; Çapkın, İ.Y.; Friedrich, B. A Viability Study of Thermal Pre-Treatment for Recycling of Pharmaceutical Blisters. Sustainability 2024, 16, 8968. https://doi.org/10.3390/su16208968
Gökelma M, Diaz F, Çapkın İY, Friedrich B. A Viability Study of Thermal Pre-Treatment for Recycling of Pharmaceutical Blisters. Sustainability. 2024; 16(20):8968. https://doi.org/10.3390/su16208968
Chicago/Turabian StyleGökelma, Mertol, Fabian Diaz, İrem Yaren Çapkın, and Bernd Friedrich. 2024. "A Viability Study of Thermal Pre-Treatment for Recycling of Pharmaceutical Blisters" Sustainability 16, no. 20: 8968. https://doi.org/10.3390/su16208968
APA StyleGökelma, M., Diaz, F., Çapkın, İ. Y., & Friedrich, B. (2024). A Viability Study of Thermal Pre-Treatment for Recycling of Pharmaceutical Blisters. Sustainability, 16(20), 8968. https://doi.org/10.3390/su16208968