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Abstract: Soiling in PV modules is one of the biggest issues affecting performance and economic
losses in PV power plants; thus, it is essential to supervise and forecast soiling profiles and establish
the best cleaning program. This paper analyzes different methods for soiling modeling in Large
Grid-Connected PV Plants and discusses the different factors influencing soiling. Analytical models
from environmental conditions are discussed in detail, comparing the proposed model by the authors
(SOMOSclean) with another three relevant models from the literature (Kimber, HSU, and Toth),
applying them to 16 PV power plants in Spain (total capacity of 727 MWp). Uncertainty between
models and sensors is also measured, presenting the numerical results for a period of 2 years.
While simpler models may offer straightforward implementation, they often fail to capture the full
complexity of soiling dynamics, leading to increased RMSE error.

Keywords: renewable energy; sustainable energy; dust accumulation; energy efficiency; forecasting;
photovoltaic power systems; PV cleaning; rain; solar power generation; soiling; soiling model

1. Introduction
1.1. Motivation

Solar photovoltaic (PV) power once again asserted its dominance as the leading power-
generating technology, with a 78% share of all new renewable installations worldwide
for the year 2023 [1]. The integration of all this new PV capacity into the grid represents
a technical challenge itself [2–4], as does the PV materials disposal [5]. To optimize the
cost-effectiveness of PV technology and enhance overall profitability, the solar industry con-
tinually explores strategies to maximize efficiencies while minimizing losses and associated
costs [6,7].

Among the primary challenges faced by solar installations is the accumulation of dust,
commonly referred to as soiling [8]. (See Figure 1). The global impact of soiling on solar
power production is significant, with estimates suggesting a reduction of at least 3–4% [9],
translating to income losses in the range of 4–7 billion EUR in 2023 [10].
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Figure 1. Solar PV panels affected by soiling compared with a clean panel. 

1.2. Importance of Soiling Monitoring and Modeling 
Given its significant impact, the effective monitoring and prediction of soiling profiles 

are essential for optimizing cleaning schedules [11–15] and minimizing energy losses. Interest 
in soiling modeling has exploded in the last few years, and this is evident in the number of 
publications on the subject. From a systematic search with the keywords “soiling model” and 
“photovoltaic”, the results have gone from virtually no publications in 2000 to more than 100 
publications per year from 2022 till now, just regarding soiling modeling (See Figure 2). 
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1.2. Importance of Soiling Monitoring and Modeling

Given its significant impact, the effective monitoring and prediction of soiling profiles
are essential for optimizing cleaning schedules [11–15] and minimizing energy losses.
Interest in soiling modeling has exploded in the last few years, and this is evident in the
number of publications on the subject. From a systematic search with the keywords “soiling
model” and “photovoltaic”, the results have gone from virtually no publications in 2000 to
more than 100 publications per year from 2022 till now, just regarding soiling modeling
(See Figure 2).
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1.3. Scope of This Paper and Contributions

Building on previous work [16,17], which introduced a model based on environmental
conditions, this paper provides a comprehensive analysis of methods for soiling modeling
in Large Grid-Connected PV Plants. The study is grounded in three years of monitoring
data from 16 PV Plants in Spain, totaling 727 MWp of installed capacity.

The key contributions are the following:

- A systematic review of methods for measuring and modeling soiling in PV power
plants, emphasizing their advantages, limitations, and applicability;

- A comparative analysis of four analytical soiling models, evaluated using real-world
data from large-scale PV Plants;

- Insights into the main factors influencing soiling accumulation and removal, support-
ing the development of optimal cleaning schedules and maintenance strategies;

- Quantification of uncertainties in soiling sensors and analytical models, providing a
deeper understanding of the reliability of different approaches under varied conditions.

2. Techniques for Measuring Soiling in PV Power Plants: State of the Art

Before going deeper into the analysis of the State of the art, there are some basics
regarding soiling metrics. The most frequently used parameter to assess the soiling severity
is the Soiling Ratio (SRatio). It is expressed as the ratio of the actual power output of
a PV power plant under the actual soiling conditions and the power expected in clean
conditions [18], as follows:

SRatio =
Psoil

Pclean
(1)

where Psoil is the present power output and Pclean is the power output expected in clean
conditions (all the rest of the weather conditions must be the same). The soiling loss, also
known as Soiling Level (SL) in the IEC 61724-1 standard [18] is calculated as 1 − SRatio.
The soiling ratio equals 1 in the absence of soiling (0% soiling loss) and decreases as dust
and particles accumulate on the PV modules. In this paper, we use the term Soiling Loss
or Soiling Level (SL) to denote the percentage of energy losses caused by soiling over a
specific period, which, in this case, is measured daily.

2.1. Soiling Sensors

The use of soiling station with a reference cell is the most accurate, as it directly
compares the output of a clean and a dirty cell, following the definition of the IEC 61724-
1 [18] but it is necessary not only additional sensors but also to keep clean the reference cell
(usually cleaned by hand). There are several commercial solutions for this kind of solutions:
Atonometrics [19], NRG [20], DustVue [21], and Kintech [22].

Optical sensors is another good available alternative (Mars [23], DustIQ [24]) as they
do not require manual cleaning of a reference cell [25] but require careful calibration for
optimal performance. Furthermore, in large PV power plants, the soiling evaluated in a
point of the solar field could not correspond to the soiling of the complete power plant.

2.2. Numerical Methods

Calculating soiling losses from PV yield [26–28] is another practical method, particularly
for large-scale plants. This approach eliminates the need for additional sensors and can
provide plant-wide insights. However, it is affected by other problems in the power plant
affecting the performance, such as shading, equipment failures, or module degradation.

Regarding soiling models from environmental conditions, they can be classified in
analytical models and Machine Learning models.

Analytical models [29–37] use mathematical relationships derived from environmental
data, such as rainfall, wind, and dust levels, to estimate soiling losses. According to the
literature, we have identified four relevant soiling models based on environmental condi-
tions analysis: the Kimber model [29], HSU model [32], Toth model [33], and SOMOSclean
model [17]. We will go deeper in these four methos in the next sections.
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Machine Learning and Artificial Neural Networks (ANN) models [38–42] leverage
advanced algorithms to uncover complex patterns in data but require extensive high-quality
training datasets, which can be a limiting factor.

2.3. Image-Based Methods

Recently, numerous methods based on image processing have emerged. They use
satellite images [43], surveillance images [44], camera data [45–48], or drone footage [49]
to estimate soiling losses. They offer the advantage of being non-invasive and suitable
for large-scale applications. However, the reliability of this approach depends heavily on
image resolution and the sophistication of image processing algorithms used to analyze
the data.

2.4. Summary of Methods to Quantify Soiling

Table 1 summarizes the different methods for determining actual soiling losses, orga-
nized into the three categories discussed above. Another possible classification is proposed
in [10], including Geospatial Models [50].

Table 1. Methods for determining actual soiling losses in PV Power plants.

Category Approach References Advantages Limitations

Soiling
sensors

(a) Soiling station with
clean reference cell [19–22] High accuracy

Requires extra
equipment and

maintenance

(b) Soiling station with
optical sensors [23–25] High accuracy

(properly calibrated)

Requires extra
equipment and

complex calibration

Numerical methods

(c) Calculated from PV
yield [26–28] No extra sensors

needed.
Sensitive to

plant-specific issues

(d) Analytical Models
from environmental
conditions

[17,29–37]

Cost-effective,
long-term insights.

Representative for large
plants

Relies on assumptions

(e) Machine Learning
Models [38–42] Can detect complex

patterns
Requires high-quality

training data

Image-based methods
(f) Estimated from
images (satellite
data/cameras/drones)

[43–49] Non-invasive, covers
large areas

Accuracy depends on
image quality and

training data

For large PV Plants, the optimal approach involves combining multiple methods when
available and combining direct measurements with specific equipment (a,b) with soiling
models based on environmental conditions (d). This hybrid strategy leverages the strengths
of each method to achieve more accurate and reliable results.

In order to be able to model the soiling ratio evolution and help the decision-making
process of the cleaning schedule, it is very useful to have a model from environmental
conditions (type d in Table 1). We will focus on these kinds of analytical models in this
article, based on environmental conditions (d).

3. Details of Relevant Analytical Soiling Models Based on Environmental Conditions
3.1. Kimber Model

The Kimber soiling model [29] operates on the assumption that soiling increases
linearly during dry periods and is mitigated by rainfall events exceeding a minimum
threshold. This straightforward model incorporates three key elements. The soiling rate
refers to a constant factor determined by the geographical region and the type of soiling en-
vironment. The cleaning threshold is defined as the amount of daily rainfall required to fully
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clean the PV system. Finally, the grace period length represents the number of days a system
remains relatively clean after the last rainfall event that meets the cleaning threshold.

PVlib currently provides a free implementation of the Kimber model using Python [51].

3.2. HSU Model

Another model to assess the soiling severity was presented by Coello et al. in [32],
from Humboldt State University (HSU). They use the air particle matter concentration,
deposition velocity, rainfall, and the PV system tilt angle as input. The mass accumulation
per time step m, in g/m2 in each dry period is defined as

m = (v10·PM10−2.5 + v2.5·PM2.5)·t·cosθ (2)

where v is settling or deposition speed in m/s, PM is the ambient particulate matter
concentration for each respective aerodynamic diameter in g/m3, θ is the tilt angle, and t is
the time step in seconds.

Once the mass deposited for each time-step is calculated (m), the cumulative sum is
applied to obtain a time series of the total mass accumulated on the PV system (ω). The
soiling losses (SL) are calculated by

SL = 34.37·er f
(

0.17·ω0.8473
)

(3)

where ω is the total mass accumulation at time in g/m2 and er f is the Gauss error func-
tion [52]. The rainfall threshold defines when the accumulation is reset.

PVlib currently provides a free implementation of the HSU model using Python [53].

3.3. Toth Model

Another model to forecast daily soiling losses by means of ambient particulate matter
concentration and rainfall was published by Toth et al. in [33]. The soiling losses proposed
equation is as follows:

SL = (A1·Fd) + (A2·Cd) (4)

where Fd is the cumulative sum of fine particles ( PM2.5) since the first day of data collection
and Cd is the cumulative sum of coarse particles (PM10) since the last cleaning event. Fd
and Cd use daily averages of particulate matter concentration in each respective day. The
model assumes that cleaning events only remove coarse particles (PM10−2.5). A1 and A2 are
constants, fitted through a Truncated Newton Algorithm (TNC). When testing the model in
Colorado [33], those constants A1 and A2 are 1.8 × 10−5 and 3.5 × 10−5 m3/µg, respectively.

3.4. SOMOSclean Model

The method proposed by the authors, the SOMOSclean (Soiling Monitoring and Opti-
mization System for Cleaning) empirical model, was developed by ENEL. A good description
of the model can be found in [17]. The model is based on environmental conditions and it
approximates the evolution of soiling losses (SL) as a complementary exponential growth,
up to a saturation level, according to the following expression:

SL = ∆SLsat·
(

1 − e−eqD/k
)

(5)

where eqD is the equivalent time expressed in days, measured from a total cleaning event;
∆SLsat is the maximum saturation level of soiling at the site (which can be adjusted in a
range from 20 to 30%), and k the time constant in days that represents the soiling rate.

The model considers that the soiling level is reduced to zero (or to a certain value)
when a heavy raining takes place, or an intentional cleaning is performed. Thus, the
variable eqD related to day d is calculated as

eqD(d) = f ∗ {eqD(d − 1 ) + 1} (6)
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where

• f = 1 in case of no events;
• f = 0 in case of heavy rain (total cleaning event);
• 0 < f < 1 in case of partial cleaning, as a function of rainfall;
• f > 1 in case of dust event, as a function of PM10 concentration.

The model was validated [17] using 2 years of data from five PV power plants in Spain
(with a total peak power of 200 MW). The average of the mean absolute error between the
model and the sensors was 0.71%. This difference is lower than the difference between
the two sensors installed in the same location, which is 0.98%. It has been observed that
dust events are not always registered by the sensors, or they were registered with a delay
because they require manual cleaning.

4. Methodology and Comparison

A systematic comparison of the available methods has been performed by using the
same input data and with the following considerations.

4.1. Input Variables

The daily precipitation data employed in this study were obtained through the API
provided by the AEMET (Spanish National Meteorology Agency) OpenData platform [54].

The PM10 concentration data used in this study have been accessed via API from the
European Environment Agency Air Quality Download Service [55].

4.2. Software Implementation

The analysis has been executed using Python (Version 3.12). For Kimber and HSU
models, the PVlib specific library has been used [51,53], while the Toth and SOMOSclean
models were implemented in specific functions.

4.3. Soiling Sensor Data

In the power plants under study, two soiling sensors were available, so those data
have been used to obtain the average value of the plant. Each sensor is a commercial kit
composed of two panels, and the soiling ratio output was obtained by a comparison of the
output of one panel with that of the clean reference panel (cleaned manually).

It should be considered that the soiling sensor data were not accurate, because sensors
required manual cleaning by power plant operators (usually performed weekly) and also
because they require a certain level of irradiance, which means that they do not work well
in cases of clouds or episodes of very high concentration of particles.

4.4. Cleaning Threshold

The Kimber, HSU, and Toth models are based on a fixed cleaning threshold, so if
the raining is higher than that value, it is considered that the soiling goes to zero. The
SOMOSclean model also considers partial cleaning with a factor >0. In this case, we have
used a cleaning threshold of 6 mm/day for the fixed models and a variable threshold up to
10 mm/day for the SOMOSclean model.

4.5. Results and Discussion

The comparison has been carried out in 16 PV power plants with an overall power
of 727 MWp over 2 years. For the discussion, we have chosen the place with a higher
quality of sensor data. The main data from the 16 locations are summarized in Table A1 of
Appendix A. Following the methodology of previous work [17], we have chosen the PV
power plant with higher-quality sensor data (Location 3).

Figure 3 represents the results over 2 years of the four models analyzed, the soiling
sensor data, and the main environmental variables (rainfall, PM10 concentration, and
manual cleaning dates). We will analyze the behavior of each model in different situations
more deeply in the following section.
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The main differences in these four methods were found in the way of characteri-
zation of rain, PM concentration, and manual cleaning. Table 2 summarizes the main
characteristics of the four models.

Table 2. Characteristics of soiling models based on environmental data.

Metod
Characteristics

References
Influence of Rain Influence of PM

Concentration Manual Cleaning

Kimber Fixed threshold No Same as heavy rain [29]

HSU Fixed threshold Yes Same as heavy rain [32]

Toth Fixed threshold Yes Same as heavy rain [33]

SOMOSclean Variable Yes Gradual (for large plants) [17]

5. Main Factors Influencing Soiling

Rainfall and particle concentration are the two main elements affecting soling losses in
power plants, so most models rely on these two measurements to estimate soiling. But this
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phenomenon is not so simple, and there are a lot of factors affecting soiling [56]: “Normal”
behavior (no specific events), rain, cleaning techniques, high particle concentration events,
wind, humidity, dew, solar panel tilt angle, type of soil, terrain, vegetation, and birds.

In the next sections, each of these factors will be analyzed more deeply, and how the
different methods for estimating soiling will be taken into account.

5.1. “Normal” Behavior

Even in the case of non-specific events (rain, wind, etc.), there is always a certain number
of particles suspended in the air, which causes the soiling level to increase little by little.

The behavior of the four models analyzed is very similar, as shown in Figure 4. After
heavy rain, the soiling level begins to increase (around 0.065% per day), associated with a
normal particle concentration between 15 and 45 µg/m3. The deposition velocity can be
adjusted in all the models. There is a difference in the Kimber model compared to the rest,
which is that it considers that soiling remains at zero for several days after rain.
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5.2. Rain Effect

The rain helps to clean the solar panels by removing accumulated dirt and dust.
Regions with infrequent or light rainfall may experience higher soiling losses compared to
areas with regular and heavy rainfall. But also depending on the situation, light rain can
contribute negatively to soiling, especially if it follows a dust event, causing the dust to
adhere to the panel surface.

The amount of rain needed to clean a solar panel depends on various factors such
as the amount of dust already deposited on the panel, the kind of dust particles, or the
presence of very adherent dirt (such as bird droppings). Also, the rain rate and intensity
are important to the effectiveness of cleaning the panel (it does not have the same effect of
0.25 mm/h for 24 h or 6.0 mm in a few minutes).

The Kimber, HSU, and Toth models are based on a fixed cleaning threshold, so if
the rainfall is higher than that value, it is considered that the soiling goes to zero. The
SOMOSclean model also considers partial cleaning, resulting in a better characterization of
rain (See Figure 5).
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Most of the models also consider that over a certain threshold, the cleaning is perfect
but it has been observed that the effect of heavy rain does not always succeed in cleaning
the panels, especially when surfaces are extremely unclean (with very adherent dirt or with
bird droppings).

5.3. Cleaning Techniques

In small PV Plants, manual cleaning is relatively easy to characterize, as the soiling
level (SL) is reset to 0% after the cleaning; it is similar to the effect of heavy rainfall. On
the other hand, in large PV Plants, the cleaning process can take several weeks. During
this time, some panels are cleaned earlier than others, leading to varying degrees of soiling
across different areas of the plant.

As shown in Figure 6, the Kimber, HSU, and Toth models do not have a special
consideration for these cleanings in large plants. However, the models would fit well if a
different soiling value was considered for each zone of the plant, which can be useful in
some cases. SOMOSclean has a different approach, calculating the degree of soiling in the
whole plant (for instance for soiling losses calculation), with a gradual decrease from day
to day.

In the case of robotic or automated cleaning [57], an estimation area by area should
be conducted and probably, the soiling after the cleaning should not go to zero but to a
residual value (around 0.5–1%). In the case of the SOMOSclean model, this can be modeled
through a factor ̸= 0.

A good review of cleaning mechanisms in the literature can be found in [58,59],
including semi-automated cleaning, robot-based, electrostatic-based cleaning techniques,
and also preventive actions such as specific anti-soiling coatings [60–62].
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5.4. High Particle Concentration Events

Figure 7 represents the behavior of the four soiling models analyzed, under a dust
event that occurred in Spain, in March 2022 [63]. The dust concentration in the same
locations went up to 1000 µg/m3, extremely high values, which had not been observed in
the current century [64].
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By comparing the behavior of each model to this type of event, we found that the
KIMBER model is the simplest one, and it does not consider PM10 concentration, so it
cannot model the effect of high concentrations of particles. HSU and Toth’s model behavior
are very similar, increasing the soiling rate deposition, but in a very smooth way.

The SOMOSclean model considers particle concentrations as events when the concen-
tration is above a certain threshold, increasing the effect through a factor (proportional to
the particle concentration value) [17].

Another effect can be observed in Figure 7, specifically regarding how soiling sensors
respond to these types of events. During the first dust event, a delay between the event and
the sensor output is observed, both in the increase due to high PM10 concentration and in
the cleaning caused by rainfall. The second dust event was not even recognized by plant
sensors. This can be attributed to two main factors. First, soiling sensors require a certain
level of irradiance to function properly, making them less effective in conditions with cloud
cover or extremely high particle concentrations. Second, most sensors rely on the manual
cleaning of the reference cell, meaning that an increase in soiling is not recorded until the
reference cell has been cleaned.

However, soiling sensors are essential in most cases, to have a comparison measure-
ment (even if delayed) because the real effect of this type of high particle concentration
event can be very different depending on the conditions.

The models analyzed consider particle concentration but not wind or humidity, which,
of course, have a considerable influence. Also, the type of pollutant (i.e., composition, color,
diameter, etc.) is very important, since equal amounts of various kinds of dust particles
may cause completely different effects. There are several studies analyzing the dust
deposition phenomenon: influence of particle size, chemical and mineralogy composition,
or deposition time [65–68].

5.5. Wind

Another important factor in particles deposition is the wind. It aids in the transfer of
dust particles from one location to another by traveling thousands of kilometers. While
low wind speeds encourage dust collection, high wind speeds have the capacity to clear
dust from the PV surface.

None of the soiling models analyzed take into account wind speed, an aspect to be
considered in future work.

5.6. Humidity

Relative humidity plays a significant role in how dust accumulates on solar panels,
as it affects how dust particles stick to the surface. Low relative humidity can cause static
electricity buildup, which attracts and holds dust particles on the surface of solar panels.
In a humid environment, the deposition velocity of particles with different sizes increases
as compared to dry deposition. This is due to the size increment of a particle in humid
conditions [69].

None of the soiling models analyzed consider relative humidity, an aspect to be
considered in future work.

5.7. Dew

Dew formation occurs when the temperature of a surface, such as a PV panel, drops
below the dew point temperature of the surrounding air, causing water vapor in the air to
condense into liquid water droplets on the surface.

Dew can contribute to soiling by acting as a solvent that dissolves and carries atmo-
spheric contaminants onto the surface of PV panels. As dew droplets form overnight, they
can pick up airborne particles such as dust, pollen, and pollutants, depositing them onto
the panel surface as the dew evaporates during the day.

But, according to the observations, the effect of dew at night is not always negative.
When dew and light rain are combined, the panels do clean more easily, although the rain
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threshold that would normally be necessary to clean the panels is not reached. This is
explained because in this case, the dew “softens” the dirt, making it easier to be washed
away by the rain. In this case, the orientation of the panel plays an important role, as we
will see in the following section.

5.8. Solar Panel Tilt Angle

The tilt angle and orientation of solar panels also affect soiling levels. Panels with a
steeper tilt angle may be less prone to soiling as rainwater can help wash away contaminants
more effectively. Experiments has been carried out for testing different stow positions
during the night: 0◦, 30◦, 90◦, and 180◦ [70]. The effect of gravity on dust removal is
analyzed in [71], proposing an optimal tilt angle to provide a better daily performance.

Regarding the soiling models, the HSU model considers the tilt angle as an input but
as a fixed parameter it is not valid for solar tracking systems. This is also an interesting
aspect to be considered in future work.

5.9. Type of Soil, Terrain, Vegetation, and Birds

There are other location-dependent characteristics influencing the deposition on the
panels and therefore the efficiency of solar PV Plants, such as dust from agriculture or
industry (i.e., tractor movement). In this sense, the type of terrain and vegetation plays
a fundamental role. Pollen, moss, and bird droppings [72] are other examples that can
substantially influence soiling, depending on the location of the PV plant.

6. Measuring Uncertainty Between Models and Sensors
6.1. Metodology and Soiling Sensors Considerations

In order to evaluate the uncertainty between the models and the sensors, we chose
different metrics [73]: the coefficient of determination (R2), which is used to evaluate the
linear relationship, the Root Mean Square Error (RMSE), and the Mean Absolute Error
(MAE), which measures the average error between the measured and the simulated data.

R2 = 1 −
∑
(

yre f − yi

)2

∑
(

yre f − yi

)2 (7)

RMSE =

√
1
N ∑N

i=1

(
yre f − yi

)2
(8)

MAE =
1
N ∑N

i=1

∣∣∣yre f − yi

∣∣∣ (9)

where yre f are the actual observations (reference values obtained from the sensors) and yi
are the values estimated from the models.

Before analyzing the metrics of the different models, it is important to consider that
soiling sensors inherently exhibit delays or output errors due to their specific characteristics.
These delays occur because soiling sensors require a minimum level of irradiance to
function effectively, which limits their performance under cloudy conditions or during
episodes of extremely high particle concentrations. Additionally, many sensors depend on
the manual cleaning of the reference cell, meaning increases in soiling are not detected until
this cleaning takes place. Errors may also arise from issues such as calibration inaccuracies
or communication failures.

Due to those characteristics, we compared 7 day averages, considering an average
delay of 2 days in sensor outputs. So, the reference values were taken as actual observations
to compare the models, which are calculated as follows:

yre f =
∑7+2

1+2
(ysensor1_raw+ysensor2_raw)

2
7

(10)
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Additional considerations regarding the interpretation of soiling sensor values are
as follows. If no valid output is available from one of the sensors during a 7-day period,
the other sensor is used as the reference. However, if neither sensor provides valid output
during this period, the data for that timeframe are excluded from the metrics calculation.
When calculating the metrics for each sensor, missing data are replaced with the most
recent valid data available. It is also worth noting that the high particle event in March
2023 was excluded from the comparison, as it was not properly detected by the sensors.

6.2. Results and Discussion

The results of the evaluation are presented in Table 3 and in Figure 8. The input data
correspond to the Location 3, chosen for the comparison of previous sections (See Figure 3)
as the quality of the sensors data were the best over the different locations.

Table 3. Evaluation metrics of the 4 models analyzed (7 day average value comparison, over
105 weeks).

Method Soiling (%) Mean Count
(n. of Weeks with Valid Data) R2 RMSE MAE

Reference values
(average of soiling sensors) 1.41% 99 1.0 0.0 0.0

Sensor 1 1.92% 85 −0.218 1.288 0.763

Sensor 2 1.15% 99 0.886 0.394 0.301

Kimber 0.88% 105 −0.351 1.356 1.035

HSU 1.04% 105 0.233 1.022 0.740

Toth 1.39% 105 0.239 1.018 0.734

SOMOSclean 1.56% 105 0.380 0.919 0.694
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7. Conclusions

In this paper, the effect of the most important environmental parameters on soiling
losses has been analyzed, comparing the behavior of four different analytical models:
Kimber [29], HSU [32], Toth [33], and SOMOSclean [17] models. While simpler models
may offer straightforward implementation, they often fail to capture the full complexity of
soiling dynamics, leading to increased RMSE error.
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The behavior of the models is very similar in “normal” conditions (without specific
atmospheric events). The main input variable to all of the models is the rainfall, considering
that most of them have a fixed threshold and perfect cleaning, while SOMOSclean models
it in a different way, allowing partial cleaning. The influence of the PM10 concentration is
also different in each model: the Kimber model, the simplest one, does not consider the
influence of particle concentration. The HSU and Toth models consider them in a similar
way, while the SOMOSclean model responds better to high particle concentration events.

It has been stated that soiling sensors usually have an intrinsic delay or output error, so
it is important to consider it when analyzing the numerical results. When comparing 7-day
values over more than 2 years in a 49.5 MWp PV plant, the better model was SOMOSclean
with an MAE (Mean Absolute Error) of 0.694. HSU and Toth’s models are very similar with
an MAE of 0.740 and 0.734, respectively, and the Kimber model has the greatest MEA with
1.035. However, the four methods can be a good tool to estimate soiling when there is no other
alternative, or to compare soiling sensor values and help the decision-making process.

Roadmap for Future Research

While this study highlights key factors influencing soiling, such as wind, humidity, and
dew, these variables are not fully accounted for in the analytical models evaluated. Future
research should focus on refining these models to incorporate additional environmental
variables and improve their predictive accuracy.

Moreover, integrating analytical models with emerging machine-learning techniques
and image-based approaches could offer significant advancements. This combination has
the potential to enhance soiling predictions by leveraging the strengths of data-driven
algorithms and remote sensing technologies, ultimately contributing to more efficient
maintenance strategies and higher PV plant performance.

8. Patents

The method presented in this paper has been submitted to be patented (Redondo
Cuevas M. Method for modeling the degree of soiling of photovoltaic panels and optimiza-
tion of cleaning Spanish Patent Application number P202230237).
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Appendix A

In this section, the data of the 16 PV power plants are compared to choose the better
location for the analysis presented in this paper. For each PV power plant, the following
figures are indicated in Table A1.

- Capacity (MWp): Nominal Peak Power;
- SL avg (%): Average values of soiling sensors measurements;
- Date since: Date with the availability of sensor data;
- Sensors % availability: % of days with at least one sensor valid output;
- R2: Coefficient of determination between sensor 1 and sensor 2;
- MAE: Mean Absolute Error between sensor 1 and sensor 2.

Table A1. Location of 16 PV Plants and sensor quality measurements comparison. Better figures
regarding availability, R2, and MAE are highlighted with a tick symbol.

Location Province Capacity
(MWp)

SL Avg
(%) Date Since Sensors %

Availability
R2

(S1 vs. S2)
MAE

(S1 vs. S2) Comments

Location 1 Murcia 84.71 2.26 1 January 2022 80.4 0.104 ✔ 0.81

Location 2 Sevilla 49.90 2.39 1 January 2022 ✔ 94.7 ✔ 0.549 ✔ 0.79

Location 3 Sevilla 49.48 1.52 1 January 2022 ✔ 88.1 ✔ 0.631 ✔ 0.73 ✔ Higher R2 and
lower MAE

Location 4 Málaga 43.24 1.53 2 January 2022 ✔ 93.4 −0.663 1.72

Location 5 Málaga 43.24 1.55 1 January 2022 ✔ 93.2 0.356 ✔ 0.90

Location 6 Badajoz 49.91 0.79 1 January 2022 ✔ 93.4 −0.570 1.19

Location 7 Baleares 13.32 1.32 1 January 2022 69.2 0.169 1.09

Location 8 Sevilla 22.48 1.28 1 October 2022 53.6 0.158 1.23

Location 9 Huelva 30.44 1.82 1 November 2022 43.2 0.830 0.35 Sensor data
availability <50%

Location 10 Badajoz 49.56 0.61 31 December 2022 40.1 0.000 N/A Sensor data
availability <50%

Location 11 Badajoz 48.99 2.51 31 December 2022 38.3 −0.221 2.20 Sensor data
availability <50%

Location 12 Badajoz 46.59 0.73 31 December 2022 38.9 −2.945 1.37 Sensor data
availability <50%

Location 13 Badajoz 47.46 1.61 31 December 2022 26.7 −1.430 0.97 Sensor data
availability <50%

Location 14 Badajoz 49.87 2.20 31 December 2022 38.6 0.000 N/A Sensor data
availability <50%

Location 15 Badajoz 47.88 2.35 31 December 2022 42.3 0.358 1.20 Sensor data
availability <50%

Location 16 Badajoz 49.87 5.14 31 December 2022 42.8 0.000 N/A Sensor data
availability <50%
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