Photosynthetic Efficiency of Plants as an Indicator of Tolerance to Petroleum-Contaminated Soils
<p>Weather conditions during the experiment period.</p> "> Figure 2
<p>Induction curves of chlorophyll <span class="html-italic">a</span> fluorescence of investigated plants under control soil and petroleum-contaminated soil. <span class="html-italic">Dactylis glomerata</span> L. var Amba (DGA), <span class="html-italic">Lolium perenne</span> L. var. Maja (LPM) and Nira (LPN), <span class="html-italic">Poa pretensis</span> L. var. Appalachian (PPA), <span class="html-italic">Phleum pretense</span> L. var. Egida (PPE), <span class="html-italic">Trifolium repens</span> L. var Grass. Huia (TRH), relative units, n = 8.</p> "> Figure 3
<p>Delayed fluorescence induction curves of investigated plants under control soil and petroleum-contaminated soil. <span class="html-italic">Dactylis glomerata</span> L. var Amba (DGA), <span class="html-italic">Lolium perenne</span> L. var. Maja (LPM) and Nira (LPN), <span class="html-italic">Poa pretensis</span> L. var. Appalachian (PPA), <span class="html-italic">Phleum pretense</span> L. var. Egida (PPE), <span class="html-italic">Trifolium repens</span> L. var Grass. Huia (TRH), relative units, n = 8.</p> "> Figure 4
<p>Modulated light reflection at 820 nm of investigated plants under control soil and petroleum-contaminated soil. <span class="html-italic">Dactylis glomerata</span> L. var Amba (DGA), <span class="html-italic">Lolium perenne</span> L. var. Maja (LPM) and Nira (LPN), <span class="html-italic">Poa pretensis</span> L. var. Appalachian (PPA), <span class="html-italic">Phleum pretense</span> L. var. Egida (PPE), <span class="html-italic">Trifolium repens</span> L. var Grass. Huia (TRH), relative units, n = 8.</p> "> Figure 5
<p>Principal component analysis for control experiment (<b>a</b>) and petroleum contamination soil (<b>b</b>). <span class="html-italic">Dactylis glomerata</span> L. var Amba (DGA), <span class="html-italic">Lolium perenne</span> L. var. Maja (LPM) and Nira (LPN), <span class="html-italic">Poa pretensis</span> L. var. Appalachian (PPA), <span class="html-italic">Phleum pretense</span> L. var. Egida (PPE), <span class="html-italic">Trifolium repens</span> L. var Grass. Huia (TRH).</p> "> Figure 6
<p>T-Student test results of all measured parameters of tested plant species. <span class="html-italic">Dactylis glomerata</span> L. var Amba (DGA), <span class="html-italic">Lolium perenne</span> L. var. Maja (LPM) and Nira (LPN), <span class="html-italic">Poa pretensis</span> L. var. Appalachian (PPA), <span class="html-italic">Phleum pretense</span> L. var. Egida (PPE), <span class="html-italic">Trifolium repens</span> L. var Grass. Huia (TRH). The ns refer to non-significant differences, and asterisks *, **, ***, **** refer to different significance levels represented by <span class="html-italic">p</span>-values lower or equal to 0.05, 0.01, 0.001 and 0.0001 respectively.</p> "> Figure 7
<p>Boxplot results of the parameters Area (<b>a</b>), MRmin (<b>b</b>), and I2 (<b>c</b>) indicating statistically significant (or no-significant) differences in the fluorescence variables enable the impact of the contamination treatment on the state of the analyzed species. <span class="html-italic">Dactylis glomerata</span> L. var Amba (DGA), <span class="html-italic">Lolium perenne</span> L. var. Maja (LPM) and Nira (LPN), <span class="html-italic">Poa pretensis</span> L. var. Appalachian (PPA), <span class="html-italic">Phleum pretense</span> L. var. Egida (PPE), <span class="html-italic">Trifolium repens</span> L. var Grass. Huia (TRH). The blue box and circles regard control experiment, whereas the green box and triangles indicate the Petroleum contamination experiment.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Conditions
2.2. Chlorophyll a Fluorescence Measurements
2.3. Statistical Analysis
3. Results
3.1. Morphological Parameters
3.2. Induction Curves of Chlorophyll a Fluorescence Under Petroleum Contamination
3.3. Relationship Between Chlorophyll a Fluorescence and Morphological Parameters Under Petroleum Contamination
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Varjani, S.J.; Upasani, V.N. A new look on factors affecting microbial degradation of petroleum hydrocarbon pollutants. Int. Biodeterior. Biodegrad. 2017, 120, 71–83. [Google Scholar] [CrossRef]
- Li, H.; Wang, J.; Zhao, B.; Gao, M.; Shi, W.; Zhou, H.; Xie, Z.; Zhou, B.; Lü, C.; He, J. Markers of oil exposure in cold-water benthic environments: Insights and challenges from a study with echinoderms. Ecotoxicol. Environ. Saf. 2018, 162, 514–520. [Google Scholar] [CrossRef] [PubMed]
- Duan, Q.; Han, G.; Cui, B.; Rennenberg, H. The effects of petroleum contaminated soils on the growth, gas exchange and antioxidative level of sea-buckthorn. Plant Soil 2023, 486, 535–550. [Google Scholar] [CrossRef]
- Klik, B.; Jachimowicz, P.; Liniauskiene, E.; Gusiatin, M.; Radzevičius, A.; Brtnicky, M.; Šadzevičius, R.; Bęś, A.; Mazur, Z.; Dapkienė, M.; et al. Ash from gasification of poultry feathers for heavy metal immobilization under assisted phytostabilization in soils. Sci. Rev. Eng. Environ. Sci. 2024, 33, 131–143. [Google Scholar] [CrossRef]
- Paredes Páliz, K.; Cunachi, A.; Licta, E. Reduction of the soil environmental impact caused by the presence of total petroleum hydrocarbons (TPH) by using Pseudomonas sp. Sci. Rev. Eng. Environ. Sci. 2022, 30, 573–584. [Google Scholar] [CrossRef]
- Pawluśkiewicz, B.; Małuszyńska, I.; Małuszyński, M.; Dąbrowski, P.; Gnatowski, T. Biometric indicators of growth and development of Lolium perenne and Trifolium repens in terms of recultivation of soil contaminated with petroleum. J. Water Land Dev. 2022, 0, 70–79. [Google Scholar] [CrossRef]
- Shahsavari, E.; Adetutu, E.M.; Anderson, P.A.; Ball, A.S. Tolerance of selected plant species to petrogenic hydrocarbons and effect of plant rhizosphere on the microbial removal of hydrocarbons in contaminated soil. Water Air Soil Pollut. 2013, 224, 1495. [Google Scholar] [CrossRef]
- Schwitzguébel, J.P. Phytoremediation of soils contaminated by organic compounds: Hype, hope, and facts. J. Soils Sediments. 2015, 17, 1492–1502. [Google Scholar] [CrossRef]
- Xie, W.; Li, R.; Li, X.; Liu, P.; Yang, H.; Wu, T.; Zhang, Y. Different responses to soil petroleum contamination in monocultured and mixed plant systems. Ecotoxicol. Environ. Saf. 2018, 161, 763–768. [Google Scholar] [CrossRef]
- Dąbrowski, P.; Pawluśkiewicz, B.; Kalaji, H.M.; Baczewska, A.H. The effect of light availability on leaf area index, biomass production, and plant species composition of park grasslands in Warsaw. Plant Soil Environ. 2013, 59, 543–548. [Google Scholar] [CrossRef]
- Kalaji, H.M.; Schansker, G.; Brestic, M.; Bussotti, F.; Calatayud, A.; Ferroni, L.; Goltsev, V.; Guidi, L.; Jajoo, A.; Li, P.; et al. Frequently asked questions about chlorophyll fluorescence, the sequel. Photosynth. Res. 2017, 132, 13–66. [Google Scholar] [CrossRef] [PubMed]
- Dąbrowski, P.; Baczewska-Dąbrowska, A.H.; Bussotti, F.; Pollastrini, M.; Piekut, K.; Kowalik, W.; Wróbel, J.; Kalaji, H.M. Photosynthetic efficiency of Microcystis ssp. under salt stress. Environ. Exp. Bot. 2021, 186, 104459. [Google Scholar] [CrossRef]
- Kalaji, H.M.; Bosa, K.; Kościelniak, J.; Żuk-Gołaszewska, K. Effects of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces. Environ. Exp. Bot. 2011, 73, 64–72. [Google Scholar] [CrossRef]
- Kalaji, H.M.; Rastogi, A.; Živčák, M.; Brestic, M.; Daszkowska-Golec, A.; Sitko, K.; Alsharafa, K.Y.; Lotfi, R.; Stypiński, P.; Samborska, I.A.; et al. Prompt chlorophyll fluorescence as a tool for crop phenotyping: An example of barley landraces exposed to various abiotic stress factors. Photosynthetica 2018, 56, 953–961. [Google Scholar] [CrossRef]
- Stirbet, A. Govindjee. On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: Basics and applications of the OJIP fluorescence transient. J. Photochem. Photobiol. B Biol. 2011, 104, 236–257. [Google Scholar] [CrossRef]
- Oukarroum, A.; Madidi, S.E.; Schansker, G.; Strasser, R.J. Probing the responses of barley cultivars (Hordeum vulgare L.) by chlorophyll a fluorescence OLKJIP under drought stress and re-watering. Environ. Exp. Bot. 2007, 60, 438–446. [Google Scholar] [CrossRef]
- Strasser, R.J.; Tsimilli-Michael, M.; Qiang, S.; Goltsev, V. Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis. Biochim. Biophys. Acta Bioenerg. 2010, 1797, 1313–1326. [Google Scholar] [CrossRef]
- Strasser, B.; Strasser, R.J. Measuring fast fluorescence transients to address environmental questions: The JIP-test. In Photosynthesis: From Light to Biosphere; Garab, G., Ed.; Springer: Berlin/Heidelberg, Germany, 1995; Volume 5, pp. 977–980. [Google Scholar]
- Goltsev, V.; Zaharieva, I.; Chernev, P.; Kouzmanova, M.; Kalaji, H.M.; Yordanov, I.; Krasteva, V.; Alexandrov, V.; Stefanov, D.; Allakhverdiev, S.I.; et al. Drought-induced modifications of photosynthetic electron transport in intact leaves: Analysis and use of neural networks as a tool for a rapid non-invasive estimation. Biochim Biophys. Acta Bioenerg. 2012, 1817, 1490–1498. [Google Scholar] [CrossRef]
- Goltsev, V.; Zaharieva, I.; Chernev, P.; Strasser, R.J. Delayed fluorescence in photosynthesis. Photosynth. Res. 2009, 101, 217–232. [Google Scholar] [CrossRef]
- Schansker, G.; Srivastava, A.; Govindjee Strasser, R.J. Characterization of the 820-nm transmission signal paralleling the chlorophyll a fluorescence rise (OJIP) in pea leaves. Funct. Plant Biol. 2003, 30, 785–796. [Google Scholar] [CrossRef]
- Bussotti, F.; Gerosa, G.; Digrado, A.; Pollastrini, M. Selection of chlorophyll fluorescence parameters as indicators of photosynthetic efficiency in large-scale plant ecological studies. Ecol. Indic. 2020, 108, 105686. [Google Scholar] [CrossRef]
- Faseela, P.; Sinisha, A.K.; Brestič, M.; Puthur, J.T. Chlorophyll a fluorescence parameters as indicators of a particular abiotic stress in rice. Photosynthetica 2020, 58, 293–300. [Google Scholar] [CrossRef]
- PN-EN ISO 16703:2011; Soil Quality—Determination of Hydrocarbon Content in the Range C10 to C40 by Gas Chromatography. Comite Europeen de Normalisation: Bruxelles, Belgium, 2011.
- Małuszyński, M.J.; Małuszyńska, I. The mercury content in the upper layers of soils in the selected area of the Masovian Landscape Park. Sustainability 2022, 14, 405. [Google Scholar] [CrossRef]
- Böhm, W. Metody Badania Systemów Korzeniowych; Państwowe Wydawnictwo Rolnicze i Leśne: Warszawa, Polska, 1985; pp. 163–164. [Google Scholar]
- Husson, F.; Lê, S.; Pagès, J. Exploratory Multivariate Analysis by Example Using R; CRC Press: Boca Raton, FL, USA, 2011; Volume 15, pp. 1–60. [Google Scholar]
- Hartigan, J.A.; Wong, M.A. Algorithm AS 136: A k-means clustering algorithm. J. R. Stat. Soc. Ser. C (Appl. Stat.) 1979, 28, 100–108. [Google Scholar] [CrossRef]
- R Core Team 2021. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.r-project.org (accessed on 12 May 2022).
- Mishra, P.; Singh, U.; Pandey, C.M.; Mishra, P.; Pandey, G. Application of Student’s t-test, analysis of variance, and covariance. Ann. Card. Anaesth. 2019, 22, 407–411. [Google Scholar] [CrossRef]
- Dos Santos, J.J.; Maranho, L.T. Rhizospheric microorganisms as a solution for the recovery of soils contaminated by petroleum: A review. J. Environ. Manage. 2018, 210, 104–113. [Google Scholar] [CrossRef]
- Achuba, F.I.; Iserhienrhien, L.O. Effects of soil treatment with abattoir effluent on morphological and biochemical profiles of cowpea seedlings (V. unguiculata) grown in gasoline-polluted soil. Ife J. Sci. 2018, 20, 51. [Google Scholar] [CrossRef]
- Marchal, G.; Smith, K.E.C.; Mayer, P.; Wollesen de Jonge, L.; Karlson, U.G. Impact of soil amendments and the plant rhizosphere on PAH behaviour in soil. Environ. Pollut. 2014, 188, 124–131. [Google Scholar] [CrossRef]
- da Silva Correa, H.; Blum, C.T.; Galvão, F.; Maranho, L.T. Effects of oil contamination on plant growth and development: A review. Environ. Sci. Pollut. Res. Int. 2022, 29, 43501–43515. [Google Scholar] [CrossRef]
- Passioura, J.B. Soil structure and plant growth. Aust. J. Soil Res. 1991, 29, 717–728. [Google Scholar] [CrossRef]
- Atkinson, D. Root characteristics: Why and what to measure. In Root Methods. A Handbook; Smit, A.L., Bengough, A.G., Engels, C., van Noordwijk, M., Pellerin, S., van de Geijn, S.C., Eds.; Springer: Berlin, Germany, 2000; pp. 1–13. [Google Scholar]
- Schansker, G.; Tóth, S.Z.; Strasser, R.J. Methylviologen and dibromothymoquinone treatments of pea leaves reveal the role of photosystem I in the Chl a fluorescence rise OJIP. Biochim. Biophys. Acta Bioenerg. 2005, 1706, 250–261. [Google Scholar] [CrossRef] [PubMed]
- Mehta, P.; Jajoo, A.; Mathur, S.; Bharti, S. Chlorophyll a fluorescence study revealing effects of high salt stress on photosystem II in wheat leaves. Plant Physiol. Biochem. 2010, 48, 16–20. [Google Scholar] [CrossRef] [PubMed]
- Tikkanen, M.; Mekala, N.R.; Aro, E.M. Photosystem II photoinhibition-repair cycle protects photosystem I from irreversible damage. Biochim. Biophys. Acta Bioenerg. 2014, 1837, 210–215. [Google Scholar] [CrossRef] [PubMed]
- Reigosa, R.M.J.; Weiss, O. Fluorescence techniques. In Handbook of Plant Ecophysiology Techniques; Reigosa, R.M., Ed.; Springer: Dordrecht, The Netherlands, 2001; pp. 155–171. [Google Scholar]
- Zaharieva, I.; Taneva, S.G.; Goltsev, V. Effect of temperature on the luminescent characteristics in leaves of Arabidopsis mutants with decreased unsaturation of the membrane lipids. Bulg. J. Plant Physiol. 2001, 27, 3–19. [Google Scholar]
- Hamdani, S.; Khan, N.; Perveen, S.; Qu, M.; Jiang, J.; Gao, J.; Xin, C.P.; Li, M.; Chu, C.; Zhu, X.G. Variations between the photosynthetic properties of elite and landrace Chinese rice cultivars revealed by simultaneous measurements of 820 nm transmission signal and chlorophyll a fluorescence induction. J. Plant Physiol. 2015, 177, 128–138. [Google Scholar] [CrossRef]
- Tsimilli-Michael, M. Revisiting JIP-test: An educative review on concepts, assumptions, approximations, definitions and terminology. Photosynthetica 2020, 58, 275–292. [Google Scholar] [CrossRef]
- Salvatori, E.; Fusaro, L.; Gottardini, E.; Pollastrini, M.; Goltsev, V.; Strasser, R.J.; Bussotti, F. Plant stress analysis: Application of prompt, delayed chlorophyll fluorescence and 820 nm modulated reflectance. Insights from independent experiments. Plant Physiol. Biochem. 2014, 85, 105–113. [Google Scholar] [CrossRef]
JIP Test Parameters | |
---|---|
tFm | Time (in ms) to reach the maximal fluorescence FP (meaningful only when FP = Fm) |
Area | Total complementary area between the fluorescence induction curve and F = FP (meaningful only when FP = Fm) |
Fo ≅ F50 µs or ≅ F20 µs | Fluorescence when all PSII RCs are open (≅to the minimal reliable recorded fluorescence) |
Fm (= FP) | Maximal fluorescence, when all PSII RCs are closed (=FP when the actinic light intensity is above 500 µmol(photon) m−2 s1 and provided that all RCs are active as QA-reducing) |
Fv ≡ Fm − Fo | Maximal variable fluorescence |
Fv/Fm | The maximum quantum yield for primary photochemistry |
ABS/RC = Mo × (1/VJ) × (1/ϕPo) | Absorption flux (exciting PSII antenna Chl a molecules) per RC (also used as a unit-less measure of PSII apparent antenna size) |
TRo/RC = Mo × (1/VJ) | Trapped energy flux (leading to QA reduction), per RC |
REo/RC = Mo × (1/VJ) × (1 − VI) | Electron flux reducing end electron acceptors at the PSI acceptor side, per RC |
ETo/RC = Mo × (1/VJ) × (1 − VJ) | Electron transport flux (further than QA−), per RC |
DIo/RC = (ABS/RC) − (TRo/RC) | An RC does not intercept energy flux, dissipate in heat, fluorescence, or transfer to other systems at time t = 0. |
ϕPo ≡ TRo/ABS = [1 − (Fo/Fm)] | The maximum quantum yield for primary photochemistry |
ϕEo ≡ ETo/ABS = [1 − (Fo/Fm)] × (1 − VJ) | Quantum yield for electron transport (ET) |
ϕRo ≡ REo/ABS = [1 − (Fo/Fm)] × (1 − VI) | Quantum yield for reduction of end electron acceptors at the PSI acceptor side (RE) |
ψEo ≡ ETo/TRo = (1 − VJ) | Efficiency/probability that an electron moves further than QA− |
δRo ≡ REo/ETo = (1 − VI)/(1 − VJ) | Efficiency/probability with which an electron from the intersystem electron carriers is transferred to reduce end electron acceptors at the PSI acceptor side (RE) |
N = Sm × (Mo/VJ) | Turnover number (expresses how many times QA is reduced in the time interval from 0 to tFm) |
Sm = (Area)/(Fm − Fo) | Normalized total area above the OJIP curve |
PIabs | Performance index for energy conservation from photons absorbed by PSII until the reduction of intersystem electron acceptors |
PItot | Total performance index for energy conservation from photons absorbed by PSII until the reduction of PSII end electron acceptors |
Delayed chlorophyll a fluorescence parameters | |
I1 and I2 | Maxima of DF induction curve |
D2 | Minimum of DF induction curve |
Modulated at 820 nm reflection parameters | |
MRo | Modulated 820 nm reflection intensity at time “0”. |
MRmin | Minimum of modulated 820 nm reflection intensity |
MRmax | Maximum of modulated 820 nm reflection intensity |
∆MRfast | Fast phase (oxidation) of reflection intensity = MRo − MRmin |
∆MRslow | Slow phase (reduction) of reflection intensity = MRmax − MRmin |
Treatment | Variable | Min | Max | Mean | Stdev | p Value |
---|---|---|---|---|---|---|
Roots mass | Control | 0.89 | 5.26 | 2.31 | 0.87 | *** |
Petroleum contamination | 0.46 | 6.54 | 1.75 | 1.55 | ||
Plant mass | Control | 0.17 | 2.80 | 0.79 | 0.60 | *** |
Petroleum contamination | 0.36 | 5.88 | 1.85 | 1.11 | ||
P/R | Control | 0.62 | 2.54 | 1.30 | 0.44 | ns |
Petroleum contamination | 0.15 | 2.09 | 0.61 | 0.42 | ||
R/P | Control | 0.12 | 3.30 | 0.88 | 0.91 | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dąbrowski, P.; Małuszyńska, I.; Małuszyński, M.J.; Pawluśkiewicz, B.; Gnatowski, T.; Baczewska-Dąbrowska, A.H.; Kalaji, H.M. Photosynthetic Efficiency of Plants as an Indicator of Tolerance to Petroleum-Contaminated Soils. Sustainability 2024, 16, 10811. https://doi.org/10.3390/su162410811
Dąbrowski P, Małuszyńska I, Małuszyński MJ, Pawluśkiewicz B, Gnatowski T, Baczewska-Dąbrowska AH, Kalaji HM. Photosynthetic Efficiency of Plants as an Indicator of Tolerance to Petroleum-Contaminated Soils. Sustainability. 2024; 16(24):10811. https://doi.org/10.3390/su162410811
Chicago/Turabian StyleDąbrowski, Piotr, Ilona Małuszyńska, Marcin J. Małuszyński, Bogumiła Pawluśkiewicz, Tomasz Gnatowski, Aneta H. Baczewska-Dąbrowska, and Hazem M. Kalaji. 2024. "Photosynthetic Efficiency of Plants as an Indicator of Tolerance to Petroleum-Contaminated Soils" Sustainability 16, no. 24: 10811. https://doi.org/10.3390/su162410811
APA StyleDąbrowski, P., Małuszyńska, I., Małuszyński, M. J., Pawluśkiewicz, B., Gnatowski, T., Baczewska-Dąbrowska, A. H., & Kalaji, H. M. (2024). Photosynthetic Efficiency of Plants as an Indicator of Tolerance to Petroleum-Contaminated Soils. Sustainability, 16(24), 10811. https://doi.org/10.3390/su162410811